NGAO

 .
[image: image1.png]W. M. KECK OBSERVATORY

On the summit of Mauna Kea, Island of Hawai‘i

NGAO: Multi System Command Sequencer
Approach 1: Task Framework and Command Pattern
Table of Content

31
Background

32
Basic Approach

32.1
Advantages

42.2
Command Pattern

42.3
Thread Pools

53
Tasks and activities

53.1
Using Tasks – issuing commands

73.2
Writing Simple Tasks

73.3
Asynchronous tasks example

83.4
Synchronous task example

93.5
Compound Tasks

93.5.1
Sequencing

103.5.2
Concurrency

113.5.3
Composing Compounds

123.5.4
Other control patterns

123.6
Task Class Inheritance

133.7
Handling Errors, Cancellation, etc.

144
Appendix

144.1
Command pattern

154.2
Thread Pools and the command manager/dispatcher

Table of Figures
4Figure 1 Simple Thread Pool

14Figure 2 Command Pattern Class Diagram

15Figure 3 Thread Pool Class Diagram

1 Background
Basic problem: representing and managing command processing in a distributed observation control system.

Need a solution to manage many different types of concurrently executing commands, providing common mechanisms for control and synchronization, yet being able to handle many disparate sorts of low-level interfaces.
2 Basic Approach
All commands follow a simple interface and follow the command [design] pattern, where a command object encapsulates an action and its parameters. A lightweight, object-oriented task framework is provided to execute these commands, most likely using a thread pool. The framework provides a base task class that abstracts services for processing status and other common infrastructure activities. Upon this are built and provided a set of "atomic" tasks for telescope and instrument commands. A set of "container" tasks based on common sequential and concurrent command processing paradigms is also included.

All tasks share the same exact interface; it is straightforward to build up compound tasks by plugging simple tasks into container tasks and container tasks into other containers, and so forth. In this way various advanced astronomical workflows can be readily created, with well controlled behaviors. In addition, since tasks are written in a dynamic language (suggest Python), it is easy for astronomers to subclass and extend the standard observatory tasks with their own custom extensions and behaviors, in a high-level, full-featured programming language.

Key concept is how rigorous use of the command pattern can make complex astronomical workflows realizable via reusable observation components written in a full-featured programming language, in much the same way that complex graphical user interfaces can be created by leveraging the commonality of widgets.

2.1 Advantages

· Easy to extend the system with new command structures and primitives.

· Software/AO group can build up a collection of simple and compound tasks that is useful for the vast majority of typical observation activities.

· Advanced users can create their own tasks to add to the set, possibly sub-classing existing tasks.

· Has the advantage of a full-featured, object-oriented, widely-supported programming language.

· Easy to build a UI/ RAD tool around

· Easy to modify or replace existing tasks

2.2 Command Pattern

· The Command pattern is a design pattern in which objects are used to represent actions.

· A command object encapsulates an action and its parameters.

· A command object is convenient temporary storage for procedure parameters.

· It can be used while assembling the parameters for a function call and allows the command to be set aside for later use.

· A class is a convenient place to collect code and data related to a command.

· A command object can hold information about the command, such as its name or which user launched it; and answer questions about it, such as how long it will likely take. It also allows the command to be executed some time after it is defined.

· Treating commands as objects enables data structures containing multiple commands.

· Treating commands as objects supports undo-able operations, provided that the command objects are stored (for example in a stack).

· If a new type of command object is created later, it can work with these generic components automatically.

· These meta control structures themselves can be represented by such objects, making actions into fully composable pieces, without increasing the complexity of management.

· Properly architected, this allows all tasks to be handled by common control structures.

2.3 Thread Pools

The conceptual model of a thread pool is simple: the pool starts threads running; work is queued to the pool; available threads execute the queued work. In our case all tasks will be handled identically because of the standardized interface.
In the thread pool pattern, a number of threads are created to perform a number of tasks, which are usually organized in a queue. Typically, there are many more tasks than threads. Generally a thread pools allow a server to queue and perform work in the most efficient and scalable way possible. As soon as a thread completes its task, it will request the next task from the worker queue until all tasks have been completed. The thread can then terminate, or sleep until there are new tasks available.

Figure 1 Simple Thread Pool

The number of threads used is a parameter that can be tuned to provide the best performance. Additionally, the number of threads can be dynamic based on the number of waiting tasks. The cost of having a larger thread pool is increased resource usage. The algorithm that determines when creating or destroying threads will have an impact on the overall performance. The advantage of using a thread pool over creating a new thread for each task is that thread creation and destruction overhead is negated, which may result in better performance and better system stability. The queue must be thread-safe.
There are a number of features that can be added to the thread pool implementation if needed, for example:
· The number of threads dynamically changes according to the workload on the threads in the pool.

· A work item can be cancelled if it hasn't been executed yet.

· Work items can have a priority.

· Work items can have a group.

· The caller can suspend the start of a thread pool and work items group.

· Threads can have priority.
· Compound commands could have their individual commands farmed out onto separate threads

· A special command can be used to flush or reset the worker queue.
3 Tasks and activities
An activity might be as complex as acquiring a guide star or making a dithered exposure with an instrument, or as simple as slewing the telescope or performing a common image calculation such as a point spread function. A task is the implementation of an activity using a command pattern-based class framework described herein. So we have tasks for acquiring a guide star, moving the telescope, and so forth. Each task would be implemented by a Python class (could be Java/Jython, Groovy or Ruby but recommend Python). What follows is an example of using, and then creating such tasks, as seen from the standpoint of a developer.

3.1 Using Tasks – issuing commands
To realize an activity during an observation, one instantiates the task of the appropriate name with appropriate arguments (i.e. creates an object by calling the class constructor with parameters). Since more sophisticated tasks can have a very large number of parameters, it is proposed that most if not all of the tasks use keyword, rather than positional arguments (a feature of Python functions) so that parameters can be passed without regard to positional order. For example, a PointTelescope task might be instantiated as

from TelTask import
*

t
= PointTelescope(ra='2:31.8', dec='+89.26', equinox=2000.0, insrot_pa=90)

Now t is bound to a reference to the task. The ra, dec, equinox and insrot_pa* parameters can be passed in any order. Another benefit of keyword arguments is that that they allow default values to be set in the constructor definition, and omitted from the constructor call. The equinox might default to 2000, so that the call then becomes:

t
= PointTelescope(ra='2:31.8', dec='+89.26', insrot_pa=90)

Once a task is created, a standard task interface is used to control it (i.e. by method calls on the object). For example, given the code snippet above, we might do the following to initialize the task, start it, and wait for the result, which is returned to the variable res.
t. initialize(self)

t.start()

res = t.wait()

or

t. initialize(self)

res = t.run()

Python has rich data structures, so the result could be any valid Python object. The call to start is expected to return immediately.

The powerful cornerstone feature of the command design pattern is that all tasks must provide a common subset of interface methods. Subclasses may provide additional methods, but the basic control methods must be provided. Assuming that the above methods are available in every task, we can extrapolate that given any task t, we could perform the same call sequence above to control it.

So far, we have shown the following methods:

· a constructor: the constructor method signature will be different for each task, since there are different parameters required for each. The constructor should initialize the task, in whatever manner it sees fit. In the example above, the constructor call used PointTelescope. It is expected that most tasks will use keyword parameters to simplify constructor calls.

· initialize(parent): this method is used to initialize a task from the parent task (if any), immediately prior to execution. Because a task can be instantiated arbitrarily long before it is actually started, this method performs any dynamic initialization needed just prior to execution, based on current conditions. It is also used if a task object is reused, to reinitialize it. Normally this is an inherited method that performs some initialization in the task infrastructure and does not need to be implemented or overridden by the subclass.

· start: a method of no parameters that starts the task executing. It must return quickly (the intention being that it does not perform the task, but merely initiates it). The mechanics of how this works are described later.
· wait (timeout=None): a method with an optional timeout parameter. This waits for the executing task to finish and returns that task's result. If a timeout is passed (a float) then the caller will wait at most timeout seconds for the task to finish. If the task does not finish by that time a TimeoutError exception is raised. If no timeout is passed, then the caller will wait indefinitely for the task to finish. If an exception is raised by the child task, it will be re-raised in the parent on a wait.

· done (result) : when a task is ready to terminate normally, it must call this method internally with its result value (which may be anything). Any callers waiting on the result will receive it. A task normally calls this as its final act. The method itself is usually inherited from the parent class.

· run : this is essentially a convenience function and as a combination of start and wait.

In the final implementation there will be a number of other methods provided by the basic task interface, some of which will be described later. Many of these methods can simply be inherited from the base class, simplifying implementation.

3.2 Writing Simple Tasks

A simple task is one that is atomic in some respect. This definition is intentionally loose, but basically refers to implementing an activity that from the OCS's perspective cannot be broken down into simpler steps. Simple tasks might be used to implement a basic instrument or telescope command such as opening the shutter of a camera, or moving the telescope. Simple tasks form the basic building blocks of the set of activities provided by the MSCS.

Simple tasks fall into one of two categories: asynchronous and synchronous. These correspond to typical patterns of command processing in distributed systems. An asynchronous task is one whose "business logic" is handled by some externally active subsystem (e.g. an "open shutter" command issued to an instrument control system), whereas a synchronous task is one whose logic is implemented in the task code itself (e.g. calculating a point spread function on an image region). Externally, the two types of tasks can be manipulated the same way (start, wait, etc). The difference manifests itself internally in the implementation of the task methods, and which methods are overridden from the base class.

3.3 Asynchronous tasks example

As an example of an asynchronous task, consider the PointTelescope command. The skeleton of which is shown below:

import g2Task

class PointTelescope(Task.Task):

def start (self) :

send a command to the distributed telescope control system

self.cmd_id
= self.TCS.point(self.params.ra, self.params.dec,

self.params.equinox, self.params.insrot_pa)

def wait(self, timeout=None):
res
=
-1

try:

res
= self.TCS.wait(self.cmd_id, timeout)

finally:

self.done(res)

return res

Note the sub-classing of the base class Task in the module of the same name. This provides a common set of methods and instance variables that all tasks can expect to have. This PointTelescope class only overrides the base class methods for start and wait. The base class constructor, if not overridden, will store all keyword parameters passed into an instance variable self . params, where they are available to any method in the class using either a dictionary-style or attribute-style interface.

In this simplified example we assume that the initialize method in the parent class (or the parent class constructor) initialized the object with the instance variable TCS, which presumably is a handle for interfacing with the telescope control system. The point method is invoked on that subsystem, which returns a command id (cmd-id) that is stored into the task object (via self) and then start returns immediately.

In the wait method, the task again interfaces to the TCS, in this case to wait for the completion of the command or the timeout (if one was specified-the default is None). Note the use of a try finally clause to ensure that done is called, before the method finally terminates.

The important point here is not how the methods are implemented, but that they are implemented, and obey the proper behavior. start is always required to return "as soon as possible" after initiating the activity of a task. In asynchronous tasks this is not too onerous because (as shown) they are generally invoking an asynchronous command in some external subsystem and then returning. The wait method is a little more complicated, but basically needs to synchronize with the external subsystem for the end of that command, and return the result, if any. The timeout parameter complicates this effort, but it must be obeyed.

3.4 Synchronous task example

Some tasks will implement their own business logic. In this case, start needs to be able to invoke that logic, and yet return immediately, as required by the task interface behavior. The standard recipe for such a requirement would be to create a thread to do the computation and have the start method start that thread. The wait method could then wait on, or join, the thread and collect the result. However, requiring all synchronous-style tasks to perform this sort of thread management is tedious and quickly leads to various sorts of concurrent programming errors. This complexity cannot be eliminated completely, but the task framework does provide some help in the form of a thread pool' and an implicit interface to it.

A thread pool abstracts the implementation of a group of threads processing information from a shared queue. Hidden behind a class interface, there are methods for adding work objects to the queue. Threads compete to read items from the queue, process them and iterate back to the queue. In Gent, the task execution environment creates a thread pool object whose worker threads are all blocked trying to read tasks from a queue. A worker thread will pick up the task reference and try to invoke an execute method on it. By convention, the execute method does whatever work needs to be done and returns the result, which is stored away in the task object. The worker thread then returns its attention to the queue.

The main point is that the base Task class is all set up to enable synchronous-style tasks, where the subclass only needs to provide an execute method. If a task class does not override it, Task's start simply hands a reference to the task object to this thread pool. Similarly, if not overridden, wait understands how to wait for the result of such a task running on the thread pool, and obeys the timeout parameter. As a result, implementing a synchronous-style simple task is often a matter of defining a single method:

import Task

class PointSpread(Task.Task):

def execute(self):

Calculate the result of a point-spread function on an image
parameters are available via self.params.*

…
…
res
= ….
return res

This task does have start and wait methods-they are inherited from Task. By inheriting most of the default methods for a task, synchronous simple tasks can clearly express the business logic of a task without much extraneous task-related detail cluttering up the code. The full range of the Python standard library is available, and the task is free to define other methods to subdivide up the problem and make the program structure more manageable, provided they don't conflict with the task interface method names.

3.5 Compound Tasks

Due to the standard interface provided by the task abstraction, it is possible to compose tasks straightforwardly. Tasks can be written that create and control other tasks - these kinds of tasks are compound task. Compound tasks share some basic attributes and methods with ordinary tasks, but also have other methods that may be unique.

3.5.1 Sequencing

A common type of compound task is to execute a set of tasks in a given order (a sequence) running each one to completion before starting the next, and bailing out if there is an error along the way. This is known as a sequential compound task. Rather simplistically, we could write this as:

class SequenceTask(Task.Task):

def
__init__(self, tasklist):

self.tasklist
= tasklist

Call superclass constructor

super(SequenceTask, self).__init__()

def execute(self):

for t in self.tasklist:

t. initialize(self)

t.start()

res
= t.wait()

return res

And here is an example of using it in another task:

t
= SequenceTask([PointTelescope(...), OpenShutter(...), Readout(...),])

t. initialize(self)

t.start()

res = t.wait()

In the latter piece of code, note how we construct a list of the subtasks (a list of constructor calls) and pass it directly to the constructor for SequenceTask (which uses a positional parameter in contrast to the keyword parameters we used earlier). The sequence initialize, start and wait are so common that there is a convenience method (run) defined for it in the Task base class:

t
= SequenceTask([PointTelescope(...), OpenShutter(...), Readout(...), 1)

res
= self.run(t)

3.5.2 Concurrency

A concurrent compound task runs its subtasks concurrently. A common type of concurrency primitive starts all its subtasks and then collects the results as they trickle in, terminating itself when the last subtask finishes. This is possible due to another feature of the task framework: the ability to register a callback for the task's termination. The following example shows how this could be used for implementing a very basic concurrent compound task:

import threading

class ConcurrentTask(g2Task.g2Task):

def
__init__(self, taskset):

super(ConcurrentTask, self).__init__()

self.taskset
taskset

self.result
0

self.regcond
threading.Condition()

def execute(self):

self.count
= 0

for t in self. taskset :

t.register_callback(self.child_done)

self.count
+=
1

Now start each child task.

self.regcond.acquire()

try:

for t in self.taskset:

t. initialize(self)

t.start()

Finally, give up the critical section and wait for last child # task to terminate.

self.regcond.wait()

finally:

self.regcond.release()

return self.result

def child_done(self, result):

self.regcond.acquire()

try:

self.count
-=
1

self.result
= result

if self.count
<=
0:

self.regcond.notifyAll()

finally:

self.regcond.release()

Any data structures that are shared between concurrently executing tasks need to be protected via standard mutual exclusion techniques such as reentrant locks, semaphores, conditions, etc. Python's standard threading and Queue modules provide a rich set of tools for this purpose.

3.5.3 Composing Compounds

Since compound tasks are themselves tasks, it is straightforward to compose them as well. One can easily create a concurrent task composed of two sequential tasks, e.g.:

t
=ConcurrentTask([

SequentialTask([
A(),
B(), CO
1),

SequentialTask([
D(),
E(), F()
1),

])

This creates a task that will run two tasks concurrently: one task that executes tasks A, B, C in sequence and one that executes tasks D, E, F in sequence.

3.5.4 Other control patterns

Continuing along this same line of reasoning, we can see how one could define various other common control structures as tasks: conditionals, iterators, etc. With only a few simple, general compound tasks one can create quite sophisticated control flows using these sorts of compositions. The advantage over simply using Python's native control structures is that using the compound task approach abstracts the details of concurrency and leverages code reuse for uniform treatment of error handling, cancellation, logging, etc. However, one can always "fall back" to using Python's native control structures for particularly tricky control patterns. Regardless of which approach is used, all tasks have access to Python data structures and libraries.

Other examples include where one might add a stepping API to the SequenceTask, allowing a sort of single step debugging-style execution of commands. Other possibilities include inserting delays between tasks, logging task invocations, gathering timing statistics on subtasks, uniform error handling of subtasks, command cancellation between subtasks, etc. By defining a class for sequencing and using it wherever possible, any bug fixes or enhancements to the class are propagated to all uses of sequences.

3.6 Task Class Inheritance

The following diagram shows an approximate inheritance hierarchy of the proposed task set.

Object
(generic base python object)

\
Task
(generic Command design pattern)

\

Sequence
(compound task--sequential execution)

Concurrent
(compound task--concurrent execution)

… (other generic compounds)

INSTinterTask
(generic instrument interface task)

\

… (specific instrument command tasks)

TCSinterTask
(generic telescope interface task)

\

… (specific telescope command tasks)

ArchiveTask
(generic file archiving task)

… (other simple and compound tasks, based on Task)

3.7 Handling Errors, Cancellation, etc.

The previous examples have all been somewhat simplified. In reality, tasks have to deal with issue like cancellation, error handling, and so forth. In crafting the task interface, we have tried to ensure that writing code to the interface still remains as pythonic as possible. The standard approach to error handling in Python is to make use of exceptions. Therefore the same applies to tasks: a task is considered to have succeeded unless it raises an exception (of course the return values of tasks can also be used and interpreted, if desired).

In a distributed command and control system it can be difficult to cancel or pause some commands, especially once released to an external subsystem. Nevertheless, it is good to provide a mechanism to do so for those tasks that could support it. The task interface is a little more sophisticated than what is shown in the earlier examples. The following abstract methods are also defined on the base class:

• stop: a method of no parameters that stops an executing task. If the command cannot be cancelled this method raises an exception.

• step: if the task supports stepping, then this method will iterate one step of the task. If the task does not support stepping then this simply runs the entire task to completion. In our current implementation only certain compound tasks, such as sequences, support stepping.

• pause : a method of no parameters that pauses an executing task. If the task does not support pausing then this raises an exception.

• resume : a method of no parameters that resumes a paused task. If the task is not paused, or does not support pause/resume functionality then this raises an exception.

In general, the compound methods such as SequenceTask can support such actions between invocations of subtasks.

4 Appendix
4.1 Command pattern
[image: image3.png]At some time asks o
execute the command
Creates the Coner
‘and sefs ts receiver

Figure 2 Command Pattern Class Diagram
4.2 Thread Pools and the command manager/dispatcher

[image: image4.png]implementation

thread_pool
+nitialize()
+add interface
+remove A task
scancel
+shutdown sstart()

interface implementation

command | task thread

+execute() sstart()

[

implementation
concretecommand

+execute()

Figure 3 Thread Pool Class Diagram
[image: image5][image: image6][image: image7]

	
	Page 1 of 15

	
	Aug. 6, 08

	

	Page 2 of 15

	
	8/6/2008

