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1 Introduction and Organization 
This work documents the design of a real time computer system capable of solving large 
atmospheric tomography problems for adaptive optics in under 1 msec. 

Axey (Ax=y) is a scalable, programmable and configurable array of processors operating 
as a systolic array. 

It is scalable so that a system can be easily put together (by replication of rows and 
columns) that will work for any sized problem, from the smallest to at least TMT sized 
[1]. 

It is programmable, so that changes in the algorithm can be loaded at run time without 
changing the hardware.  Additionally, even the hardware is programmable in its 
architecture, interconnect and logic. 

It is configurable so that the parameters can be easily changed during run time to adapt to 
changing needs for a given system: number of sub apertures, guide stars or atmospheric 
layers; values for Cn

2; mixes, heights and positions of natural and laser guide stars; height 
and profile of the sodium layer; height of turbulent layers; etc.  Indeed, the actual 
architecture of the cells and the array can also be easily changed. 

The algorithm implemented here to solve Ax=y for x is a preconditioned iterative method 
and is discussed in Section 4.   

An alternative algorithm for solving for x, using Cholesky decomposition has also been 
proposed [2].  Some initial examination shows that the architecture documented here 
might also be suitable for implementing that algorithm.   This will be the subject of future 
work and is not documented here. 

Section 2, System Requirements, covers the specific problem, for which we undertook 
the research and developed Axey.  We detail our measures to determine the relative 
optimality of our solution. 

Section 3, The Tomography Algorithm, covers the underlying algorithms for which we 
needed to provide a solution and the architectural implications of the algorithms along 
with some of the issues to be traded off. 

Section 4, The Architecture,  

Section 5, Implementation,  

Section 6, Summary, summarizes the work to date and that following. 

This document is a snapshot of work in progress.  It is complete in so far as the work 
required for this section of the NGAO effort.  It is probably overly complete in some 
sections regarding detailed implementation but this was left in since it is work required 
by the next stages of the development effort. 

Some sections and diagrams of this document (indicated in red)  are incomplete or 
missing.  However, they are portions to be filled in during subsequent work. 
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Some table and figure references in Section 5, are incorrectly numbered and are indicated 
in red.  In the interest of expediency, I have left those in and will correct them soon.  The 
tables and figures are well labeled and it should be clear what the references really point 
to. 

Much of the work in Section 5, relating to the detailed implementation on the FPGA, 
comes from Matt Fischler’s master’s thesis [3]. 
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2 System Requirements 
The AO system, of which Axey is a part: 

1. Wave Front Sensors (WFSs) 

Takes digital data from the cameras and create wavefronts.  These are the raw 
Radon projections, of the optical path delay (OPD) of the light rays, from a guide 
star, through the atmosphere. 

2. Tomography (Axey) 

Produce a 3D tomographic estimate of the atmosphere from the wave fronts.  Data 
from this estimate is used to control the Deformable Mirrors (DMs). 

3. DM processing 

Generate actual control information for the DMs (which will correct the 
atmospheric distortion) from the estimated atmospheric data. 

 

 

Guide star height 
Kolmogorov filter 

Layer heights 

 
Figure 2-1  Where Does Tomography Fit in the Adaptive Optics Problem? 
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2.1 Summary of the Iterative Solution 
Section needs a better name 

Doesn’t belong here 

Thus, we now have a sequence of parallelizable steps, each with different characteristics: 

• A parallelizable I/O portion, one at the beginning and one at the end of each frame 
• An embarrassingly parallelizable basic tomography algorithm 
• A very simple aperturing algorithm, which must unfortunately be done in the 

spatial domain 
• A parallelizable (but with heavy busing requirements) Fourier transform required 

by the need to move back and forth between the spatial and Fourier domains, so 
that we can apply the aperture 

The last three items are applied in sequence, for each iteration required to complete a 
frame (see _____ ). 

Our task is to arrive at an architecture that balances the requirements and effects of each 
of the elements and produces an optimum result.  The optimal architecture for one 
element will not be the optimal architecture for all the elements; nor will the optimal 
overall architecture likely be the optimum for most (if any) elements. 

Show a small version of the overall system that this expands from 

 
 

Figure 2-2  The Tomography Algorithm 
 

To determine the optimal architecture we must understand the overall impact each 
element has on our overall result. 

 

 

 

2.2 Physical Requirements 
Most of the equipment needs to be mounted on or in relatively close proximity to the 
instrument or telescope.  It must therefore take into account its effect on the instrument.  
The requirements of the instrument for which these operations are performed are 
somewhat limiting. 
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2.2.1 Heat and Power 
The heat generated and the size and weight of the instrument must be minimized [4]. 

 

 

2.2.2 Size 
 

 

2.2.3 Weight 
 

 

2.3 Computational Requirements 
 

 

2.3.1 Accuracy 
 

 

 

2.3.2 Speed 
 

 

2.3.3 Latency 
 

 

2.4 I/O Rates 
The data rates requirements for the system are substantial. 

From WFS and to DMs 

 

Additionally, the engine must be able to stream diagnostic data to the storage facility at 
___ GB/sec without affecting its primary continuous functions of analyzing and 
compensating for the atmosphere. 
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2.4.1 Tomography 
Each wave front produced would have 128 x 128 elements.  Each element will be 2 bytes.  
A new wavefront will be received every millisecond.  That is 32MB per second per WFS. 

Data coming into Axey from the WFS and leaving Axey to be processed for the DMs are 
both substantial and almost identical at 32 MB per second 

For an 8-layer MCAO system, that is 512MB per second of I/O, not counting any access 
required while processing the data or logging the data for analysis. 

For an MOAO system, with 24 heads on the instrument, the rate would be over 1.5 GB 
per second 

2.5 Storage Requirements and Rates 
 

 

2.5.1 Configuration Storage 
Since all chips are essentially identical, the storage requirements for configuration data 
are minimal and largely independent of the scale of Axey.  The requirements amount to 
approximately ______ MB. 

2.5.2 Operational Storage 
The storage requirements for Axey itself are quite modest, amounting to only about a 
dozen complex registers per processor cell or perhaps a few Mega bytes for a large 
system. 

2.5.3 Telemetry 
The system requirements for storing and analyzing data observed during measurements 
can be many hundreds of Giga Bytes for a single night. 

Complete wave front, layer and DM data sets are very large and the more frequently we 
log them the higher the data rate the system must support for these, exclusive of the 
normal operational data rates, which are already extensive. 

2.5.4 Diagnostic Streams 
These consist of ____ 

Axey must be able to stream data to the storage facility at ___ GB/sec without affecting 
its primary continuous functions of analyzing and compensating for the atmosphere. 

2.6 Reliability 
Cost of system non availability.  [5] 

• Basic reliability 
MTBF 

• Self diagnostic capability for potential failures (keeping ahead of the game) 
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2.7 Maintainability 
Rapid diagnostic ability to identify failure location. 

2.8 Ease of Use and End User Productivity 
It may be a great tool, but if it is difficult to use, the productivity of the end users will 
suffer and the tool may not be used in many cases where it could be beneficial.  One 
crucial factor determining the success or failure for use as a general tool will be the 
programming model.  While massively parallel processors offer the possibility of 
dramatic performance gains over traditional architectures, these gains will only be 
realized if the programming model is user friendly and efficient. 

2.9 Ease of Development 
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2.10 Facilities Supported 

2.10.1 DM and Tip/Tilt Commands 

2.10.1.1 Set any actuator on any DM or any Tip/Tilt mirror to an 
arbitrary voltage 

2.10.1.2 Set and read the bias of any DM to an arbitrary voltage or 
pattern 

2.10.1.3 Draw pre determined alignment patterns on any DM 

2.10.1.4 Cycle (at 1 Hz) one or more actuators on any DM or Tip/Tilt 
mirror 

2.10.1.5 Cycle all actuators on any DM in a round robin fashion 

2.10.1.6 Read the current commands for any DM or Tip/Tilt mirror 

2.10.1.7 Set and read the “Zero” x/y position for any tip/tilt mirror 

2.10.1.8 Load a control matrix for any DM 

2.10.1.9 Set and read the Open/Closed loop state for any DM 

2.10.1.10 Load a flat pattern for any DM 

2.10.1.11 Create a time averaged file of the DM commands for 
flattening and sharpening 

2.10.2 Calibration Commands 

2.10.2.1 Create a system matrix for any DM 

2.10.2.2 Set the number of frames to use when creating the system 
matrix 

2.10.2.3 Clear the DM of any manually set values 

2.10.3 Camera Control 

2.10.3.1 Set and read the camera frame rate 

2.10.3.2 Set and read the camera pixel rate 

2.10.3.3 Set and read the camera gain 

2.10.4 WFS 
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2.10.4.1 Load the dark pattern 

2.10.4.2 Load pixel gain pattern 

2.10.4.3 Set and read the threshold level 

2.10.4.4 Set and read the centroiding algorithm 

2.10.4.5 Load and read the centroid weights 

2.10.4.6 Load and read the reference centroids 

2.10.4.7 Save the current centroid positions as an reference 
centroid file (averaged over a settable number of frames) 

2.10.4.8 Load and read the centroid offsets 

2.10.4.9 Set and read pixel offsets for the camera image 

2.10.5 Reconstruction 

2.10.5.1 Set the guidestar mode (NGS or LGS) for any WFS 

2.10.6 Telemetry 

2.10.6.1 Set and read the telemetry rate for each data stream 

2.10.6.2 Set and read the data streams that are enabled for 
telemetry 

2.10.7 Debug 

2.10.7.1 Set and read debug levels (these are similar to telemetry 
but specific to a debug implementation) 
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3 The Tomography Algorithm 
The tomography unit is part of a naturally highly parallel system.  The inputs to this 
system are from multiple independent sources and its outputs go to multiple independent 
destinations.  The processing of these inputs and output can be done in parallel.  
Additionally, the computations involved for each of these parallel paths can also be 
highly parallelized. 

The tomography algorithm itself is also highly parallelizable.  The result of all previous 
parallel processing of the inputs are combined and processed together to create an 
estimate of the atmosphere (structured in layers) that is consistent with the inputs from 
the wave front sensors. 

The layer data generated is subsequently processed in parallel and used to control the 
DMs to correct for the atmospheric aberrations. 

The majority of computational cycles and time in the system is spent in the tomography 
unit (see ____).  Therefore, it is critical to ensure that to the maximum extent possible we 
the processing in this unit is efficient. 

Show individual arrows 

Mult data paths from mult sources   Mult data paths to mult dest 

 

 
 

Figure 3-1  Where Does Tomography Fit in the Adaptive Optics Problem? 
 

Our processing is no longer on parallel independent data streams, so we must find 
another way to speed our computations.  We solve the problem by domain decomposition; 
dividing our data into independent regions and solving each region in parallel (see ____). 
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When decomposing our problem, we keep the same mathematical form for all domains.  
This makes it easier to parallelize the problem; it allows flexibility in scaling to different 
sized problems; and it aids in validating our design. 

 

 

Tomography is accomplished by performing 2-D Radon transforms [6] through our 
estimated volume (forward projection).  This is done by adding the estimated values of 
all voxels from each direction from each guide star and comparing the results with the 
actual projections of the guide stars through the real atmosphere as measured. 

If our estimate of the atmosphere is inaccurate, we will see an error between the 
measured projections (from the WFS) and the estimated projections. 

We take the errors for each sub aperture of each WFS and project it back into the 
estimated atmosphere (back projection).  The projection is done along the path each ray 
took in its forward projection to the sub apertures.  The errors are apportioned amongst 
the voxels according to the strength of each layer as determined by the state of the real 
atmosphere. 

The projected errors from each ray that passed through a voxel are averaged and added to 
the current estimate of the voxel delay to get a new and more accurate estimate of the 
value for each voxel. 

Now we have a new estimate for the atmosphere and we start the cycle again. 

The following calculations are done for the various layers and guide stars in a single 
Fourier coefficient or sub aperture. 

"L" is the specific layer involved 

"G" is the specific guide star involved 

It is assumed that all this pertains to the same sub aperture or Fourier coefficient in the 
mesh. 

3.1 Forward Propagation 
We trace the path of light rays as they travel through the atmosphere from a specific 
guide stars to a specific sub aperture. 

We do this in two ways.  The first is when we measure the actual atmosphere.  This 
measurement is the line-integral of the actual phase delay of the real light from the guide 
star.  The second is when we trace the path of the same rays through our estimated 
atmosphere and add up the estimated delays in each voxel. 

We do this for each guide star and thus have a set of measurements of the actual 
atmosphere and a set of estimates for the estimated atmosphere. 

_ Pr _ ,
L

Fwd op G Est Val L Shift L G Scale L⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎡ ⎤⎣⎣ ⎦ ⎣ ⎦ ⎦= ∑  

The coefficient for each guide star is calculated by summing the corresponding estimated 
coefficient for each layer multiplied by the shift factor (complex) for that layer. 
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Note: the Scale[] factor is not applied for natural guide stars. 

3.2 Error Calculation 
Our estimated values are compared to their corresponding measured values.  An error 
will result depending on the degree of mismatch between the actual atmosphere and our 
estimated atmosphere. 

We need to adjust the value of the delay in the voxels in our estimated atmosphere based 
on this error so that they will better match the real atmosphere resulting in a lower error 
on the next cycle.  When the RMS error has decreased to a pre-determined level, our 
iterations through the loop will end. 

( )_ Pr_ _ Pr IDFT Fwd op G ApertureAdj Fwd op G⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ =  

Perform and IDFT on the forward propagated values for each guide star to bring it into 
the spatial domain.  Multiply the sub aperture value by its aperture value (1 or 0). 

( )_ _ PrError G Measured G Adj Fwd op GDFT⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦−=  

Calculate the spatial error value for each sub aperture for each guide star by subtracting 
the adjusted forward propagated values from the measured values.  Move the spatial error 
values back to the Fourier space by performing a DFT on them. 

( )_ _ ondPC Error G Error GPre C⎡ ⎤ ⎡ ⎤⎦ ⎣ ⎦=  ⎣

Precondition the error values for each guide star before back propagating them. 

3.2.1.1 Applying an Aperture 
In the Fourier domain, we have a repeated spectrum due to sampling.  The unavoidable 
result of this is that when we forward propagate, we end up with a wave that has values in 
the spatial domain that are outside of our aperture.  All values outside our aperture must 
be zero in the spatial domain, so these values represent an error.  We need to avoid back 
propagating this error in the next iteration. 

Consequently, when we forward propagate in the Fourier domain, we must transform the 
resultant wave front back to the spatial domain.  Then we zero out the values outside the 
actual aperture.  This can only be done in the spatial domain. 

Then we calculate the error between our actual measured value, which of course has 
zeros in the values outside of the aperture, and our apertured forward propagated value.  
Then we transform the error value back into the Fourier domain and back propagate that. 

This seemingly simple Fourier/Fourier-1 transform pair is performed on each iteration.  
Unfortunately, as simple as it is to describe, it is also the single largest element in the 
iteration time and becomes a primary determiner of our latency, computational and 
busing requirements. 
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3.3 Back Propagation 
We distribute an error value back along the paths to each guide star and distribute it to the 
various portions of the atmosphere through which it passes in an amount based on the 
layer strength, Cn

2. 
2_ _ n

G
C LCoeff Error L PC Error G⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦= ∑  

Calculate the new error for each coefficient in a layer by summing the back propagated 
errors from the same coefficient in each guide star multiplied by the Cn

2 for that layer. 

Note: The Cn
2 factor is actually a conglomerate of Cn

2, gain, scaling and the averaging 
factor for the number of guide stars. 

A _ _ _ _dj Coeff Error L Coeff Error L K Filter L⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦=  

Adjust the coefficient error by multiplying it by its corresponding Kolmogorov filter 
value. 

3.4 Filtering the Back Propagated Error 
To increase the accuracy of our estimated atmosphere we can filter the errors to better fit 
the known characteristics of the atmospheric turbulence. 

3.5 Calculating a New Estimate 
The errors for each voxel from different ray directions are now averaged and added to the 
previous estimate to arrive at a new and more accurate estimate of each voxel’s 
contribution to the total delay. 

E _ _ _ _Lst Value L Adj Coeff Error Est Value L⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦= +  

Calculate the new estimated value by adding the previous estimated value to the adjusted 
coefficient error. 
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4 The Architecture 

4.1 Frame Based Operation 
The operation, ignoring initialization, is frame based, with a nominal frame rate of >1 
KHz.  At the start of each frame, data from Wave Front Sensor (WFS) cameras is loaded 
to the WFS.  Simultaneously, data for the DMs, which was calculated in the previous 
frame, is loaded into the DMs. 

Each WFS computes a wave front for the light from its corresponding guide star. 

 

 

diagram 

 

 

After the wave fronts have been processed, a consistent 3D estimate of the atmospheric 
volume is created by the tomography algorithm.  This volume estimate is arranged by sub 
apertures and layers. 

The estimates of the layer information are processed into wave fronts for each DM and 
that information is further processed into actual commands for each DM. 

Tip/Tilt information is both extracted from the WFS as appropriate and recombined 
appropriately for use by each DM. 

4.2 Data Flow 

4.2.1 I/O 
The solution starts and ends with I/O.  How do we get the massive amount of data into 
our system, so we can process it; and get the equally massive amount of data out, so we 
can use it: all in less than one millisecond. 

4.2.2 Processing the Data 
Figure 4-1 shows the data flow.  You can see that the problem is a parallel one.  Multiple 
independent data paths flow from the WFSs and converge to be processed by the 
tomography algorithm.  Multiple independent data paths flow from the tomography 
algorithm to be processed each by the layer and DM processing algorithms.  The input 
and output processing is parallelizable. 

The tomography algorithm is not only parallelizable, but embarrassingly parallelizable. 
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WFS0 DM0 

Tomography 

 
Figure 4-1  Overall data flow 

 

Because we solve our problem in the Fourier domain, which assumes our data is 
replicated outside our domain, we get wrapping errors when paths are propagated through 
the replicated domains.  This results in forward propagated values in regions outside our 
aperture.  Before we can calculate errors to back-propagate, we must force those values to 
zero.  If we naively back propagated these errors, the stability of our system and the 
accuracy of our solution would be suspect.  Consequently, we must take our forward 
propagated Fourier domain data back to the spatial domain and reapply our aperture, 
forcing values outside it to zero.  The augmented data flow for the Fourier domain is 
shown in Figure 4-2. 

 

 
 

Figure 4-2  Actual Fourier Domain Data Flow with Aperturing 
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4.3 Macro Architecture 
We divide our problem into domains and sub-domains.  At the top level is the domain of 
the entire 3D atmospheric volume.  This is further divided into layers and sub apertures1. 

For our purposes, we divide the atmosphere into columns.  Each column is one sub 
aperture square at the ground and extends vertically through the various layers of the 
atmosphere.  The intersection of a column and a layer defines a voxel and we assign a 
processor to each voxel to calculate its OPD.  The voxel is the smallest sub domain we 
deal with. 

Each integrated circuit handles sub-domain consisting of a square region of adjacent 
columns. 

 
 

Figure 4-3  A column of combined layer and guide star processors form a sub aperture processor 

4.3.1 Inter Element Communications 
Figure 4-4 shows the array busing.  The bandwidth across all interfaces must be the same 
to insure efficient operation.  However, the data path width and transfer clock rate across 
chip and board boundaries can be different to accommodate the physical realities of the 
system. 

                                                 
1 Note that the term “sub aperture” is normally used in a spatial context to denote a portion of the primary 
aperture of the telescope.  Here it is also extended to denote a portion of the frequency bins across this 
aperture.  Fourier transforms are only applied on a per layer basis so the layer information remains intact, 
while its sub apertures are transformed. 
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Figure 4-4  The Systolic Array, showing boundaries for different elements 
Sub aperture processors (black), chips (blue), and boards (green) 

 

Each processor for a sub aperture must talk to each orthogonal neighbor. 

Each IC has P I/O pins.  This gives each processor a bus size of
(4 )

P
Lm

 I/O pins to 

communicate with each neighbor. 

An example could be a Xilinx® Virtex-4 SX35, which has approximately 600 pins we can 
use for this communication.  Each device handles five layers and nine sub apertures.  
Therefore, our bus size between adjacent chips is 10 bits.  This allows eight pins for data 
and two for clock and control. 

4.4 Micro Architecture 
Control is distributed to individual chips and sub aperture processors.  Both data and 
control are pipelined. 

Given the immense memory bandwidth and compute requirements, we use a Harvard 
architecture (program and data memory are separate), SIMD model processor for the 
basic processing cell.  This single common processing cell is used throughout the array.  
Independent communications paths for code and data and allows us to perform operations 
on multiple data elements on each instruction. 

The system is implemented using direct communications only between the immediately 
adjacent cells in the x, y and z directions: four horizontally orthogonally adjacent voxels 
and the voxel above and below. 

These sub aperture columns are arranged in a square on an x,y-grid, which corresponds to 
the sub apertures on the instrument.  The actual number of sub apertures used is larger 
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than the number of sub apertures on the instrument, since we must allow for the fact that 
our volume will typically be a trapezoidal and be wider at the top ( see _____ ). 

A central control core is used for each chip. 

Each column of processor cells has a single local state machine for control.  This state 
machine supplies control for all the columns cells as a wide word, with some local 
decoding at the cell level.  The column state machines are globally synchronized at the 
start of each frame.  If a state machine inadvertently finds itself in an invalid state, a log 
of the event is kept and a signal is made available outside the system.  System logic can 
determine the best action based on frequency or location of the occurrence. 

Each voxel has a small amount of control logic for decode. 

The optimum distribution of the control logic between elements will be addressed during 
a later optimization stage of development. 

4.5 Arithmetic Errors and Precision 
A DFT has O(N2) operations for each transform, while an FFT has O( Nlog(N) ) 
operations.  Using exact arithmetic, they have equal accuracy.  However, when using 
finite math, the DFT has the potential to incur more round-off errors than an FFT. 

Care must be taken in selection of word length to avoid this error from accumulating over 
many transforms.  We use 18-bit words with intermediate results carried to 47-bits. 

4.6 Program Flow Control 
SIMD vs. MIMD 

There is no need (or ability) for each voxel processor (or sub aperture processor) to have 
branch capability or individual register addressability within the array.  All processors 
execute the same code on exactly the same register address in synchronism. 

However, at global level, we do need to: 

• Determine whether we have reached convergence across all sub apertures 
• Determine what diagnostic programs to run in the time between the end of 

convergence and the start of a new frame 
• Synchronize control logic at the start of a frame and determine when we are too 

close to the end of a frame to start another iteration. 
The residual error between our WFS measurements and our current forward propagated 
values must be evaluated each iteration to determine if we have converged.  To do this 
we need to determine the global RMS of the errors for each guide star for each sub 
aperture. 

Each frame starts with the result of the previous frame, so in general, we will converge to 
a new estimate before the end of a frame.  The remainder of each frame can thus be used 
for diagnostic and monitoring processes.  Diagnostic and monitoring functions can be 
interrupted at the end of a frame and continued at the end of the next frame and so on 
until they complete 

Since we must convert the forward propagated values to the spatial domain and apply the 
aperture to them, we calculate the error in the spatial domain.  Then we transform the 
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error back to the Fourier domain for back propagation.  In our architecture, we do this by 
N shifts across rows to accomplish the transform (see Error! Reference source not 
found.).  During this transformation, each CP calculates the running sum-of-squares for 
the error.  When the transform is over, if the value is below our criteria, we stop iterations 
and start or continue any diagnostic or monitoring processes that need to be run. 

A running total of the number of iterations in the frame is also monitored and compared 
to a preset limit.  This limit is set to guarantee that each iteration will complete before the 
start of the next frame.  During anomalous situations, such as initial startup or an 
obscuration traveling rapidly across the aperture, the system may not be able to converge 
to our lower error limit in a single frame and must continue at the start of the next frame.  
We don’t want the frame sync to occur in the middle of an iteration, leaving the machine 
in an uncertain state. 

4.7 Chip issues 
Sockets, cooling, by passing, 

 

 

4.8 Board level issues 
 

by passing, routing, EMI, I/O 

 

4.9 System level issues 
Inter board connection, power distribution, clock distribution, I/O, cooling, reliability, 
diagnostics, power, scalability 

 

We solve our problem using domain decomposition.  We have ‘N’ elements or voxels in 
our atmosphere (our domain).  We have ‘m’ processing elements (PEs) and we divide the 
task of calculating the OPD for each voxel into ‘m’ parts with each processor handling 
N/m voxels. 

All PEs use exactly the same algorithm and so finish in exactly the same number of 
clocks. 

We have three basic tasks that our architecture needs to support: I/O, DFT (both highly 
parallelizable) and a linear solver (embarrassingly parallelizable). 

No local or global memory access is required to other Processing Elements (PEs), so 
memory can be completely local to the PEs. 

Since all PEs execute the same program, the architecture is SIMD (Single Instruction 
Multiple Data) and the program could be located in a single external controller [7].  
However, for timing and performance reasons and in order to minimize the busing 
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resources used, we duplicate the control logic for each sub domain (individual FPGAs).  
As a side effect, this also gives us the ability to implement MIMD algorithms if needed. 

The control logic for these domains is very small; and does not affect the density (cells 
per chip) of the implementation significantly. 
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5 Implementation 

5.1 General Operation 
The Tomography Engine is a 3D, systolic array of processor cells that calculates a 3-D 
estimate of the index of refraction of a volume of the atmosphere.  The volume is broken 
into layers and each layer contains a number of voxels (volume elements that are one 
layer thick and one sub aperture square). 

Since the calculations for the tomography are embarrassingly parallel, we dedicate a 
single processor for each voxel.  Each processor is very simple and has enough local 
memory to do all its processing without needing access to global or a neighbor’s memory.  
The nature of the parallel algorithms implemented determines the exact amount of this 
memory required. 

The overall operation is on a frame basis, with a frame having a nominal duration of 1 
msec.  The operations during each frame are identical to those of all other frames. 

During each frame, the engine: 

• At the beginning of a frame, data is shifted into one side of the array from the 
WFSs.  As the WFS data is shifted in, the processed data is simultaneously shifted 
out of the other side.  Thus the data load and unload portion of a frame are 
completely overlapped. 

• During the rest of a frame, data circulates through the array for processing, 
shifting from cell to cell, by rows or columns during operation.  The shifting of 
data during operation uses the same data paths that were used for the load/unload.  
In this time, the iterations of the algorithm are performed until the RMS error falls 
below a pre-determined level. 

There is no global communication between the processors.  All communication is local 
between adjacent processors. 

5.2 The systolic array 
The nature of the iterative solver in the tomography engine is easily parallelized.  As soon 
as input data become available, calculations can be performed concurrently and in-place 
as data flows through the system.  This concept was first defined by Kung at Carnegie-
Mellon University: 

A systolic system is a network of processors that rhythmically compute and pass data 
through the system.  Physiologists use the word “systole” to refer to the rhythmically 
recurrent contraction of the heart and arteries that pulses blood through the body.  In a 
systolic computing system, the function of a processor is analogous to that of the heart.  
Every processor regularly pumps data in and out, each time performing some short 
computation, so that a regular flow of data is kept up in the network [8]. 

At first, systolic arrays were solely in the realm of single-purpose VLSI circuits.  This 
was followed by programmable VLSI systolic arrays [9] and single-purpose FPGA 
systolic arrays [10].  As FPGA technology advanced and density grew, general-purpose 
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“reconfigurable systolic arrays” [11] could be put in single or multiple FPGA chips.  The 
capability of each processing element in early FPGA systolic array implementations was 
limited to small bit-level logic.  Modern FPGA chips have large distributed memory and 
DSP blocks that, along with greater fabric density, allow for word-level 2’s complement 
arithmetic.  The design goals for our systolic array are: 

• Reconfigurable to exploit application-dependent parallelisms 
• High-level-language programmable for task control and flexibility 
• Scalable for easy extension to many applications 
• Capable of supporting single-instruction stream, multiple-data stream (SIMD) 

organizations for vector operations and multiple-data stream (MIMD) 
organizations to exploit non homogeneous parallelism requirements [12] 

 

Because of tasks, such as multiple 2-D DFTs per Frame, the number of compute 
operations drastically outnumbers the I/O operations.  The system is therefore “compute-
bound” [13].  The computational rate, however, is still restricted by the array’s I/O 
operations that occur at the array boundaries.  The systolic array tomography engine is 
composed of many FPGA chips on multiple boards. 

The advantages of systolic arrays include reuse of input data, simple and repeatable 
processing elements, and regular data and control flow.  At the same time, input data can 
be cycling into the array while output data is flowing out.  At another point calculated 
data can be flowing.  Each individual processing element can only grab and use the data 
that are presented to it from its nearest neighbors or in its local memory on every clock.  
This chapter will start at the lowest level of the architecture, the processing element (PE), 
and gradually zoom out to a system-level perspective. 

5.3 The processing element (PE) 
The heart of our processor is the Xilinx DSP-48 multiplier / accumulator.  This is a very 
powerful cell, which can perform 18-bit pipelined operations at 500MHz.  Each 
processing element uses two of these for the complex arithmetic of the Fourier transform.  
A single FPGA chip can have over 500 of these cells and allows us to have over 250 PEs 
per chip. 

This is the power of the FPGA.  While each chip might only be processing data at 100 
MHz, each chip contains 250 processors for a combined processing capability of 25 G 
Operations per second. 
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Figure 5-1  The DSP48E architecture [14] 
 
 

 
 

Figure 5-2  A single Processing Element (PE) 
 
Two DSP48s are employed, one for the real and one for the imaginary part of the 
complex number.  As shown in Figure 3.2, the PE also contains a dedicated BlockRAM 
memory, an18-bit register for the real part, and an18-bit register for the imaginary part.  
Multiplexors control whether these registers receive data from their respective MACC or 
if data are just snaked through them to the next PE.  Note that there is only a single 18-bit 
input and single 18-bit output.  This is because when data is flowing through the mesh, 
the real part is transferred on even clock edges and the imaginary part on odd edges.  This 
is particularly important for instructions types such as the DFT where complex 
multiplication is performed on inputs split across two clock cycles. 
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5.4 PE interconnect 
The switching lattice for a single 3x3 layer of the AXEY is shown in Figure 3.3.  For a 
large telescope, this lattice could be 60x60 or larger.  The individual PEs are labeled by 
their column and row position in the mesh.  Each PE has a multiplexor on its input to 
route data orthogonally from a neighboring horizontal PE, vertical PE, or next layer PE.  
External I/O only takes place at the mesh boundary on the right and left sides.  
Information shifts in a circular fashion along columns, rows, or layers.  All data paths are 
18-bits wide to match the fixed 18-bit inputs of the DSP48E block. 

 

= Output to layer above = Input from layer below 

 
 

Figure 5-3  The PE lattice  
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 Table 5-1  Chip bandwidth chart 
 

5.4.1 I/O bandwidth 
In the multi-chip system, an important question is how many PEs can be partitioned for 
each chip.  The system has I/O bandwidth requirements that outweigh all other resource 
requirements.  In Figure 3.4, I/O requirements and resource availability for the 
threeVirtex5SXFPGAs are compared.  In order to meet the bandwidth requirements for a 
reasonable number of PEs on a chip, on-chip multi-gigabit transceivers will have to be 
used.  It is important to note from the figure that not all of the DSP48E resources were 
used because total chip bandwidth runs out at a certain point.  In order to use additional 
DSP48Es, additional techniques will be employed such as fabric 
serialization/deserialization for the LVDS DDR pairs. 

5.5 SIMD system control 
Most control signals are single bit control, but some, like the address inputs to the 
BlockRAM, function as index counters to the stored coefficient data.  In addition to fine-
grained control at the PE level, control signals also manipulate the multiplexors at the 
switch lattice level.  These control signals are global and can be issued by a single control 
unit or by distributed copies of the control unit.  The control unit requires very few 
resources, so even if multiple copies are distributed, the cost is minimal.  The control 
communication overhead of larger arrays can also be avoided with a copied control 
scheme. 

5.5.1 Cycle accurate control sequencer (CACS) 
When the tomography algorithm was mapped to hardware, we found that the array could 
be controlled by linear sequences of control bits, specific clock counts of idle, and 
minimal branching.  A Cycle Accurate Control Sequencer module (CACS), shown in 
Figure 3.5, was architected to be a best of both worlds solution that would (1) borrow 
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single cycle latency benefits from finite state machines and (2) use programmability 
aspects of a small RISC engine.  Because the CACS logic consists of only an embedded 
BlockRAM module and a few counters, it has both a small footprint and a fast 
operational speed. 

The control sequence up counter acts as a program counter for the system.  The following 
types of instructions can be issued from the control BlockRAM: 

1. Real coefficient address load: Bit 22 signals the real coefficient up counter to be 
loaded with the lower order data bits. 

2. Imaginary coefficient address load: Bit 21 signals the imaginary coefficient up 
counter to be loaded with the lower order data bits. 

3. Control sequence address load: Bit 20 and status bits control whether or not a 
conditional branch is taken.  If a branch is to be taken, then the control sequence 
up counter is loaded with the address contained in the lower order data bits. 

4. Idle count: Bit23 loads adown counter with a cycle count contained in the lower 
order data bits.  This saves program space during long instruction sequences 
where control bits do not have to change on every cycle.  When the down counter 
reaches zero, the idle is finished and the control sequence up counter is re-enabled. 

5. Control bus change: When the high order bits are not being used for counter loads, 
the low order bits can be changed cycle by cycle for the control bus registers. 

Three types of low-level instructions are presented in Figure 3.6 to show how a sample 
control sequence in a text file is compiled by script into BlockRAM content.  First the 
single bit outputs are defined, then an idle count command creates a pause of “cols*2-1” 
number of times.  Note that “cols” is a variable dependant on the number of east/west 
columns in the systolic array.  The AXEY instructions are flexible because they 
incorporate these variables.  Single bit changes are done on the subsequent two cycles 
and finally the real and imaginary coefficient counters are loaded. 
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Figure 5-4  CACS Architecture 
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Figure 5-5  Sample CACS ROM content 

5.5.2 Instruction set architecture 
The instruction set was built to map the algorithms in the basic loop to the reconfigurable 
systolic array.  First, logic was designed around the fixed Block-RAM and MACC 
resources with control microcode to support the sequences required by the algorithms.  
Out of the resulting sequences, groups of common microcode sequences were identified 
to form the instruction set.  Instructions are simply compound sets of control sequences 
so new instructions are simple to add and test.  As seen in Table 3.1, instructions are 
grouped according to which type of calculation they perform:  multiple calculations, 
single calculations, data movement within the PE, or control counter manipulation. 
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 Table 5-2  Instruction types 

 

The instructions are shown in Table 3.2 with their respective result.  Most instructions 
require an address upon which to act.  The long sequence instructions, such as macc layer 
and dft ew, take a starting address and iterate through the proper number of subsequent 
addresses on their own. 

5.5.2.1 macc layer, macc gstar, and dft ns/ew 
The macc layer, macc gstar, and dft ns/ew instructions are all essentially complex 
multiply-accumulate functions.  As data systolicly flow through the data registers of each 
PE, the complex multiply accumulate is carried out by increasing the address index for 
the coefficient RAM and toggling the subtract signal for the real MACC on every clock 
edge.  This functionality is illustrated in Figure 3.7 where the active data lines are shown 
in red.  The difference between macc layer, dft ns, and dft ew is only in the switch lattice, 
where a circular MACC is done north/south by dft ns, east/west by dft ew, and through 
the layers by macc layer. 

The timing diagram for an in-place DFT accumulation is shown in Figure 3.8.  As 
alternating real and complex values are shifted into the PE, labeled N and n, respectively, 
the corresponding coefficients, C and c from the dual-port BlockRAM are indexed.  The 
example is for a 2x2 DFT, where the row DFT (dft ew) is calculated first and the column 
DFT (dft ns) is performed on those results. 

 

Instruction  Result  

macc layer (addr1)  Accum: (addr1)*layer1 data+(addr2)*layer2 
data...   

macc gstar (addr)  Accum: (addr1)*data+(addr2)* data...   
Dft ns/ew (addr1)  Accum: (dft coeff1)*data1+(dft coeff2)* 

data2...   
macc loopback (addr)  Accum: (addr)*data registers  
square rows  Real Accum: (real1)2 +(imag1)2 ...   
add gstar reals (addr)  Real Accum: (addr1)+(addr2)+ ...   
add reals ns  Real Accum: data reg real1 + data reg real2 

+ ...   
add (addr)  Accum: Accum+(addr)  
sub (addr)  Accum: Accum-(addr)  
rd ram (addr)  Accum: (addr)  
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Instruction  Result  
Wr ram (addr)  BRAM(addr): data registers  
Wr ram indirect  BRAM(Accum[10:0]): data reg real  
rtshift store (addr)  data registers: (Accum[47:0]> >(addr))[17:0]  
noshift store  data registers: Accum[17:0]  
advance regs  data reg real: data reg imag  
refresh regs  data registers: I/O  
branch if neg (addr)  PC: (addr) if PE[0] Accum is negative  
ld ramcnt indirect  coefficient counters: PE[0] Accum[10:0]  

 
 Table 5-3  Instructions 

 

 
Figure 5-6 A complex MACC loop 

 

The macc gstar instruction is performed once the error has been calculated for each guide 
star.  A single complex data value is kept in circulation so that it can be continuously 
multiply-accumulated by a sequence of values in the RAM, as shown in Figure 3.9.  This 
instruction is used for back propagation, where the Cn

2 value is circulated. 

5.5.2.2 Square rows 
The square rows instruction uses the same east/west circular shift that has been 
previously used for dft ew.  The multiplexor in front of the real MACC is used to square 
and accumulate the incoming data stream until all columns in the row have been summed, 
as shown in Figure 3.10. 
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Figure 5-7 In-place DFT accumulation 
 

 
 

Figure 5-8  The macc gstar instruction 
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Figure 5-9  The square_rows instructions 
 

 

 
 

Figure 5-10  The add_reals_ns instructions 
 

Multiplying by the systolicly flowing data, the multiplier instead acts upon locally loop-
backed data from the PE’s own real and imaginary registers, as shown in Figure 3.12. 

5.5.2.3 add and sub 
The add and sub instructions either perform a complex addition or a complex subtraction, 
respectively, of the accumulator to a value in the RAM.  Because the MACC module 
always has to multiply by something, we feed a one constant into each multiplier’s 
second input.  The diagram is shown in Figure 3.13. 

5.5.2.4 3.4.2.6 rd ram 
The rd ram instruction first resets the contents of both MACCs.  It then loads the real and 
imaginary counters to a specified memory location where the MACCs multiply-
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accumulate the data at the given location with the constant one so that they now contain 
the data at that address, as shown in Figure3.14. 

 
 

Figure 5-11  The macc_loopback instruction 
 

 
 

Figure 5-12  The add or sub instruction 
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Figure 5-13  The rd_ram instruction 

5.5.2.5 wr ram 
The wr ram instruction writes the data registers into the BRAM in two phases, first the 
real part and then the imaginary part, as shown in Figure 3.15.  In order to preserve the 
contents of the real and imaginary registers, the data are looped back into their inputs. 

5.5.2.6 wr ram indirect 
The wr ram indirect instruction is used to write the content of the real data register to a 
single local BRAM location, indexed by the lower order bits of the real MACC, instead 
of the usual global counter, as shown in Figure 3.16. 
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Figure 5-14  The wr_ram instruction 
 
 

 
 

Figure 5-15  The wr_ram_indirect instruction 
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Figure 5-16  The bit selection logic 
 

5.5.2.7 rtshift store and noshift store 
The “BitSelect” block shown in all PE diagrams is used only by the rtshift store and 
noshift store instructions.  By using the rtshift store instruction, the programmer can 
control how much the 48-bit data that are in the MACCs can be right-shifted before the 
data are stored in one of the 18-bit data registers.  This is useful anywhere where the 
system needs to scale down data by a factor of 2X, such as normalization after a DFT.  
The noshift store instruction simply transfers the lowest 18 bits of the accumulator to the 
data registers, and therefore uses fewer cycles.  The bit selection logic is shown in Figure 
3.17. 

5.5.2.8 refresh regs 
The refresh regs instruction opens the I/O ports on the mesh boundary and shifts new 
data in while at the same time shifting results out, as shown in 
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Figure 5-17  The refresh_regs instruction 
 

Figure 3.18.  This instruction is used when the AXEY has reached convergence and it is 
ready to accept new measured data from the wavefront sensors. 

5.5.2.9 advance regs 
The advance regs instruction simply enables the real and imaginary registers for one 
clock cycle, as shown in Figure 3.19.  Data are looped back into the imaginary register in 
case they are needed again.  For example, two sequential advance regs instruction would 
return the data registers to their original contents.  This is the same concept that preserves 
the data registers in the wr ram instruction. 
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Figure 5-18  The advance_regs instruction 
 

5.5.2.10 branch if neg 
The branch if neg instruction uses a high order bit from the real MACC in the PE located 
at row zero, column zero, layer zero to conditionally load the CACS program counter 
with a new index value, as shown in Figure 3.20.  If the high order bit is a one, which 
would indicate that the accumulator contains a negative value, then the CACS counter is 
loaded.  If the bit is a zero, then the accumulator value must be positive so no load is 
performed. 

 
PE: row 0, col 0, layer 0 

 
 

Figure 5-19  The branch_if_nea instruction 
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5.5.2.11 ld ramcnt indirect 
Like branch if neg, the ld ramcnt indirect instruction uses information from only the first 
PE, which is at location row zero, column zero, layer zero.  The low order bit data from 
both the real and imaginary MACCs are used to load the global real and imaginary 
coefficient up counters, as shown in Figure 3.21. 

5.6 Algorithm mapping 
The basic loop program is shown in Figure 3.22.  In this section, we will explain how the 
main parts of the program are mapped into instruction sequences.  The complete program 
can be viewed in Appendix A. 

1. Forward propagation is performed by a macc layer instruction on shift values for 
the current guide star. 

2. Adjusted forward propagation is done by a dft instruction using the inverse dft 
coefficient set that is stored in RAM. 

3. An aperture is taken on the register data by a macc loopback instruction that 
multiplies the data by 1 or 0, depending on if the PE is inside or outside of the 
aperture.   

4. The error is calculated by first writing the adjusted forward-propagated value to a 
temporary RAM location.  The measured value is subtracted from the adjusted 
forward value. 

5. A dft instruction using the forward coefficients is taken to bring the data back into 
the Fourier domain. 

6. The error is written to RAM to be used later for back propagation.  The error 
address location is loaded and then offset by the current guide star index.  Once 
the correct location is in the real accumulator, register data are written using wr 
ram indirect. 

7. An error magnitude is taken by first squaring and accumulating along the 
east/west direction with square rows.  The add reals ns instruction is then used to 
add the real result of each row in the north/south direction.  The final error 
magnitude for the guide star is written to a specific location using wr ram indirect. 

8. The global error is calculated using add gstars reals.  This instruction takes the 
address of guide star error magnitudes and sums them. 

9. Back propagation is done by the macc gstar instruction, which takes the errors 
that were written by step 6 and multiply-accumulates them by the Cn

2 of the layer. 

10. Adjusted coefficient error is simply a complex multiplication of the Kolmogorov 
filter value by the coefficient error. 

11. A new estimated value is calculated by adding the adjusted coefficient error to the 
current estimated value and storing the result in RAM. 
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Figure 5-20  The Basic Loop program 
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5.7 Scalability 
The system is intended for use on a variety of AO systems.  Certain characteristics of the 
system such as aperture of the telescope will determine the size and shape of the systolic 
array.  The AXEY architecture therefore needs to have the capability of being generated 
according to the traits of the target AO system. 

5.8 Centralized definitions 
The dimensions of the meshed box are specified in definitions .h.  All the Ruby scripts 
and Verilog [15] files reference this central file for dynamically creating module 
definitions and memory contents.  An example of a definitions file is shown below where 
the 3-D array is specified as 64 columns wide, 64 rows deep, and 8 layers high: 

‘define COLUMNS 64 
‘define ROWS 64 
‘define LAYERS 8 
‘define CONN_WIDTH 18 
‘define RAM_ADDR_BITS 11 
‘define RAM_WIDTH 18 
‘define SCALE_BITS 10 

5.9 Verilog architecture generation 
For simplicity and usability, Ruby [16] was selected for Verilog generation.  The Verilog 
generate statement was not used because it cannot dynamically reference the external 
memory content files.  Each module is explicitly defined with reference to the memory 
content file that it uses, as shown below for a PE at location column 0, row 3, layer 0: 

 
pe_block #( .FILENAME("c0_r3_l0.data") ) pb_c0_r3_l0 ( 

.clk(clk), 

.rst(rst), 

.load_acc(load_acc), 

.ce_dsp_real(ce_dsp_real), 
… 

); 
 

The switch-lattice pattern shown in Figure3.3 is also generated according to dimensions 
defined in definitions .h.  Any system with Ruby installed can run the scripts that 
generate the top level Verilog files top.v and box.v.  The hierarchy of architecture files is 
shown below with their brief descriptions. 

1. top.v : top level Verilog interface file 
a. box.v : routing and MUXs for switch lattice 

i. muxer4.v : 4 input MUX with 3 inputs for switch lattice 
ii. muxer3.v : 4 input MUX with 4 inputs for switch lattice 

iii. pe block.v : The basic Processing Element 
1. dsp e.v : A Verilog wrapper file for Xilinx DSP48E 

primitive 
2. bram infer.v : Infers the Xilinx BlockRAM primitive for a 

PE 
3. bit select.v : A loadable right shifter 

b. cacs.v : The SIMD controller and associated logic 
i. brom infer.v : Infers the Xilinx BlockRAM primitive for program 

memory 
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5.10 RAM data structure 
The static data that each PE needs are calculated before run time and loaded into each 
PE’s BlockRAM on configuration.  A BlockRAM generation script references the 
definitions file and writes a memory content file for each BlockRAM in the system.  Each 
particular BlockRAM contains DFT and IDFT coefficients, aperture values, filter values, 
constants, as well as some dynamic data, such as estimated and intermediate error values. 

In addition to defining the memories, an address map file shows where data have been 
placed in all of the memories.  The program compiler references this file for address 
keywords, such as kolm for the Kolmogorov filter value or cn2 for the Cn

2 value, as seen 
below.  The smaller data sets are located at low addresses (0 to 99 in the example below) 
and the large DFT and IDFT coefficients are written last (100 onward below).  It is 
straightforward to add additional data sets by modifying the BlockRAM generation script. 

shift 0 4 
cn2 812 
aperture 16 18 
kolm 20 22 
afp 24 25 
ev 26 27 
const1 28 30 
inv_dft 100 164 
fwd_dft 228 292 
 

This functionality hides the memory mapping details from the programmer.  For example, 
a rd_ram cn2 instruction would be compiled to first load the real coefficient up counter 
(as shown in Figure 3.5) with an 8, and then load the imaginary coefficient up counter 
with a 12.  The instruction then proceeds, as shown in Figure 3.14 and the accumulators 
now contain the real and imaginary Cn

2 values. 
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5.11 Verification 
The Verilog simulation tool of the AXEY system is ModelSim SE [17].  ModelSim-SE is 
an industry-proven RTL simulator that is available in the UCSC Microarchitecture Lab.  
Xilinx primitives are directly instantiated and simulated in a ModelSim cycle-accurate 
simulation.  Ruby-VPI [18] scripts drive the AXEY test bench together with ModelSim. 

5.11.1 Simulation size 
The AXEY system that will work on real data sets will require an array of PEs numbering 
in the thousands.  Even the most capable desktop systems with behavioral RTL 
simulators would take hours if not days just to get through a single iteration of the 
algorithmic loop.  However, because the scale of the array does not affect operational 
validity, a relatively small array can be quickly simulated and the same results would 
apply to any larger version. 

 
 

Figure 5-21  Convergence for identical Cn
2 values 

 

5.11.2 Performance 
The current version of the AXEY algorithm uses no preconditioning in the loop so the 
estimated values “converge” slowly.  It also begins from a cold start so the estimated 
values start at zero and ramp up.  A small 8x8x3 AXEY array is adequate for verification 
without consuming unreasonable amounts of memory and CPU time on the simulator 
desktop computer.  Each iteration through the loop takes 1,900 AXEY clock cycles. 

Verification of the basic iterative algorithm is performed using a fake data set composed 
of constant measured values for three guide stars.  The set of constant values are the 
equivalent of there being a perfect atmosphere, and the layer estimate root mean squares 
should converge to the ratios set by the Cn

2 values of the layer.  In Figure 5.1, the three 
layer RMS values roughly converge to the same level.  In Figure 5.2, the Ruby scripts 
values are set to ratios of 0.6 for layer 0, 
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Figure 5-22  Convergence for different Cn
2 values 

 

0.3 for layer 1, and 0.1 for layer 2 of the 65,536 scaling factor.  Forty iterations through 
the basic loop are shown for both graphs. 
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5.12 Implementation 
The Xilinx ISE 9.2 tools were used to synthesize, place, and route the AXEY.  The 
design is fully functional and synthesizable for both theVirtex4 and Virtex 5SX families.  
To target theVirtex4, the pe block.v file can be changed to instantiate dsp.v in order to use 
the DSP48 primitive in the Virtex4, as opposed to dsp e.v, which uses the newer DSP48E 
primitive of the Virtex5. 

5.12.1 Synthesis 
The building block of the systolic array is the single processing element (PE).  As the PE 
was first defined and later redefined (as instructions were added), the concept of “design 
for synthesis” was always employed.  Every piece of RTL code is logically mapped by 
the designer to intended FPGA resources.  Therefore, the synthesis tool does not have to 
fill in any blanks when it is inferring what resources to use.  Table 6.1 shows utilization 
numbers in a Virtex5 device for a single PE: 

 

 
 Table 5-4  Resource Utilization 

 

5.12.2 Place and route 
AVirtex5SX95TFPGA was targeted with a4x4x3 array.  Timing closure was achieved at 
150MHz.  The Post-PAR utilization summary is shown below.  The first resource to run 
out is I/O.  Future work on the AXEY will have to involve serialization strategies using 
device fabric and dedicated Serializer-Deserializer (SERDES) primitives.   
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Device Utilization Summary: 

Number of BUFGs 1 out of 32 3% 

Number of DSP48Es 96 out of 640 15% 

Number of External IOBs 436 out of 640 68% 

Number of LOCed IOBs 0 out of 436 0% 

Number of RAMB18X2s 49 out of 244 20% 

Number of Slice Registers 6981 out of 58880 11% 

Number used as Flip Flops 6981 

Number used as Latches 0 

Number used as LatchThrus 0 

Number of Slice LUTS 11663 out of 58880 19% 

 
 Table 5-5  Summary of Device Utilization 
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5.13 Other Issues 

5.13.1 Designing for multi-FPGA, multi-board 
A complete AXEY system ready to be integrated into an adaptive optics system would 
contain 64 rows, 64 columns, and 5 layers.  As shown in Figure 3.4, if the SX95T FPGA 
(147PEs) is selected (64 x64 x5 = 20480 PEs), then at least 140 FPGAs are needed.  Each 
FPGA needs to communicate with its neighbors to its immediate north, south, east, and 
west.  The optimal number of PEs on-chip will be a balance of system-wide 
communication bandwidth, power, and I/O limitations for PCB and cable.  On-chip high-
speed SERDES components will be used to ensure that total bandwidth rates through the 
entire array are optimal.  The elimination of long wires at row or column boundaries will 
be done by folding at board edges and/or torus optimal placement techniques. 

5.13.2 Unused FPGA Fabric 
Because the system employs many powerful FPGAs, the capability of the system can 
always be improved, even after complete boards are assembled.  Currently, most of the 
logic utilization is in the fixed resources of the Virtex5 (DSP48Es and BlockRAM).  
Much FPGA fabric is left unused.  Potential uses include: 

1. The CACS control logic could be duplicated to improve timing toward a higher 
system clock frequency.  Multiple copies of the control logic on-chip would 
reduce both the critical path length of control lines as well as fanout for those nets.  
If each chip has control logic, then the control nets do not have to be passed to 
other chips, which saves I/O pins. 

2. For the best visibility, modern telescopes are placed in high altitude locations.  
These locations are more vulnerable to a single event upset (SEU).  An SEU is a 
change of state caused by a high-energy particle strike to a sensitive node in a 
micro-electronic device.  The ability to detect a problem and rapidly fix it is 
critical because the operation of the whole telescope is expensive so repeating an 
observation that lasts many hours is extremely costly.  CRC logic could be built to 
verify validity of static BRAM contents while the system is in operation.  The 
static contents could be reprogrammed with partial reconfiguration techniques 
while the system is still operating. 

5.14 Reliability 
The chips will be socketed.  This has the potential to reduce reliability, so careful 
attention must be paid to selection of sockets and regular run time diagnostics. 

 

5.14.1 SEUs 
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5.15 Maintainability 
Rapid diagnostic ability to identify failure location. 

The chips will be socketed to allow easy repair in the event of a failure. 

• Failure location: row/column 
 

 

• Failure repair: commodity chip instead of custom or low volume board 
Rapid repair, replace a socketed chip. 

• Spares requirements: fewer non identical components 
Minimize the number of unique components and the average cost of these components to 
minimize the total cost of spares. 

 

 

Hardware Description Language (HDL) 

Register Transfer Language (RTL) 

Graphical Input 

Personal preference, natural mode of thought, ease of comprehension … 

“How do I know what was really synthesized was what I intended?” 

 

 

5.16 I/O 
I/O and General Operation ??? 

5.17 Processing Speed and Size  
 Table 5-6 provides an analysis of the processing speed for a given configuration of the 
tomography engine. 

This shows a single tomography iteration time of <70µsec. 
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Tomography Engine
Current Tomography Performance
29-Jan-08 Device Used Ver 1.3
Assumed Parameters LX35 e Virtex 5Voxels (*) Units

Layers 8 8 8
Sodium Layer Height 90 90 90 Km
Atmosphere Height (height of highest layer) 15 15 15 Km
Guide Star Contselation Angle (full width, edge to edge) 2 2 2 Arc Minutes
Max Angle from Zenith 46 46 46 Degrees
Guide Stars (including tip/tilt) 10 10 10
Sub Apertures in Primary Aperture 64 64 64

Aperture Size 10 10 10 meters
Extended Sub Apertures in Atmosphere 144 144 64
Sub Aperture Size 15.6 15.6 15.6 cm

Clock Speed 100 100 100 MHz
Transfer In/Out time 10% 10% 10% %
Frame Time 1,000 1,000 1,000 µSec
Number of iteration cycles to converge

Without pre conditioning 100 100 100 Cycles
With pre conditioning 8 8 8 Cycles

Use Pre Conditioning 1 1 1
Use DCT instead of DFT 0 0 0
Inter-Chip Bus Size 4 4 4 Bits/Transfer
Inter-Chip Bus Speed (Using DDR and 2x Transfer Clk) 4 4 4 Xfers/Clock
DSP-48's per Chip 192 512 512
Power Dissipation per Chip 12 16 16 Watts
Chips per board 9 9 9
Sub Apertures per chip 9 25 25

MAC's per SUB ap 2 2 2
Time for Each Elements of the Algorithm

Basic Loop without aperturing, pre cond. or filtering (Incl. Fwd and 244 244 244 Cycles
Aperturing ( 2-D FFT-1/FFT ) 1,021 1,021 458 Cycles
Pre conditioning (matrix multiply + 2-D FFT-1/FFT) 1,021 1,021 458 Cycles
Filtering (Kolmogorov applied to back propagated error) 10 10 10 Cycles
Scaling for laser guide stars 164 164 84 Cycles

Total Time per Iteration 2,714 2,714 1,508 Cycles
27.1 27.1 15.1 µSec

Summary
Speed

Cycles to Converge 21,712 21,712 12,064 Cycles
Time-to-Converge 217 217 121 µSec
Max Frame Rate 4.15 4.15 7.46 KHz

Fastest
Number of chips required (at the above time-to-converge) 2,401 841 169 Chips

Number of Boards ~ 268 ~ 95 ~ 20 Boards
Total Power Dissipation < 29 < 14 < 3 KWatts
Total Voxels 208,514 208,514 40,960 Voxels
Total Compute Power ~ 92 ~ 86 ~ 17 Tera Ops
Power Efficiency ~ 3,190 ~ 6,379 ~ 6,181 Giga Ops/kW

Least Chips
Number of chips required (relaxing time-to-converge to <1 mSec) ~ 580 ~ 203 ~ 23 Chips

Number of Boards ~ 66 ~ 24 ~ 4 Boards
Total FPGA Power Dissipation < 7 < 4 < 1 KWatts
Processing Power per Chip ~ 38 ~ 102 ~ 102 Giga Ops
Total Processing Power ~ 22 ~ 21 ~ 2 Tera Ops

 
 Table 5-6  Summary of the Tomography Engine’s Performance 
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Item  Equation Comment 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    
 

Table 5-7  Formulas Used for Calculating Tomography Performance 
 

Referring to section 3, if we look at the raw computational requirements of each step in 
our algorithm, we can see that the Fourier and inverse Fourier transforms are the largest 
single element. 
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Figure 5-23  Tomography Compute Rates 
 

 

 (See the spread sheet) 

 

Fastest (if it is too slow, we can’t go faster) 

 

 

 

 

 

 

 

 

 

Smallest (if it is still too large, we can’t go smaller) 
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5.17.1 I/O 
 

5.17.1.1 Primary Data Rates 
Wave front sensor data-rates into the system and layer data-rates out of the system are 
substantial.  We assume the following: 

1. Real (not complex) data in and out (for simplicity), 2 Bytes per element 

2. 64 sub-aperture across the primary 

3. Number of segments on the DM’s match the number of sub apertures in the 
primary 

4. 1 Msec frame time 

5. 10% of a frame time is used for overlapped transfer in/out of data 

6. We don’t consider the field angle or the angle from the azimuth in the calculations 
of data rates, since the number of DM commands out will be the same as the 
number of sub apertures in the primary even if the field is wide (see 3.  above).  
These do effect the solution time and the size of the Tomography Engine, 
however. 

Aggregate raw input data rates are ~8 MB/Sec per WFS or DM.  However, we only have 
part of a frame to read in new WFS data and write out the new layer data. 

For the above assumptions, the input rates that the system needs to handle during transfer 
are 82 MB per second per layer: 410 MB per second total.  While this is substantial, the 
system can handle this transfer rate. 
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Sub apertures across primary 64 64 100 100
Number of WFSs
Number of Layers 5 8 5 8
Number of MCAO DM's 5 8 5 8
Number of observing DMs (only relevant for MOAO) 10 20 20 20
Word size (Bytes) 2

Portion of a frame used for transfer time (% frame) 
(Transfers of WFS data-in and DM data-out are overlapped) 10%
Frame time (µSec) 1,000
MCAO

Input and output data rates (MB/Sec)
Per WFS 82 82 200 200
Total 410 655 1,000 1,600

MOAO (MB/Sec) (Same input data rates as MCAO)
Data rate per sensor 82 82 200 200
Total data rate 819 1,638 4,000 4,000

Diagnostic data (MB/Sec)
Per WFS or Layer 8 8 20 20
Total stored data rate 82 131 200 320

Mbits/Sec 655 1049 1600 2560  
 

Example I/O statistics for various configurations 
 

MCAO 

The data rates for layer information are similar.  The number of sub apertures in the 
higher layers, in our estimated atmosphere, increases with field of view and angle of view 
from the zenith.  However, it is reasonable to assume that the DM’s used will have a 
number of segments approximately equal to the number of sub apertures in the WFSs.  
Thus, the commands to the DM’s will be fewer than the number of sub apertures in the 
higher layers and the data-out rate to the DMs will be approximately the same as the data-
in rate from the WFSs. 

MOAO 

… 

Interconnect 
Communications with elements of the WFSs or DMs are through standard LVDS 
interfaces. 

For diagnostic storage of the primary data, a medium performance RAID cluster is used 
which supports Fiber Channel and uses SATA or other high-speed disks. 

5.17.1.2 Diagnostic Data Rates 
These data rates are very low compared to the primary data rates since we have an entire 
frame to move the data rather than a small portion of a frame.  In addition, it uses a 
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smaller separate bus and does not compete with bandwidth used by the primary data 
and/or the computational data interconnect. 

5.17.2 Diagnostic Computations 
A variety of diagnostic computations and monitoring are supported by the system. 

5.17.2.1 Cn
2 profile extraction 

The Cn
2 profile can be estimated during operation using the information about the 

estimated layers. 

5.17.2.2 Wind extraction (by layer) 
Wind in each layer can be estimated.  19 20

5.17.2.3 Convergence rate Reporting 
 

5.17.2.4 Layer height extraction 
 

5.17.3 Capturing Diagnostic Data Streams 
In addition to capturing diagnostic data, it is important to be able to capture WFS and 
layer data streams for analysis.  This means streaming the input WFS and output layer 
data to a disk sub system while the tomography engine is operating, without affecting its 
operation. 

With a bus-based system, the basic I/O, the diagnostic data streams, and the data access 
requirements of the tomographic calculations all compete for a common bus bandwidth. 

A worst-case scenario might be to try to capture all data in and out of the system on a 
frame basis i.e., each millisecond for 8 hours.  The data rate for this would be less than 
320 MB per second (2.6 Gbits per second) and an 8-hour session, capturing all data for 
every frame, would require <10 Tera Bytes of storage.  While this level of capture is 
unlikely, it could be supported with off-the-shelf, fiber channel, storage sub systems such 
as Dell’s CX series, which can handle 4 Gbit data rates and ____ of total storage. 

For the LAO tomography engine, the ability to capture and store data is limited by our 
willingness to supply an existing, off-the-shelf, storage sub-system.  It is not limited by 
having to use exotic technology or by balancing data storage activities against system 
performance. 

 

INSERT REPLACEMENT FOR THIS 
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5.17.4 System Control 
Control for a frame is updated in parallel with the loading and unloading of the data.  
This is a very low bandwidth operation and has no impact on I/O or operation.  Control is 
performed by a traditional PC using traditional methods and communications. 

 

For the most part, inter-chip data is handled by LVDS signaling.  Each signal has a 
possible BW of 600 Mbits per second (~75 MB/Sec) 

I/O is divided into primary, system configuration and diagnostic buses 

 
 

Figure 5-24  I/O bus flow 
 

 

 

 

5.17.5 Primary Data Flow 
 

 

5.17.6 System Configuration 
 

5.17.7 Diagnostic Data Flow 
We are now primarily limited by our willingness to save data, not by a limitation of the 
system to support the saving of the data or the impact that the action might have on the 
system function and performance. 
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PSF, Cn
2, RMS error, wind, convergence rate, 

 

 

Illustrate extracting data while running, using the load of a SR. 

 

 

Flags are set at the beginning of each frame to tell the main control to load the shift 
registers at the appropriate time.  This changes the iteration or convergence time by only 
a few cycles (out of thousands), depending on when data is loaded. 

Once loaded and started, control for dumping diagnostic data is handled by a completely 
separate state machine. 

 

Inter chip bottleneck 

 

 

 

5.18 Global Synchronization and Clocks 
LVDS? 

The ability to keep things synchronized may set the maximum clock frequency between 
cells, chips and boards. 

Clock skew 

 

Data delay 

 

Data wrap delay 

We may use a fast path or add a fast pipeline buffer and take an extra clock in a long 
series of clocks rather than slow all clocks down. 

5.18.1 Integer vs.  Floating Point 
The algorithm we use for converging to a new estimated value is stable in the presence of 
noise.  The effect of round off errors due to using integers instead of floating point is the 
equivalent of adding noise.  This lengthens the convergence time, but the algorithm will 
still converge. 

 

Range 

Scaled to 2n 
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Minimizing loss of precision 

Division, shifting by ‘n’ 

 

 

5.18.2 Data Word Size 
10 bits in from WFS, 10 bits out to DMs, 16 bits internal to Axey on 18-bit MACs with 
36-bit results 

 

Add Don’s analysis 

How do we analytically determine the effect of the truncation to determine word size? 

 

5.19 System Control and User Interface 
 

 
 

Figure 5-25  Overall System Diagram 
 

Show Tomography engine and control PC, diagnostic storage, DMs, Cameras … 

 

While this is an incredibly powerful and flexible computing machine, its power is at the 
cost of versatility and it is not designed to handle human interface or general-purpose 
computational tasks.  Instead, these very low bandwidth and low compute requirement 
tasks will be handled by a traditional PC class computer, which will be programmed by 
traditional methods. 

This control computer stores and controls: 



_NGAO_RTC_HW_and_Alg_18_Feb_2008_e.doc NGAO RTC 

Ver.  1.131 Page 62 of 71 2/19/2008 

• Overall system architecture configuration files 
• Primary topographic algorithm code 
• Diagnostic code 
• Frame-to-frame control to determine what diagnostic processes to perform 
• Frame-to-frame control to determine what diagnostic and basic data to store 

Communications between the control computer and Axey are through standard LVDS 
signaling. 

5.20 Ease of Use 
• Programming: simple state machine descriptions 

Show code 

Show state diagram 

 

 

 

 

 

 

• Hardware upgrades by code 
 

 

• System control and user interface 
 

Diagnostic error detection and location (row, column) using spare cycles 

 

5.20.1 Performance 
 

 

Limiting factors 

 

 

I/O during transform Pins 

 

 

Power 
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Multiplier 

 

 

Inter board communication and synchronization in general 

 

 

 

 

 The LX55 is slower because of the reduced size of the inter chip busing, but it takes less 
power and fewer boards because it uses fewer chips. 

 

We limit-out on power/speed and bus bandwidth using a larger chip.  We limit-out on 
resources on the smaller chip. 
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6 Summary 
The initial analysis, simulation and implementation show that the architecture described 
here can implement the functions required for the real time computation of atmospheric 
tomography and control of the deformable mirrors for a large astronomical AO system 
can be accomplished within the specifications required. 

Further work will refine the system and present trade-offs in terms of speed, over 
sampling, accuracy, power, etc. 

Additional work will examine the suitability of the system for use with alternate 
algorithms. 
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Appendices 
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Appendix A Program: The Basic Loop 
 
# forward propagate 
beg: rd_ram ev 
noshift_store 
 
# point the real/imag cnt indexes to shift for 
# current guide star 
rd_ram shift_addr 
ld_ramcnt_indirect 
macc_layer shift 
rtshift_store scale_bits 
 
# IDFT 
dft_ew inv_dft_ew 
rtshift_store scale_bits 
dft_ns inv_dft_ns 
 
# in addition to scaling down, also normalize down here 
rtshift_store normalize_bits 
 
# take aperture in spatial 
macc_loopback aperture 
noshift_store 
 
# take error in spatial 
wr_ram temp 
rd_ram meas_addr 
ld_ramcnt_indirect 
rd_ram_direct 
sub temp 
noshift_store 
 
# move spatial error to Fourier with DFT 
dft_ew fwd_dft_ew 
rtshift_store scale_bits 
dft_ns fwd_dft_ns 
rtshift_store scale_bits 
wr_ram error_temp 
 
# write error for this guidestar to 4 memory locations 
# back propagation needs it in this format 
# 
# procedure: write Real to locations 1 then 2 
 
# write Imag to locations 3 then 4 
# 1.) error_addr : R 
# 4.) error_addr+1 : I 
#. 
#. 
# 3.) error_addr + 2x#gstars : I 
# 2.) error_addr + 2x#gstars + 1 : R 
rd_ram error_addr 
 
# writes to 1. 
wr_ram_indirect 
add gstar_num 
add gstar_num 
add unscaled_const1 
 
# writes to 2. 
wr_ram_indirect 
advance_regs 
sub unscaled_const1 
 
# writes to 3. 
wr_ram_indirect 
sub gstar_num 
sub gstar_num 
add unscaled_const1 
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# writes to 4. 
53 
wr_ram_indirect 
 
# put the error_addr at location for next gstar (in case we 
# come back here) 
add unscaled_const1 
noshift_store 
wr_ram error_addr 
 
# get an error magnitude for this guide star 
rd_ram error_temp 
noshift_store 
 
# square_rows accumulates all R^2 + I^2 values in each row in 
# the real accum 
square_rows 
 
# scale down the sum of square rows, this incurs some roundoff errors* 
rtshift_store scale_bits 
 
# add_reals_ns accumulates the real values north/south 
# in a real path only, bypassing the imag paths 
add_reals_ns unscaled_const1 
noshift_store 
 
# writes to proper sum of squares location: (sos_addr + 
# gstar_cnt) 
rd_ram sos_addr 
add gstar_cnt 
wr_ram_indirect 
 
# increase meas address index 
rd_ram meas_addr 
add dual_twos 
noshift_store 
wr_ram meas_addr 
 
# increase layer shift address index for next guide star 
rd_ram shift_addr 
 
add layer2_num 
noshift_store 
wr_ram shift_addr 
 
# done with a gstar loop, now increase gstar_cnt index 
rd_ram gstar_cnt 
add unscaled_const1 
noshift_store 
wr_ram gstar_cnt 
 
sub gstar_num 
 
# if we haven’t gotten an error for each guide star, 
# branch to the beginning 
branch_if_neg beg 
 
# determine if global error is small enough to exit program 
# sum the sum of squares values across all guide stars 
add_gstar_reals sos 
sub cutoff 
 
# here is the bailout condition 
branch_if_neg stop 
 
# Back Propagation 
rd_ram cn2 
noshift_store 
macc_gstar error 
rtshift_store scale_bits 
macc_loopback unscaled_const1 
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# Kolm filter 
macc_loopback kolm 
 
# new estimated value 
add ev 
noshift_store 
wr_ram ev 
 
# we are at end of loop so reset address indexes for: 
# gstar_cnt, 
rd_ram const_zero 
noshift_store 
wr_ram gstar_cnt 
 
# meas_addr, 
rd_ram meas_addr_start 
noshift_store 
wr_ram meas_addr 
 
# shift_addr, 
rd_ram shift_addr_start 
noshift_store 
wr_ram shift_addr 
 
# error_addr, 
rd_ram error_addr_start 
noshift_store 
wr_ram error_addr 
 
# now force a branch to the very beginning of loop 
rd_ram neg_const 
branch_if_neg beg 
 
stop: done 
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Appendix B Framework Requirements 

B.1 GenerateVerilogfiles,BlockRAMcontents, and program compilation 
Ruby 

NArray library for Ruby 

B.2 B.2 Behavioral RTL simulation 
Linux OS 

Ruby 

NArray library for Ruby 

Ruby-VPI 16.0.0 or higher that works with ModelSim 

Modelsim SE Simulator 

Xilinx primitive libraries for Modelsim SE 
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Appendix C Ruby Scripts 

C.1 Ruby scripts for Verilog Generation 
1. gen top.rb : generates the top level Verilog file: “top.v” 

2. gen box.rb : generates the 3-D systolic box Verilog file: “box.v” 

 

3. gen all.rb : callsall architecturegenerationscripts,oneat atime(“gen top.rb”, “gen 
box.rb”, “gen all.rb”) 

C.2 Ruby scripts for systolic array BlockRAM content generation 
gen mesh brams.rb : 

uses functions located in “gen bram functions.rb” 

generates the BlockRAM content files: ”c# r# l#.data” 

generates the address file: “addr.data” 

C.3 Ruby scripts for CACS program compilation 
compile.rb : compiles any sequence list text file into “whole sequence.seq” 

gen cacs rom.rb : compiles whole sequence.seq into the final CACS rom file : “control 
rom.data”. 
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