

Low-Order Wavefront Sensor Mini-Review

April 2, 2010

LO WFS Overview

- Raison d'être
- Architecture
- Requirements Drivers
- Operational Modes

LO WFS Purpose

- Primary purpose is to measure spatial modes of the science wavefront incorrectly sensed by the LGS asterism
 - Tilt indeterminacy of any LGS beacon requires use of NGS for tip-tilt (TT) measurement
 - Blind modes of any multi-LGS asterism requires additional sensing
 - NGAO performs this two different ways...
 - Multiple NGS sensed with the LO WFS subsystem
 - » Multiple NGS also improves TT error w/ more photons, less anisoplanatism
 - Low-order modes sensed directly if moderately bright NGS is available

NGAO LO WFS Architecture

- Choice of 2 TT and 1 TTFA sensor based on trade studies of more or fewer NGS
 - KAON 452 MOAO vs. MCAO trade study report
 - KAON 470 Keck NGAO sky coverage modeling
 - KAON 487 NGAO LOWFS architecture trade study
 - KAON 492 NGAO null-mode and quadratic mode tomography error
 - KAON 504 NGAO Performance vs. Technical FoV for LO WFS stars
 - KAON 635 Point & Shoot Study
- Major subsystem retained largely intact after Build-to-Cost (B2C) design decisions documented in KAON 642
 - Maintenance of highest sky coverage very high priority
 - Changed IR TWFS to visible TWFS
- Post-B2C cost estimate was \$2.21M
 - Estimated about \$0.08M less than SDR
 - Visible TWFS and relaxed motion specifications
 - Cost to be re-visited for PD Cost Book (c. late-April 2010)

LO WFS Requirements Drivers

- 16 explicit Functional Requirements
 - Plus, a number of implicit Performance Flowdown Requirements
 - Detector QE, read noise,
- Key Requirements Drivers
 - Best sky coverage
 - Directly drives the MOAO sharpening apparatus (LOWFS DM, Patrolling LGS WFS, RTC design)
 - Choice of 32 x 32 DM set by availability and NGS Sharpening Budget
 - Drives baseline choice of low-noise, fast readout Teledyne H2RG IR array
 - Drives field of regard
 - Drives choice of J- and H-band operation
 - K-band considered, but appears marginally beneficial, at increased design and operational complexity
 - Acquisition efficiency
 - 29 seconds for acquiring NGS in LGS observing modes
 - 11 seconds for LO WFS offset sans sky background measurement
 - Drives choice of field of view, full frame readout
 - Object selection mechanism (OSM) is typically preset during telescope slew
 - Most precision motion requirements relaxed via B2C strategy of science dither via HODM TT stage

Operational Modes

LGS Science with DAVINCI

- TTFA typically steered to brightest NGS in FoR
 - For random field star, this is likely to be V ~ 18.9, H ~ 15.2 about 45 arcsec off-axis
- TT's steered to ~ 1 mag fainter (and likely closer) field stars
- Need RTC to support operation with 3, 2, or 1 off-axis NGS
 - Specific allocation of sensors to stars will depend on NGS asterism geometry and brightness
- LO WFS focus needs to be adjusted to stay conjugate to starlight when science ADC inserted or when instrument internal focus changed (filters, plate scales, etc.)

Interferometer Science

- Support of off-axis visible TWFS
- Possible utility of IF dichroic IR leakage to allow TT sensing with LO WFS (needs investigation)