NGAO

Laser Guide Star

12/07/2009
MINI-REVIEW

Laser Guide Star

1) Object Selection Mechanism

1.1) Conceptual design and operation
1.2) Design requirements
1.3) Design Overview
1.4) Optical equation applied to the mechanical design
1.5) Sizing the Probe
1.6) Probe Design
1.7) Mass and CG of the Lever Arm Assembly
1.8) Static load on the lever stage
1.9) Mass and CG of the OSM \#1 Assembly
1.10) Static load on the crank stage
1.11) Probe Position Accuracy
1.12) Probe Position Repeatability
1.13) Probe Patrolling range

2) Laser Guide Star Architecture
2.1) Design requirement
2.2) Design Overview
3) Patrolling Asterism
3.1) Design requirements
3.2) Design Overview
3.3) Stress Analysis

NGAO

Laser Guide Star

4) Fixed Asterism

4.1) Basic Design requirements
4.2) Design Overview
4.3) Peripheral Fixed LGS WFS Design Overview 4.4) Central Fixed LGS WFS Design Overview

5) Structure
5.1) Design requirements
5.2) Design Overview

6) Mechanism Motions

1) Object Selection Mechanism

Fig. 1 appropriate values for theta and phi, noting that two possible solutions could be found due to symmetry.

The crank motor is secured to the Sensor and rotates the crank arm, precisely about the rotation axis of the crank motor referred to as the theta axis. The lever arm motor provides the necessary second degree of freedom by rotating the lever arm and all associated optics, about the phi axis.

Each probes are a at a different distance from the Focal plane, 15 mm apart, with the closest probe 10 mm upstream from the focal plane. This design allow each probe to freely roam the entire field without risk of colliding into an other probe. The fixed 3 probes are located 45 mm behind the focal plane. (See Fig. 2)

1.2) Design requirements:

Mechanism Type: ϕ / θ

FR-1920 : The 3 PnS WFS's shall be deployable anywhere over the 120 " (87.24 mm) FoR.
Focal Plane FoV : $\quad \varnothing 5^{\prime \prime}(3.635 \mathrm{~mm})$
FR-1526 : Acquisition accuracy >100 mas (0.07 mm)
Stability:

$$
5 \text { mas / 3600s (} 1 \text { ر m })
$$

Operating Temperature: $-10^{\circ} \mathrm{C}+/-0.3$
FR-512: The optical components of the LGSWFS shall be capable of operation at $-5^{\circ} \mathrm{C}$.
FR-1908 : PnS LGS WFS channels shall be able to pick off LGS beacons that are separated by 10 " (from any other LGS sensor pick off) over the field

1.3) Design Overview

OSM \# 2 Shown (a1 = -5)

1.4) Optical equation applied to the mechanical design

Optical Layout (Fig. 3) is optimized when the following equations are verified:
1.4.1) $a=b \& c=d$
1.4.2) $a+b=x(c+d)$

Keeping the AO Focus away from the Probe mirror (FM1) gives:
1.4.3) $a=a_{1}+a_{2}$

Keeping each Lever arms on a different plane to avoid collision between each other gives a different value of a1 for each OSM The Lever Arm Length previously determined gives:
1.4.4) Lever Arm length $=b+a_{2}$

Replacing 1.4.3 \& 1.4.4 in 1.4.1 gives: $\mathrm{a}=\mathrm{b} \rightarrow \mathrm{a}_{1}+\mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{2}$
Solving for $\mathrm{a}_{2} \boldsymbol{\rightarrow} \mathrm{a}_{2}=$ Lever Arm length $-\mathrm{a}_{1} \boldsymbol{\rightarrow} \mathrm{a}_{2}=\left(\right.$ Lever Arm length $\left.-\mathrm{a}_{1}\right) / \mathbf{2}$
1.4.5) With $\mathrm{a}=\mathrm{b}=120$, Table 1 gives all the design dimension of the 3 OSMs

OSM\#	a_{1}	$\mathrm{a}_{2}=\mathrm{a}-\mathrm{a}_{1}$	$\mathrm{a}=\mathrm{b}=\mathrm{a}_{1}+\mathrm{a}_{2}$	Arm = $\mathrm{b}+\mathrm{a}_{2}$
I	10	110	120	230
II	-5	125	120	245
III	-20	140	120	260

Table 1

1.5) Sizing the Probe to 8 mm Diameter

The Field of View at the Focal Plane is $\emptyset 5^{\prime \prime}(3.635 \mathrm{~mm})$
The Field of View at the probe is defined by it's distance from the Focal Plane / f\#
The probe Fold Mirror intercept the light beam at a 45 degree angle creating an elliptical projection at a distance a1 from the Focal plane. (See Fig. 4)
The minimum diameter of the mirror needs to be larger than the Ellipse Major Diameter.
The Larger Fold mirror will be at the furthest distance from the Focal plane OSM \#1 (a1 = -20)

Each Probe FoV is a potential vignetting of an other probe.
1.5.1) Largest FoV at the Fold Mirror \#1 (FM1) is at OSM \#1 (a1 = -20) Probe

$$
\begin{aligned}
& \text { Ellipse Minor Diameter: } \\
& \begin{aligned}
\mathrm{d} & =\mathrm{d} \text { at Focus Plan + (a1 / f\#) } \\
& =5 \times 0.727+(20 / 13.66) \\
& =3.635+1.464 \\
\mathrm{~d} & =5.10 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

> Ellipse Major Diameter:
> $D=d \sqrt{ } 2=5.1 \sqrt{ } 2$
> $D=7.21 \mathrm{~mm}$

Fig. 4
1.5.3) Medium FoV at the Fold Mirror \#1 (FM1) is at OSM \#3 (a1 = 10) Probe
1.5.2) Smallest FoV at the Fold Mirror \#1 (FM1) is at OSM \#2 (a1 = -5) Probe

Ellipse Minor Diameter:
$\mathrm{d}=\mathrm{d}$ at Focus Plan $+(\mathrm{a} 1 / \mathrm{f} \#)$
$=5$ X $0.727+(5 / 13.66)$
$=3.635+.366$

> Ellipse Major Diameter:
> $D=d \sqrt{ } 2=4 \sqrt{ } 2$
> $D=5.66 \mathrm{~mm}$

Ellipse Minor Diameter:
$\mathrm{d}=\mathrm{d}$ at Focus Plan $+(\mathrm{a} 1 / \mathrm{f} \#)$
$=5 \times 0.727+(10 / 13.66)$
$=3.635+.732$
$\mathrm{d}=4.37 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Ellipse Major Diameter: } \\
& \mathrm{D}=\mathrm{d} \sqrt{ } 2=4.37 \sqrt{ } 2 \\
& \mathrm{D}=6.18 \mathrm{~mm}
\end{aligned}
$$

1.6) Probe Design

1.6.1) Design Features Common to all Probes

Fig. 7

1.6.2) Probe Deflection, at rest, under it's own weight: $1 \mu \mathrm{~m}$

- Deflection analyzed on the longest Inclined probe (OSM \#2)

- Mass of the probe $\mathrm{w}=\mathrm{mg}=0.01 \mathrm{Kg} \times 9.81 \mathrm{~ms}^{-2}=0.098 \mathrm{~N}$
-Moment of Inertia: $\mathrm{I}=\mathrm{bh}^{3} / 12=4.57 \times 7.64^{3} / 12=169.8 \mathrm{~mm}^{4}$
-6061-T6 Module of Elasticity: $\mathrm{E}=68,800 \mathrm{~N} / \mathrm{mm}^{2}$
-Max Deflection: $v=w L^{3} / 8 E I$
$v=0.098 \times 100^{3} /(8 \times 68,800 \times 169.8)$
$v=98000 / 93457920$

Probe Length
Fig. 8
$\mathrm{v}=0.001 \mathrm{~mm}$

1.6.3) Frequency Analysis

OSM \#3

List Modes			
Study name: Frequency			
Mode No. Frequency(Rad/sec) Frequency(Hertz) Period(Seconds] 1 1480.3 235.59 0.0042446 2 2512 399.79 0.0025013 3 9407 1497.2 0.00066792 4 15592 2481.6 0.00040296 5 25594 4073.5 0.00024549			
Close			

List Modes				区
Study name: Frequency				
Mode No.	Frequency(Rad/sec)	Frequency(Hertz)	Period(Seconds)	
1	1911.6	304.24	0.0032869	
2	3246.5	516.7	0.0019354	
3	12159	1935.1	0.00051677	
4	19832	3156.3	0.00031683	
5	29325	4667.2	0.00021426	
\leqslant				\geqslant
Clos		Save	Help	

OSM \#2

OSM \#1

1.7) Mass and CG of the Lever Arm Assembly

Total Mass: 1,570 grams (15.4 N)
CG located at the Axis of rotation, 36 mm above the Lever motor Interface.

Torque at the Lever Rotation Stage Interface: $0.036 \times 15.4=0.55 \mathrm{Nm}$

476 grams
Fig. 11

1.8) Static load on the lever motor

PI M-037.DG Rotation stage

M-037 rotation stages are equipped with ultra-precise worm gear drives allowing unlimited rotation in either direction.
An integrated spring preload eliminates backlash.
Double-row ball bearings allow zero backlash, high load capacity and extremely low wobble.

Model M-037.DG is closed-loop DC motors with shaft-mounted position encoders and precision gearheads providing $3.5 \mu \mathrm{rad}$ at a design resolution of $0.6 \mu \mathrm{rad}$.

Torque FS $=3 / 0.55=5.5$

Model	M-037.00	M.037.DG	M-037.PD	M-037.2S	
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360	>360	. 360	>360	-
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	2000	-	cts/rev,
Design resolution	-	0.59 (34 $\times 109$	3.75 (0.0005)	5.45* 0.00031$)$	$\mu \mathrm{rad}(9)$
Min. incremental motion	-	3.5	27	21	$\mu \mathrm{rad}$
Backlash	-	200	200	200	$\mu \mathrm{rad}$
Unidirectional repeatability	-	30	30	30	$\mu \mathrm{rad}$
Wobble	<150	<150	-150	<150	$\mu \mathrm{rad}$
Max, velocity	-	6	15	10	\%/s
Mechanical properties					
Worm gear ratio	180:1	180:1	180:1	180:1	
Gear ratio	-	$(28 / 12)^{\prime}=29.6: 1$	-	-	
Motor resolution	-	-	-	6400*	steps/rev.
Load capacity/axial force, self-locking	± 300	± 300	-300	± 300	N
Max, torque ($0_{x}, \theta_{y}$)	± 3	± 3	$=3$	± 3	Nm
Max. torque clockwise (ey)	1	1	1	1	Nm
Max. torque counter clockwise (θ_{2})	0.5	0.5	p. 5	0.5	Nm
Drive properties					
Motor type	-	DC motor, gearhead	ActiveDrive ${ }^{\text {TM }}$ DC Motor	2-phase stepper motor*	
Operating voltage	-	0 to ± 12	24 (PWM)	24	v
Electrical power	-	3	30		w
Reference switch	-	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	20 to +65	-20 to +65	${ }^{\circ} \mathrm{C}$
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.3	0.65	p. 62	0.64	kg
Recommended controller/driver	-	C-863 (single-axis) C-843 PCl-Karte (for up to 4 axes)	C-863 (single-axis, p. 4-114) - -843 PCI-Karte (p. 4-120) for up to 4 axes)	C-663 (single-axis, p. 4-112)	

incl. motor cable, 3 m , sub-D connector 15 -pin
2 -phase stepper motor, 24 V chopper voltage, max. 0.8 Aphase, 400 full steps/rev, motor resolution with C.663 stepper motor controller

M-037.DG rotation stage with DC Motor and gearhead

1.9) Mass and CG of the OSM \#1 Assembly

Total Mass: 3,874 grams (38N)
CG located at the Crank Axis of rotation, 60 mm above the Lever motor Interface.

Torque at the Crank Rotation Stage Interface: $0.060 \times 38=2.3 \mathrm{Nm}$

Fig. 12

1.10) Static load on the crank stage

PI M-038.DG Rotation stage

Model M-038.DG1 is equipped with a closed-loop DC motor with shaft-mounted position encoder and precision gearhead providing minimum incremental motion of $3.5 \mu \mathrm{rad}$ at a design resolution of 0.6 mrad.

Torque FS $=6 / 2.3=2.6$

1.11) Probe Position Accuracy

Position Accuracy at the longest probe: OSM \#3, a1 = -20
Lever Arm Length: 260 mm
Crank arm Length: 41.8 mm
Lever Stage M-037.DG Design resolution: 0.000034°
Crank Stage M-038.DG1 Design resolution : 0.000035°

Lever arm position accuracy: $250 \mathrm{~mm} X \tan 0.000034^{\circ}=0.00015 \mathrm{~mm}$
Crank arm position accuracy: $290 \mathrm{~mm} X \tan 0.000035^{\circ}=0.00018 \mathrm{~mm}$

$$
\begin{aligned}
& \bar{L} \\
& =0.00033 \mathrm{~mm} \\
& =0.00045 \prime \prime
\end{aligned}
$$

Resulting position accuracy at the tip of the probe $=0.00033 \mathrm{~mm}=0.45 \mathrm{mas}$

1.12) Probe Position Repeatability

Position Repeatability at the longest probe: OSM \#3, a1 = -20
Lever Arm Length: 260 mm
Crank arm Length: 41.8 mm

Lever Stage M-037.DG Design repeatability: $30 \mu \mathrm{rad}=0.0017^{\circ}$
Crank Stage M-038.DG1 Design repeatability : $20 \mu \mathrm{rad}=0.0011^{\circ}$

Lever arm position repeatability: $250 \mathrm{~mm} X \tan 0.0017^{\circ}=0.007 \mathrm{~mm}$
Crank arm position accuracy: $290 \mathrm{~mm} X \tan 0.0011^{\circ} \quad=0.005 \mathrm{~mm}$

$$
=0.012 \mathrm{~mm}=.016 "
$$

Fig. 13

1.13) Probe Patrolling range

The probe patrolling range is limited by a contact switch (Wobble type) that, in case of software glitch, would trip the stages when contacting a track simulating the desired probe range.

2) Laser Guide Star Architecture

2.1) Design requirements

FR-509: The LGSWFS shall support 7 laser guide stars. Of these lasers, one is located at the center of the field of view and the other three are on the vertices of a equilateral triangle around the central star. The remaining 3 guide stars can be positioned at random around the field of view.

3) Patrolling Asterism (Deployable)

3.1) Design requirements

-FR-519: The 3 PnS LGSWFS's shall patrol and pick off any LGS in the 120" FoR

3.2) Design Overview

3.3) Stress Analysis of Standard material

IPN beam 10" x 6 " x .25 " Thk: 65 Lbs

Plate 7" x 1" Thk: 62 Lbs

I-Plate 6" x 0.5" Thk: 51 Lbs

UY (mm)

Square beam 6" x 6" x .125" Thk: 38.7 Lbs

UY (mm)

4) Fixed Asterism (Tomography)

4.1) Design requirements

-FR-1867: There shall be one central LGS WFS and 3 LGS WFS's that are fixed at 10" dia. with equal angular separation.

4.2) Design Overview

4.3) Peripheral Fixed LGS WFS Design

4.3.1) Overview

The fixed probe pick-off the $10^{\prime \prime}$ Fov to relay with the downlink tip-tilt mirror at the pupil location. Each Fixed LGS WFS is equipped with yaw and pitch motion about the Focus point which along with the downlink TT mirror can be used to align each channel to the incoming beam and keep the lenslet to LODM registration.

4.3.2) Pitch \& Yaw Adjustment

-Pitch \& Yaw about the Focus is adjustable using 2 manual Micrometers, $0.5 \mu \mathrm{~m}$ Sensitivity, 13 mm Travel, located 555.8 mm (21.88in) away from the Focus, giving 180mas Sensitivity with 84 " Travel.

Pitch Axis
Shoulder Bolt
and bushing

-The Yaw control Micrometer is maintained in contact with the U-Channel by a compression spring guided by a plunger.
-The Pitch Control Micrometer is maintain in contact with the base by gravity.

4.4) Central (On-Axis) Fixed LGS WFS Design

4.4.1) Overview

The Central fixed LGS Asterism does not require a probe as it receive straight light from the AO Fov to relay with the downlink tip-tilt mirror at the pupil location thru a Packaging Fold Mirror. The Central Fixed LGS WFS is also equipped with yaw and pitch motion about the Focus point which along with the downlink TT mirror can be used to align each channel to the incoming beam and keep the lenslet to LODM registration.

5) Structure

5.1) Design requirements

FR-525: The LGSWFS optics shall reimage the DM onto the LGSWFS lenslets to an accuracy of TBD mm in focus.

5.2) Design Overview

The LGS Structure needs to rigidly accommodate with the installation of each 7 Channels and allow relatively easy access to each optical components for Installation, adjustments, replacements and maintenance. A Honeycomb panel Structure would weigh around 100 Kg compared to 250 Kg of plain welded Aluminum and would be at least twice as rigid.

The structure is mounted on three Delron Slides HPRSA4-9FB rated each at 182 Kg for 225 mm travel with a .00005 mm repeatability and a straight line accuracy of $.001 \mathrm{~mm} / 25 \mathrm{~mm}$ travel. (See Delron Catalog p. 23) The assembly is actuated using the Newport Stage ILS-250CC

6) Mechanism motions (FR-540)

-FR-539: The LGSWFS shall have mechanisms controlled by the RTC and/or the supervisory control system to keep each individual LGS WFS in focus

Device	DOF per stage	TL DOF	Type	Axes	Range	Accuracy/ Repeatabil ity	Tracking Device?	Tracking Rate	Slew Rate	Control Category	
LGS WFS UnitFocus	1	3	Linear	z	10 mm	10 mm	Yes			4	TBC
LGS WFS Unit	1	3	Rotational	θ	360 deg	$0.01 \mathrm{deg}$	Yes			4	Un-necessary
rotation											See Demo
LGS WFS Pickoff	2	6	Rotational	$\begin{aligned} & \theta \\ & \Phi \end{aligned}$	360 deg	$\begin{gathered} 15 \text { arc- } \\ \text { sec } \\ 300 \text { arc- } \\ \text { sec } \end{gathered}$	NoTBC			6	
LGS WFS Assy focus	1	1	Linear	z	$\begin{aligned} & 130 \mathrm{~mm} \\ & 205 \mathrm{~mm} \end{aligned}$	$\frac{0.5 \mathrm{~mm}}{\text { Or } 0.05 \mathrm{~m}}$	I?			4	
Tip Tilt Stabilization Mirror	2	20	Tip Tilt		10 mrad	$\begin{gathered} 0.05 \\ \text { microrad } \end{gathered}$	Yes				

