

IRIS OIWFS Concept Study

D. Loop¹, M. Fletcher¹, V. Reshetov¹, R. Wooff¹, J. Dunn¹,
A. Moore², R. Smith², D. Hale², R. Dekany²,
L. Wang³, B. Ellerbroek³, L. Simard³, D. Crampton³

¹NRC-Herzberg Institute of Astrophysics ²Caltech Optical Observatories ³TMT Observatory Corporation

Wavefront Sensor Meeting Caltech, Dec 15, 2009

IRIS on TMT

Delivered Focal Plane

Key OIWFS Requirements

- Instrument rotator & services wrap alignment between NFIRAOS delivered beam and IRIS science instrument
 - Critical to IRIS image quality
- 2 tip/tilt and 1 tip/tilt/focus wavefront sensors
 - Fast guiding, focus and tilt anisoplanatism
- 2 mas positioning accuracy > 4.4 µm at focal plane
 - OIWFS are the positional reference for astrometric performance
- High sky coverage < 2 mas tip/tilt jitter at galactic pole</p>
 - Near infrared, 1.0 to 1.7 μm , sensing on 'sharpened' guide stars
- High acquisition probability = low acquisition time

Number & Type of Probes

(Lianqi Wang, Brent Ellerbroek, 2008)

5

- Object Select Mechanisms considered
 - Robot placed pickoff & pathlength mirrors (EAGLE concept)
 - Tip/tilt mirror tiling of focal plane (Caltech TIPI concept)
 - Theta-Phi, 2 rotation stages (Flamingos-2 OIWFS, etc)
 - Theta-R, 1 rotation + 1 linear stages (IRMOS, KMOS, etc)
- Requirements for positioning accuracy, dithering, and non-sidereal tracking
- Theta-R concept chosen for initial sky coverage analysis
- TT and TTF function change versus 2 probe planes

Patrol Geometry (Lianqi Wang, Brent Ellerbroek, 2008)

Cumulative Histogram of T/T Jitter, WindShake 20 mas, HgCdTe with 8e RoN

3 identical 'theta-R' probes at 120 degree spacing

Each probe capable of TT or TTF

Only need to reach 50% across 2' field

Theta-R Probe Optics

Results shown for 0, 0.3, 0.7, and 1.0 arcmin off axis

264000.00

RMS Focus Error

RMS Focus Error: No Collimator Focus

RMS Focus Error: Collimator Focussed

Color Dependent Strehl

Strehl: No Collimator Focus

OIWFS ADC Current Version

•The doublet prism pair.

•Glass selection inspired by Drew Philips' glass-pair investigation.

•Diameter = 30 mm.

- •Thickness of a doublet = 14 mm.
- •Glasses are S-NPH2 and Spinel.

•It is quite well-behaved being in a collimated beam space.

ADC Residual Color Error vs. Wavelength S-NPH2 + SPINEL

Macro Mechanics

Exploded View

OIWFS Probe Platform

THIRTY METER TELESCOPE

Custom Linear Stage

20

Collimator focus stage

Back end optics

OIWFS Cameras

- TT pixel scale = $\lambda_{\rm H}/2D$ = 5.67 mas/pixel
- TTF pixel scale = λ_H/D = 11.34 mas/pixel
 - Same detectors can be used for TT and TTF functions
- Analysis of tip/tilt jitter & image wander during acquisition shows worst case of ~250 mas
 - at 4σ and 5.67 mas/pixel > minimum of ~180x180 pixels
 - Acquisition probability > larger probe FoV > more pixels
- Hawaii HxRG 1024x1024 HgCdTe detector w/new MBE material testing underway – read noise, dynamics
- HgCdTe e-APDs and InGaAs emerging technologies

Acquisition Probability

(Corinne Boyer, Luc Simard, 2008)

Noise vs. Frame Rate

measured for various frame sizes

25

Opto-mechanical follow

On-chip follow

Sky Coverage Update

(Lianqi Wang, Brent Ellerbroek, Jean-Pierre Veran, 2009)

- NGS mode errors combined with LGS mode errors of 178 nm RMS
- Overall on-axis budget of 187 nm RMS met at <u>45%</u> sky coverage
- Shortfall (in quadrature) of ~28 nm RMS at 50%
- System optimization still underway
 - Detector performance
 - "Fitting field" for LGS modes
 - Optimal choice of NGS modes and reconstructor

