

Laser Guide Star Wavefront Sensor Mini-Review

12/07/2009

LGS WFS Requirements Overview

- Introduction
- Requirements drivers
 - Possible drivers not fully explored

NGAO LGS WFS

- Major subsystem substantially revised by the Buildto-Cost (B2C) design decisions documented in KAON 642
 - LGS WFS outside of NGAO cold box so operation now at Nasmyth lab temperature
 - LGS asterism changed to yield better on-axis tomography and excellent sky coverage
- Post-B2C cost estimate was \$2.46M
 - Estimated about \$0.56M less than SDR
 - Cost to be re-visited for PD Cost Book (c. March 2010)
 - Effort has been strong push toward simplification
 - Recall O(50) mechanisms in LGS WFS SDR design

LGS WFS Requirements

- Recently re-written
 - In light of the requirements flow-down exercise and in preparation for this review
- 53 requirements available at 091207 mtg Twiki
 - Coverage of all disciplines (optical, electrical, etc.) not particularly uniform
- Parallel effort to update Contour organization (SysE group) will likely result in better understanding of missing LGS WFS requirements

Requirements Drivers I

- Asterism size and shape
 - Tight 10 arcsec (7.27 mm) radius Fixed LGS asterism drives packaging geometry
- Patrolling LGS WFS
 - Point and Shoot concept for LO WFS NGS sharpening leads to LGS WFS
 OSM
 - Decision to reuse LO WFS OSM design drives LGS WFS optomechanics
- "63" and "31" subapertures across the pupil
 - Set by 64 and 32 actuator MEMS DM's
 - Actual illumination by the pupil is expected to be less than this (there remains some impreciseness in our definitions)
 - Note: the WFE budget v 2.0 will need to reflect the degrees of freedom in the illuminate pupil
- LGS stabilization on 'downlink'
 - Integration of a fast tip-tilt mirror into each WFS drives packaging

Requirements Drivers II

- Wavefront error budget contribution from optics
 - 0.25 arcsec FWHM from all NGAO optics leading to the LGS WFS focal plane
 - Absence of flow-down allocation of this quantity has been cause of some interface confusion
- LGS WFS linearity and dynamic range
 - Drives choice of 4 x 4 pixels / subaperture
 - Choice of PSF-to-pixel ratio 'p' drives back-end optics
 - Final decision on 'p' ratios requires iteration with calibration stimulus, RTC, and MSCS teams
 - Related system issues
 - Small throw dither for centroid gain measurement
 - Quasi-GoTo control needs to be thought through more carefully
 - LGS WFS sees correction due to LODM, which is anisoplanatic for 6 of the 7 LGS WFS.
 - Will LO DM control be 'optimal' for science direction (alone), for the science FoV, or for a larger FoV?

Possible Requirements Drivers

- Impact of these items are not fully decided
 - Various non-atmospheric defocus terms
 - The need for individual focus mechanisms on each Patrolling LGS WFS channel is TBD (to be discussed later)
 - Operating wavelength 589 594 nm
 - In order to allow cost-effective testing with commercial laser source(s) to be located in the calibration stimulus
 - Fratricide
 - Impact of geometry of 'secondary shadow'
 - OSM reliability requirements
 - Support structure and stability w.r.t. HO DM
 - Size constraints
 - None leveled on LGS WFS to date