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ABSTRACT 

An adaptive optics system using multiple deformable mirrors and an array of guidestars can correct over a wider 
field of view than traditional single DM systems and can also eliminate the cone-effect error due to the finite altitude 
of laser guidestars.  In large telescope systems, such as the envisioned 30-meter telescope, or TMT, the 
extraordinarily large amount of computation needed to implement multi-conjugate adaptive optics at atmospheric 
turnover rates is prohibitive for ordinary CPUs, even when another ten years of computer development is taken into 
account. We present here a novel approach, implementing a fast iterative version of the key inverse tomography 
calculations in an array of parallel computing elements.  Our initial laboratory experiments using field-
programmable gate arrays (FPGAs) are promising in terms of speed and convergence rates.  In this paper we present 
the theory and results from simulations and experiments. 
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1. INTRODUCTION 
Several giant astronomical telescopes are now in their concept development stages with apertures of 20 meters or 
larger. The push toward large aperture telescopes, as well as the fact that astronomers wish to expand on the 
traditionally narrow adaptive optics field of view, has led to a need for real-time three-dimensional tomographic 
reconstruction of the atmosphere above the telescope and inside the field of view.  Multiple laser guidestar beacons 
at different field positions can probe this volume.  The problem is to efficiently and accurately reconstruct the 
volume. 

We consider two basic types of wide-field adaptive optics correction approaches under consideration for instruments 
on the UC/Caltech/AURA/ACURA Thirty Meter Telescope (TMT), which is now in the conceptual design stage.  
Multi-conjugate adaptive optics (MCAO) provides correction over a wide imaging field by correcting the volume of 
atmosphere in a conjugate space.  Wide field imaging cameras and spectrometers can then be placed behind an 
MCAO system.  The current design goal for the NFIRAOS MCAO system on TMT is a 30 arcsecond diameter field. 
Multi-object adaptive optics (MOAO) uses knowledge of the volumetric distribution of turbulence to make 
corrections in specific science directions.  The MOAO concept is intended for multi-object spectrographs and 
integral field unit imaging spectrometers where each deployable IFU has a very limited field of view (2 arcseconds 
on TMT) but a wide field over which these units can be deployed.  The goal is a 5 arcminute diameter deployment 
field.  With MCAO, multiple deformable mirrors are placed at conjugate altitudes and make corrections for layers of 
turbulence.  With MOAO, one deformable mirror is dedicated to each science direction, making correction for the 
integrated turbulence through the atmospheric volume in that direction.  In either case, the adaptive optics system 
must use guidestar information to determine the turbulence throughout the three dimensional volume of atmosphere 
above the telescope and within the desired field of view.  Since the constellation of guidestars provides information 
in the form of line integrals through this turbulence, the process is analogous to that of computer-aided tomography. 

A key challenge of implementing a multi-guidestar adaptive optic system on an astronomical telescope is the 
extraordinary amount of computation needed to perform this volumetric tomography hundreds of times per second 
in order to keep up with the changing atmosphere.  Early investigation of computational requirements determined 
that a significant sized supercomputer would be needed to serve a near-IR AO system on a 30 meter telescope. Our 
reinvestigation of the data processing algorithms and data flow needed for the AO real time data processing and 
control system has suggested the massively parallel architecture described in this paper. 

The hardware to implement the suggested architecture is available today.  Custom logic gate arrays (ASICs) could 
be used, however, particularly flexible option, at least in the initial phases, is the use of field-programmable gate 
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array (FPGA) logic chips, which are available at low cost and are relatively easy to reprogram. The massively 
parallel hardware architecture represents a radical departure from the commonly used Von Neuman machine in 
traditional computers, where data queue up to use a single arithmetic logic unit.  Instead, in the massively parallel 
architecture, large numbers of simple logic units operate on various parts of the data simultaneously.  This 
alternative works very well on algorithms requiring repetitive operations on data with little cross-dependence.  
Almost all aspects of AO data processing, from wavefront sensor data processing to commanding the deformable 
mirrors, to the inverse-tomography calculations, fall into this category of algorithm. 

A further advantage of our approach is the natural decomposition of the AO processing into clearly established 
functional sub-units.  Some sub-units are associated directly with sensor and actuator hardware, suggesting that they 
can be separately optimized (and possibly built into) that hardware.  The tomography sub-unit carries with it a 
physical reproduction of the atmospheric volume, holding estimates of the delta optical paths within volume 
elements.  The modularity of the approach allows for ease of maintenance and upgrade, and the system engineering 
is considerably simplified since each sub unit depends only on design parameters associated with it.  We contrast 
this idea with the “influence matrix” approach to designing AO systems where the AO control problem is treated as 
a black box with a large number of inputs (DM commands) and outputs (wavefront sensor readings) and the job of 
the controller is to invert this matrix which depends on all of the AO engineering parameters. 

At the UCO/Lick Observatory Laboratory for Adaptive Optics we implemented a small scale version of back-
projection tomography on a commercial FPGA development board in order to gain experience with the algorithm 
and to understand the scaling to larger systems. The sub-scale prototype runs the inverse tomography algorithm in 
real-time, but only for a small subsample of the aperture and atmospheric volume space. The algorithm is massively 
parallel in space so extension to the full size TMT controller only requires replication of the hardware. The inverse 
tomography algorithm is iterative so we measured the time per iteration with our hardware prototype and then used a 
computer simulation to determine the iteration rate (number of iterations needed for convergence) for the full scale 
30 meter telescope problem.  The results of the prototype and computer simulation studies are very encouraging, 
indicating that a system with on the order of a few hundred FPGA chips (a few 10’s of circuit boards) can serve a 7-
9 guidestar AO system with 7800 subapertures per guidestar on the 30 meter telescope at 1kHz frame rate. 

2. SYSTEM ARCHITECTURE OVERVIEW 

2.1 Data flow through the architecture 

The system architecture is depicted in Figure 1.  Multiple wavefront sensors, corresponding to each guidestar in the 
constellation, feed data to a centralized tomography unit.  The tomography unit determines an estimate of the delta 
optical path differences within the atmospheric volume.  This information is then in turn used, in MCAO mode, to 
project best fits onto the finite layers represented by each conjugate deformable mirror, or, in MOAO mode, to 
project along paths to the multi-object science fields.  Finally, since the deformable mirrors commonly have inter-
actuator influence functions, a fit must be computed for the actuator commands so that the resulting DM shape best 
fits the wavefront given the influence functions and other limitations such as limited actuator stroke.  The three step 
process, wavefront measurement, tomography, DM fitting, is evident in the figure.  Also evident is the inherent 
parallelization of operations specific to wavefront sensors or to DMs. 
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Figure 1. Multi-guidestar AO processing architecture 

   



   

2.2 Wavefront sensors 

Wavefront sensors can be of many different types depending on the type of source and the method of sensing.  The 
most common approach in astronomical adaptive optics today is to use Hartmann sensors to measure the local 
wavefront slopes on the light from natural star or laser beacons.  Another common approach is to measure the local 
curvature of the wavefront.  A possible future technique is to directly measure the phase using a Mach-Zehnder 
interferometer setup.  None of these sensors provide the piston component of the phase.  Furthermore laser 
guidestars are not able to probe tip/tilt component, and, in the case of the 30 meter telescope, sodium beacons may 
not be able to sense the focus component either, due to the huge uncertainty of the mean altitude of the sodium layer 
relative to the telescope’s depth of focus. 

In the proposed control architecture, each wavefront sensor has a wavefront reconstructor associated with it, such 
that the data presented to the tomography unit is in the form of wavefront phase as a function of position on the 
aperture.  Even sensors dedicated to sensing only low order modes, such as tip/tilt or tip/tilt/focus/astigmatism, will 
present their data to the tomography unit as wavefronts as a function of position on the aperture.  These wavefronts 
will be lacking the high order components, as the high-order wavefront sensors are lacking the low order wavefront 
components, but this will not upset the structure of the tomographic algorithm or adversely affect its performance 
relative to that achievable given the information inherent in the measured data. 

The task of finding phase from phase gradients is that of solving an overdetermined set of linear equations 

 Gys =  (1) 

where y is vector of m wavefront points sampled within the aperture, s is a vector of 2m wavefront slopes, and G is 
the gradient operator.  The phase from slopes problem is related to that of solving Poisson’s equation in two 
dimensions.  The noise-optimal solution, expressed in the Fourier domain is 
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where tildes indicate Fourier transforms and κ is the spatial frequency.  In the noise optimal (Weiner filter) solution 
shown above, nnC~ and φφC~ represent the power spectrum of the noise and the wavefront aberrations, respectively.  
When we assume a Kolmogorov spectrum for the wavefront and a white noise distribution for the slope 
measurements, the second equality results, with ( ) ( ) ( )23111 2027.0 andσπα −= where σn is the standard deviation of 
the noise in slope units, da is the size of the subaperture, and r0 is the Fried parameter characterizing the strength of 
the Kolmogorov wavefront aberrations. 

As implied by equation (2), slope to phase calculations can be performed rapidly in the Fourier domain using the 
fast Fourier transform.  An algorithm developed by Poyneer1 mitigates problems at the boundary of a finite aperture 
through an approach that extends the slope measurements artificially beyond the aperture so as to keep the slopes 
curl-free ( 0~ =×=×∇ sis κ ) throughout the domain of the fast Fourier transform.  Once the Fourier coefficients 
of s are determined, the scalar equation (2) can be applied at each spatial frequency independently, hence it is 
amenable to massive parallelization.  The trick of performing the fast Fourier transform itself in a massively parallel 
architecture is addressed in the section below on inverse tomography.  The Poyneer extension algorithm is massively 
parallelizable since each pseudo-measurement point outside the aperture depends only on a few points at the nearest 
point within the aperture. 

We should point out that all of the other practical aspects of pre-processing data from a Hartmann sensor are 
massively parallelizable.  These include reading data from the sensor array, background removal, flat fielding, and 
centroiding.  Since multiple processors can be interfaced to the array along parallel interface lines, the array itself 
should be designed with many parallel readout amplifiers to minimize transfer time.  Since the sensor to computer 
interface would no longer the bottleneck, these amplifiers can be optimized for lowest read noise at reasonable pixel 
rates. We might envision a customized Hartmann sensor CCD chip that includes on it an ASIC chip that performs 
the preprocessing in parallel and outputs centroid data at a parallel interface port.  Carrying this idea further, the 
entire Poyneer Fourier based reconstructor can be implemented on this chip, and the output would be wavefront 

   



   

phase (again at a parallel interface port).  The chip would take the parameters α and r0 of equation (2), which depend 
on seeing conditions and the brightness of the guidestar, as inputs. 
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Figure 2. The volume of turbulence above the 

2.3 Inverse tomography system 

sensors (including the tip/tilt and focus sensors) the job of the tomography system 

 

Given data from many wavefront 
is to obtain a best estimate of the delta optical paths in the volume of turbulence above the telescope and within the 
science field of view (Figure 2).  The tomography problem is represented by the undertermined set of linear 
equations 

telescope is probed by guidestar rays. 

Axy =  (3) 

re x is a vector formed of all the delta-optical path lengt

w centimeters in the transverse plane (parallel to the ground), 

that meets const

uti

e modes are well known to adaptive optics engineers. For example spurious waffle patterns associated 

whe h values within the three dimensional volume and y is a 
vector formed of all the wavefront measurement samples.  The matrix A is a special kind of matrix, which we call a 
forward-propagation matrix; it acts only to form line integrals of x through the volume. AT has a special meaning; it 
is a back-propagation matrix which would act on a y vector so as to deposit measured wavefronts at each altitude 
along lines leading back to the respective guidestars. 

A typical sampling for the x voxels would be every fe
corresponding to the finest sampling of any of the wavefront sensors, and every few kilometers in the vertical 
direction, corresponding to the altitudes resolvable by the guidestar constellation. 

There are several computational techniques for iteratively 
solving (3). The algorithms we will focus on here can be 
implemented with massive parallelization.  First of all let’s 
examine the properties of the solution to (3).  Since the equation 
is underdetermined (i.e. we assume there are many more volume 
elements than there are wavefront sensor measurements), exact 
solutions are non-unique.  Amongst the non-unique solutions we 
can chose one of our liking.  For example, the minimum norm 
solution happens to be the one whose elements have the least 
average square value.  A more preferable solution might be the 
minimum variance solution, the one constrained to solve (3) but 
otherwise was most likely given the second order statistical 
properties of x a-priori.  In any case, all the solutions along the 
constraint hyperplane Axy =  differ from each other by a value 
that is invisible to wavefront sensors, that is, 
( ) 0=− xxA .  Thus the particular choice of unique solution 

raint (3) is purely due to an a-prioi preference of 
the system implementer! Of course, all measurements have 
noise, that is, nAxy +=  where n is noise, in which case a 
minimum variance sol on might be pulled even further 
towards it’s a-priori preference by coming off the constraint 
hyperplane a bit, but only by roughly the standard deviation of 
the noise. 

The invisibl

 the 
21

with rectilinear DM actuator grids are due to the wavefront sensor’s extremely low sensitivity to this pattern.  Once 
a big problem in standard minimum norm solutions, waffling was suppressed by imposing an a-priori restraint on 
the strength of these modes in the DM command vector2. In tomography with laser guidestars, additional invisible 
modes associated with various combinations of unknown tip/tilts have been elaborated upon in the literature3. 

   



   

Iterative algorithms that solve (3) and provide one of the (user selectable) unique solutions will take the form 
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where P, N, and C are positive-definite matrices.  In the simplest form of the iteration,  is simply multiplication 
by a scalar, chosen small enough to keep the iteration stable.  In conjugate gradient iteration, the  operation is a 

first order regression with varying coefficients, the coefficients chosen such that successive steps 

( )⋅f
( )⋅f

kv∆  are 
orthogonal to all previous steps4.  Both these variations have exponential stability properties which make them 
attractive for real-time implementation. Given the strong stability properties the system will track time varying input 
data even when previous partially converged estimates are retained as the starting point when new data arrive.  With 
fixed input, y, the algorithm (4) converges to  and 0→e ( ) yNAPAPAx 1−+→ T . 

If P, N, and C are diagonal matrices, the entire algorithm (4) can be implemented in the spatial domain with massive 
parallelization over space.  The A operation is simply line integrals through the volume, which when distributed 
over space and over guidestars, takes only O(Nl) time steps where Nl equals the total number of vertical layers to be 
summed. AT is even easier since the back-propagation can distribute data to all layers and guidestars simultaneously.  
In the conjugate gradient algorithm the ( )⋅f  operation is identical and independent for all the argument vector 
elements, and so can be distributed over space.  However the coefficient determination in the conjugate gradient 
algorithm requires summing squares over space, an operation that takes O(log(m)) time-steps if hierarchical sub-
regions are summed, where m equals the total number of elements in the y vector (the number of wavefront sensor 
data points). 

We call P and N post-conditioners; they determine the nature of the solution (e.g. for a minimum variance solution 
they are the covariance of the volume delta-optical paths and the measurement noise, respectively).  We call C a pre-
conditioner; the choice of C determines only the convergence rate of the algorithm.  Ideally, , in 
which case these algorithms converge in one step.  Using a preconditioner matrix C that approximates this inverse 
(without actually having to invert this gigantic matrix!) generally reduces the number of iterations required. 

( ) 1−
+= NAPAC T

In order to approach a minimum variance solution, we cannot restrict ourselves to diagonal P and N matrices since 
we need to incorporate the fact that the delta optical paths and the noise (after slope to phase reconstruction) are 
spatially correlated.  Implementing (4) in the Fourier domain gives us this option. If the statistics of x and n are 
spatially invariant then multiplication by covariance matrices P and N can be expressed as two dimensional 
convolutions, or, as implemented in the Fourier domain, componentwise multiplication. Massive parallelization is 
now distributed over the spatial frequency domain. 

The forward-propagation operation y=Ax in Fourier space is given by 

 ( ) ( )∑ ⋅=
l
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where gθ is the angular location of guidestar g and  is the altitude of layer l. The back-propagation operation 
w=A

lh
Tv is given by 

 ( ) ( )∑ ⋅−=
g
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The combined back-propagation, post-conditioning, and forward-propagation operation, , is written TAPA
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where post-conditioning is manifested in the ( ) 3112 −κln hC  factor, where ( )ln hC 2  is the relative strength of the 
turbulence at layer l.  This operation requires the multiplication by a small Ng by Ng matrix, where Ng is the number 
of guidestars, which is performed independently at each spatial frequency κ. The preconditioner matricies, ( )κC~ , are 
similarly Ng by Ng matrices which can be easily and accurately precalculated and implemented in parallel across all 
spatial frequencies.  A slightly more complex version of (7) is obtained when the finite altitude laser guidestars form 
cone beams through the volume5.  To combine data from laser guidestar cone beams with natural guidestars’ plane 
waves, it is necessary to resample in either the spatial or the frequency domain in the implementation of A and AT.  
Resampling (using say cubic interpolation) is however also a massivly parallelizable operation since the data 
processing is limited to local clusters of points. 

We have described a Fourier domain representation of the iterative algorithm (4), which can be implemented with 
massive parallelization distributed over the spatial frequency domain and where individual processor units must 
perform Ng by Ng matrix multiplies for the general, and in particular, the minimum variance solution case. 

An important issue to clarify at this point is that a pure Fourier domain approach does not take into account the fact 
that the wavefront sensor data is valid only on a finite aperture imposed by the telescope.  It is not necessary to 
enforce  outside the aperture, as a purely Fourier domain method would do, and imposing these extra fictitious 
constraints tends to generate artifacts in the volumetric estimate and in particular in the estimates of wavefronts in 
science directions.  The remedy is to assure that our algorithm, although taking advantage of the Fourier domain for 
computational efficiency, actually behaves identical to its spatial domain counterpart.  To do this, we transform the 
residuals, e

0=y

k, back to the spatial domain, impose the aperture (a componentwise multiplication), then convert back to 
the frequency domain for the remaining steps in the iteration.  This is done once each time around the iteration loop 
so it is important to implement the 2-D fast Fourier transform (FFT) efficiently and in a massively parallel manner. 
An architecture for doing this using 1-D FFT cores within a FPGA is currently under investigation. Basically, since 
the 2-D FFT is separable into two 1-D FFTs, each row or column in a 2-D array can be independently transformed. 
The switch from rows to columns, which in ordinary computer architectures would require transposing the data, is 
accomplished in the FPGA by placing the FFT cores physically along the diagonal of the 2-D array of data voxels.  
That way each FFT core is equidistant from its associated vector of data in both dimensions.  The FFT within the 
iteration loop is applied only to data in the two dimensional sensor space, and once for each guidestar. 

A summary block diagram of the massively parallelized tomographic engine is shown in Figure 3. 
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Figure 3. Block diagram of inverse tomography calculation unit. 
 

2.4 Projection to deformable mirrors 

Once the tomography solution is found, the volume estimate must be projected onto the deformable mirrors actually 
placed in the system. 

In the MCAO case, an algorithm developed by Tokovinin, LeLouarn, and Sarazin6 determines the correction 
wavefronts that should be placed on a finite set of multi-conjugate deformable mirrors, given delta-optical path 

   



   

estimates over the volume, so as to minimize the anisoplanatic effects over a given field of view.  The algorithm is 
implemented in the Fourier domain with weighted line integrals through the volume, one per spatial frequency for 
each deformable mirror.  Since we can parallelize over DMs and over the spatial frequency domain, the operation 
takes only O(Nl) time steps, the same as only one forward projection. 

In the MOAO case we must project through the estimated atmosphere along lines leading to the science targets.  
This is accomplished in the Fourier domain in a manner similar to that for propagating guidestars: 

 ( ) ( )∑ ⋅=
l

l
hi

s hxey ls ,~~ κκ θκ  (8) 

where sθ is the angular location of the science target. This operation, parallelized over science directions (i.e. DMs) 
and over spatial frequencies will also take only O(Nl) time steps, the same as only one forward projection. 

Since the projection to DM operation takes place outside the tomography iterations, the fraction of the overall time 
spent doing it should be insignificant. 

2.5 Deformable mirror fitting 

A deformable mirror’s actuator commands aj, combined with the actuator influence function f(u), affect the shape of 
the DM surface according to 

 ( ) ( )∑ −=
j

jj auufuφ  (9) 

where u is position on the DM and uj is the location of actuator j.  The least-squares fit solution for actuator 
commands a = [aj] is the solution to the set of linear equations 

 bAa =  (10) 

where 

 ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ −=−−= uuuufuwbuuufuufuwA iijiij dandd φ  (11) 

and w(u) is the pupil window function (=1 inside the aperture, =0 outside).  Note that A is a positive definite matrix, 
so we will be able to apply the conjugate gradient algorithm directly.  With φ given on sample points, as provided by 
the tomography engine, the integrals above become sums.  Calculating the residual in an iterative algorithm 
becomes 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ][ ]∫ −−=−= uuuuufuw k
j

kk dφφAabe  (12) 

where 

 ( ) ( ) ( ) ( )∑ −=
j

k
jj

k auufuφ  (13) 

which are both simple convolutions, and so easy to implement in the Fourier domain.  The conjugate gradient 
algorithm is applied to e(k) to get the next updated estimate, a(k+1).   Since the bulk of the computations are tied up in 
the convolutions (12) and (13) we can implement the CG algorithm in the Fourier domain, except that the estimate 
φ(k) must be transformed into the spatial domain at each iteration in order to multiply by the aperture then 
transformed back.  The sums of squares needed to form the interation-varying conjugate gradient coefficients can 
just as well be calculated in either domain; they are invariant due to Parsesval’s theorem. 

   



   

All of the operations are therefore massively parallelizable, with order one clock cycle, plus the time to compute an 
FFT and inverse FFT, once per iteration.  Simulations show promising convergence rates (described in Section 3) 
therefore we expect the DM fitting step to take a negligible fraction of the total AO processing time. 

3. EXPERIMENT AND SIMULATION STUDY RESULTS 

3.1 FPGA implementation 

A small laboratory demonstration processor was constructed using a commercial FPGA development kit with a 
midrange FPGA chip.  The processor implements the simple scalar feedback gain form of (4) with P=Diag(Cn

2(hl)), 
C=Diag(1/Ng), ( ) kk eef γ= , where γ is the loop gain, and with A and AT implemented in the spatial domain.  The 
demonstrator propagates three guidestars through a four layer atmosphere, with wavefronts sampled on four 
subapertures.  A finite state machine, programmed within the gate array, controls the sequence of operations around 
the iteration loop: subtracting data from estimate to form residuals, pre-conditioning, back projection, and co-adding 
and post conditioning on the voxel grid. 

The objective of the experiment was to determine how much clock time is required for one pass through the 
algorithm.  Expanding the transverse size of the volume or the number of guidestars is accomplished by introducing 
more processors but will take no additional clock time. A very fast iteration time allows for a large number of 
iterations.  Since the number of iterations needed to converge depends both on the spatial size of the problem and the 
particulars of the algorithm, we investigated the iteration convergence rate separately with computer simulations 
described in the next subsection.  The FPGA timing tests however established the time per iteration, meeting our 
goal of <1 microsecond per iteration.  This allows for 1000 iterations per millisecond, which is a canonical data 
measurement cycle time for near infrared science adaptive optics systems.  Test results are summarized in Table 1.  

Table 1. Timing results from FPGA demonstrator experiments 

Element #Clock cycles Derived formula Comment 
Load Measured Value 12 3m Done once 
Forward Propagate 27 Ng(2Nl + 1)  
Compare 1 1  
Back Propagate 1 1  
Calculate New Estimate 7 Ng + 4  
Total (per iteration) 36  720 ns per iteration with a 50MHz clock 

 

For a 7 layer atmosphere with 9 laser guidestars, the time per iteration scales to 3 microseconds.  Refinement of the 
microcode to reduce lag times will enable a 150MHz clock rate, which is well within the range of the present FPGA 
chip’s capability.  This will achieve our 1 microsecond per iteration goal.  In addition, our initial demonstrator was 
not parallelized over guidestars (a simplifying design choice for our initial implementation), hence the scaling by Ng 
in the forward propagate and calculate new estimate steps in Table 1.  Parallelization over guidestars can be 
achieved at the expense of adding more registers but would reduce the iteration time to 420 microsec with a 50 MHz 
clock. 

The FPGA chip in the development package was 20% utilized (2996 of 15360 available logic cells employed). 
Scaling to a system with 10,000 subapertures (such as for the 30 meter telescope) would require ( ) =  
500 of these chips. Assuming that circuit boards can carry 50 chips, this equates to 10 circuit boards.  Parallelizing 
over guidestars would add another 370 chips. 

subapsl NN+1

3.2 Large spatial scale simulation 

Computer simulations are necessary to determine number of iterations required to achieve convergence on a full size 
problem.  We simulated a 7800 subaperture system (30 cm subaperture on a circular 30 meter telescope) with five 
guidestars and 7 layer atmosphere. Convergence is achieved when the line integral through the volume estimate 
differs in rms from the measured data by no more than the precision of the data.  TMT AO error budgets assign on 

   



   

the order of 40 nm rms for tomographic error in 4 micron rms wavefront conditions (tip/tilt removed). Thus a factor 
of 100 reduction in residual is required. 

We ran the simple scalar feedback gain form of (4) with P=Diag(Cn
2(hl)), C=Diag(1/Ng), ( ) kk eef γ= , where γ is the 

loop gain, and with A and AT implemented in the spatial domain, the same as in the FPGA demonstrator.  However, 
the computer simulation used 7800 subapertures per guidestar (30 cm subaperture on a circular 30 meter telescope), 
five guidestars, and a 7 layer atmosphere, making it a full sized TMT problem.   This takes about 14 ms per iteration 
in IDL on a laptop pc.  Convergence to  of initial rms was achieved in less than 700 iterations.  The relative rms 
residual after 1000 iterations was . 

210−

3102 −×

 
Figure 4. Convergence results from ten independent simulations of the iterative tomography algorithm applied to a 30 meter 
telescope AO system (7800 subapertures per guidestar, 5 guidestars, 7 layer atmosphere).  Algorithm (4) was used with fixed 
feed back gain iteration and A and AT implemented in the spatial domain. Initial atmospheric realizations were random with a 
Kolmogorov spatial power spectrum. 

 

3.3 Simulation of the DM fitting procedure 

We performed computer simulations of DM fitting procedure, (12)-(13), using non-preconditioned conjugate 
gradient, and assuming an influence function that is typical of today’s deformable mirrors (about 15% interactuator 
influence).  A DM with 8797 actuators (7854 inside the aperture and 943 in guard bands) was fit to random 
Kolmogorov phase screens on a 30 meter aperture. Two tests were performed, one where the desired wavefront was 
sampled at the same spacing as the actuator grid, and one where the desired wavefront was super sampled by a 
factor of 3. With equal sampling, the algorithm consistently converged in 3 iterations or less.  With super sampling, 
consistent convergence was attained in less than 20 iterations.  Convergence is achieved when fitting error on the 
sample grid becomes less than the theoretical fitting error as set by the actuator spacing relative to r0, or 
approximately 70 nm rms for the r0=20 cm (at 0.55 micron) cases we chose. 

4. CONCLUSIONS 
We have presented an alternative control architecture for multi-guidestar adaptive optics tomography based on 
massive parallelization of the real-time calculations. An FPGA based small-scale prototype implementation was 
constructed and evaluated in concert with computer simulations of the full size system.  Extrapolations from our 
initial test results indicate that a massively parallel processor system with on the order of a few hundred FPGA chips 
(a few 10’s of circuit boards) can serve a 7-9 guidestar AO system with 7800 subapertures per guidestar on the 30 
meter telescope at 1kHz frame rate, even using the simple scalar feedback iteration and running it completely in the 
spatial domain (i.e. very little preconditioning).  

In our ongoing work we are investigating how to implement the FFT (and sums of squares) efficiently within the 
massively parallel architecture so that a Fourier domain preconditioned conjugate algorithm can be implemented.  It 
is yet to be determined if the extra computations per cycle this entails will be compensated with a corresponding 

   



   

drop in the number of iterations needed to converge.  The FFT appears to be important in the DM fitting procedure 
as well, but may not be as time-critical there. 
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