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Stellar scintillations as a remote atmospheric
wave-front sensor
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Stellar scintillations are considered noise in adaptive-optics sensors and are measured for calibration purposes
only. We propose to use scintillations to provide direct instantaneous information about the structure of the
atmosphere. As a result it will be possible to increase the field of view provided by adaptive optics. The
scintillation pattern is created when stellar light is diffracted by high-altitude turbulence. Alternatively,
this pattern can be viewed as a Laplacian of this turbulence and can thus be inverted to estimate it. The
measurement is limited by the intensity and the angular size of the reference star, by the height distribution of
the atmospheric turbulence, and by the detector resolution and spectral response.  1996 Optical Society of
America
Adaptive-optics systems can correct only a narrow field
of view. This is because they measure the atmosphere
by integration along a cylinder or a cone extending from
the telescope aperture to the star (natural or artifi-
cial). A number of deformable mirrors could compen-
sate the phase over an extended field. To accomplish
this, one can probe a larger atmospheric volume, us-
ing a multitude of guide stars.1 – 3 The correction will
best succeed if each deformable element can be conju-
gated to an isolated turbulent layer, as suggested by
atmospheric measurements.3 – 5 Turbulence can then
be represented by a set of thin phase screens3 if the
thickness and the altitude of the layers are such that
diffraction effects within the layers are negligible.2

Recently, Angel6 proposed the use of adaptive optics
to locate planets next to bright, nearby stars. The dy-
namic range of the scheme is restricted by scintillation,
which is produced by high-altitude turbulence.7 Since
candidates for such a program are bright point sources,
their scintillation can also serve to measure the high
turbulence.8 We examine this option for adaptive op-
tics in general, as a supplement to the standard
methods.

A plane wave, originating from a point source at in-
finity, undergoes minute changes as it traverses vari-
ous thin atmospheric layers. Using either arguments
of conservation of energy and geometrical optics or Fer-
mat’s principle,9 we get a direct relationship between
scintillation and refractive-index variations. Let the
refractive index of air be nsr, zd ­ 1 1 msr, zd, where
msr, zd ,, 1 and r ­ sx, yd. The logarithm of the in-
tensity pattern at ground level sz ­ 0d is 7,9
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where = ­ ≠y≠x 1 ≠y≠y, I is a constant average
intensity, and we have assumed that the refractive-
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index perturbations sm fi 0d occur only inside L
layers. Now it is rather obvious why high-altitude
turbulence causes scintillation: because of altitude
weighing there is a lever effect, and turbulence
at 100 m will have to be 80 times stronger to have the
same effect as turbulence at 8 km. This is usually not
the case, and we can therefore disregard low-altitude
atmospheric aberrations.

The intensity and the phase of the propagating wave
front can also be related by the irradiance transport
equation,10,11 derived from Fresnel diffraction:

≠I sr, zdy≠z ­ 2=I sr, zd ? =fsr, zd 2 I sr, zd=2fsr, zd .

(2)

Roddier was able to relate this equation to curvature
sensing, as implemented by him.12 In our case the
intensity arriving from the source is constant, so =I ­
0, and we get an equivalent to relation (1).

Now we turn to a third viewpoint: direct Fresnel
diffraction. For simplicity, let us assume that the at-
mosphere is composed of two main layers, relatively
thin, one high above the telescope and the other next
to it. Phase errors are added to the cascading beams
only inside these layers, while the field undergoes Fres-
nel diffraction between them. The Fresnel approxi-
mation is valid above elevation H .. k1/3r4/3y2, where
k ­ 2pyl and r is the lateral (horizontal) distance be-
tween the scattering point and the measurement point.
This condition is fulf illed5 for r ­ 1 m, l ­ 0.5 mm,
and H .. 116 m. H can be even smaller because of
the principle of stationary phase.13

We describe a f ield of amplitude F arriving from
a star as Osrd ­ F . Passing through the top layer,
it accumulates a phase angle fsrd; it is this phase
angle that we wish to estimate. Once below the layer,
say, at altitude h, the f ield can be described as
P srd ­ Osrdexp ifsrd ­ F exp ifsrd. Then there is
free-space propagation until the top of the boundary
 1996 Optical Society of America
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layer. Here we write the f ield as a convolution of the
former f ield and a Fresnel point-spread function13:

Qsrd ­ P srdps2lhd21 expfikhs1 2 r2y2h2dg . (3)

As it traverses the turbulent boundary layer,
the f ield Qsrd accumulates an additional phase
csrd. Thus the f ield at the telescope aperture is
Rsrd ­ Qsrdexp icsrd. The intensity of this f ield is
Ssrd ­ jRsrdj2 ­ jQsrdexp icsrdj2 ­ jQsrdj2, indepen-
dent of the effects of the boundary layer. However,
the phase of the field can be written as the sum of the
phases of the two layers,5,7 arghRsrdj ­ fsrd 1 csrd.
This is the phase that one usually measures with a
wave-front sensor.

Can we benefit from this model? Instead of cali-
brating scintillation ‘‘noise’’ away, we use it as ad-
ditional information about the atmosphere. Assume
that the measured field intensity Ŝsrd is sampled
densely enough but that it is contaminated by addi-
tive detection noise. Let us take its logarithm, x̂srd ­
lnfŜsrdySg, where S is the average of the intensity
over the aperture and over many realizations. Invert-
ing the Fresnel transform [Eq. (3)] is difficult if we
have only the intensities Ssrd. Fortunately, solving
Poisson’s equation [relation (1)] is simple and robust.
Essentially, we have to integrate twice the logarithm
of the intensity f luctuations x̂srd over the telescope
aperture. Note the similarity to curvature sensing,12

albeit with worse boundary conditions. The lowest
modes are lost—piston errors are inconsequential; tip
and tilt of the top layer can be combined with atti-
tude correction for all the layers. Higher modes whose
Laplacian is zero cannot be retrieved without bound-
ary conditions,14,15 which are partially replaced here by
knowledge of the spatiotemporal spectrum of the tur-
bulence16 and of the average intensity and phase on
the outer scale. The solution to Poisson’s equation is
known to be well posed and not sensitive to variations
in ĥ, the estimated altitude of the turbulence.4

Taking the Laplacian of the wave front [relation (1)]
is equivalent to multiplication of it by a quadratic f il-
ter in the Fourier domain, Cswd ­ 21y4p2w2, where
w2 ­ u2 1 v2 is the Fourier frequency. Hence the
double integration amounts to deconvolution by the
same quadratic
numbers, one can apply a Wiener filter, W swd ­
C21swdFAswdyfC22swdFAswd 1 FN swdg, where FAswd
and FN swd are the power spectra of the atmospheric
wave fronts (at the top layer) and of the detection
noise present in the log intensity x̂srd. All these func-
tions are real and centrosymmetric. They can be ei-
ther measured and updated during observation or con-
structed from accepted models: the power spectrum
of a thin layer is5,7

FAswd ­ 6.9 3 22/3 sins5py6dG2s11y6d

3 p22r25/3
0 w211/3 3 gw211/3, (4)

where we have neglected inner- and outer-scale effects
and r0 is Fried’s parameter for the high turbu-
lence.5 Thus g ­ 0.0672k2
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`
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spectrum of the logarithm of the intensity is limi-
ted by shot noise, Flssnd ø s1.022n 2 0.967 log n 1
8.10n exp 2nd21, where n is the number of photons
corresponding to S̄. The approximation is good to 1%
down to n ­ 1 photon and slightly worse for weaker
f luxes. If the scintillation is mild, with variance
of the intensity s2 , 0.04, then, within 1% again,
FN ø s1 1 1.2s2dFls. Note that the intensity variance
can be modeled by7 s2 ø 0.077C2

nk7/6ĥ11/6. Taking
only the leading term, we have FN svd ø 1yS. Hence
we ignore the scintillation at each pixel and its co-
variance with neighboring pixels. Finally, we ignore
effects that are due to the finite telescope aperture.
Thus the Wiener f ilter will be

W swd ­ 24pSgys16p2gSw2 1 w5/3d . (5)

Utilization of scintillation is limited by several
factors:

(a) Intensity. For n photons per pixel the shot-noise
level is n1/2. It will be diff icult to detect scintillation
weaker than this level: intensity f luctuations equiva-
lent to n 6 n1/2 will yield x̂ ø x 6 n21/2. This sets the
lower bound of retrieved phase perturbations. How-
ever, detection noise is uncorrelated, whereas turbu-
lence is fractal and more predictable.16

(b) Resolution. Because of the feeble photon f lux,
the pixels in wave-front sensors tend to be larger then
r0, whereas scintillation is much finer.7 (The same
applies for temporal integration.) In this case the
phase should be solved for by optimization, under the
constraints of atmosphere and noise.

(c) Color. The Fresnel approximation is explicitly
wavelength dependent [Eq. (3)], and so is the at-
mospheric power spectrum [Eq. (4)]. Experimental
evidence is rather scant,17 so we tried a simple lab-
oratory experiment. Using a sodium lamp imaged
onto a small pinhole, we passed a well-collimated
beam through a boundary layer of air over a hot
oven. No color effects were discerned at Fresnel
distances, even under strong scintillation. If scintil-
lation varies with color, such as for observation far
from zenith, then the bandwidth must be limited.
However, sodium-layer laser guide stars possess a
narrow band and might produce scintillation when
small. One can test the validity of the method
and of the color effects can be tested by measuring
scintillation in two bands simultaneously. With
one band used to retrieve the phases, it should be
possible to predict the pattern in the second band.

(d) Source size. Planets scintillate less then
stars: our eyes average wave fronts cascading
through the atmosphere at different source directions.
The angular size of objects prone to scintillation is7

g0 ­
p

2lyph. For h ø 8 km and l ­ 0.589 mm, this
means objects smaller than g0 ­ 1.4 arcsec. Bright
asteroids and small sodium beacons are near this limit.

(e) Field of view. The corrigible wave front is
limited to the measured volume between the source and
the telescope aperture. However, a second deformable
mirror conjugate to the top layer widens the total f ield
of view.

(f) Isolation of layers. Scintillation provides infor-
mation about the top layer, and conventional wave-
front sensing provides information about the sum of
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Fig. 1. (a) Single realization of high-altitude wave fronts,
r0 ­ 10 cm. 1282 array, each element 2.5 cm. The tele-
scope aperture (3-m diameter, 1y3 obscuration) is shown
only for reference. (b) Wideband scintillation pattern at
the telescope aperture resulting from the image in (a); the
average number of photons per pixel is 100, as might be
detected from a magnitude 6 star (0.5 total eff iciency, 3-ms
integration, l ­ 550 nm, Dl ­ 300 nm). (c) Direct decon-
volution of the log-intensity image in (b): reconstructed
wave fronts using scintillation inside the aperture. (d)
Wiener deconvolution: reconstruction using models of the
atmosphere and the noise. The rms difference between
the original and the calculated wave front over the aper-
ture, with the global slope removed, was 0.77 wave for both
deconvolutions. At 1000 photons per pixel (a magnitude
3.6 star) both results were indistinguishable from the orig-
inal.

Fig. 2. Cuts across the centers of the input and resul-
tant wave fronts using direct and Wiener deconvolutions
(Fig. 1). The telescope is marked as two bars at the bot-
tom. Low and high frequencies are lost.

the two layers. A simultaneous solution for both will
reduce their covariance.

(g) Thicker layers. A thick top layer degrades the
isoplanatic angle.3 Relation (1) or (2) can be solved
iteratively for the separate contributions of sublayers.
To assess the method, we ran many blind tests: we
simulated scintillation, using Fresnel propagation, and
tried to recover the original wave fronts using inver-
sion of the Laplacian. We created fractal wave fronts16

and convolved them with the Fresnel kernel [Eq. (3)],
simulating the propagation. The resultant field was
squared to yield the intensity at the aperture plane.
The patterns were found to be independent of wave-
length. Poisson noise was applied to the result, and
only the pixels inside the aperture were taken. This
completed the simulation of scintillation (Fig. 1).

To recover the original wave front, we applied two
different deconvolutions to the normalized logarithm
of the intensity. The first was a simple inversion of
the Laplacian. Then we tried a Wiener filter [Eq. (5)]
that included the atmospheric spectrum and Poisson
noise. Figure 1 shows the results for a low f lux. At
high f lux the original wave front was reconstructed
accurately even under low turbulence. Weaker signal
resulted in loss of the lowest and highest frequencies
(Fig. 2). A second-order effect was due to the lack of
good boundary conditions when the diameter spanned
fewer than 32 pixels.

E. Ribak thanks R. Angel. Conversations with
R. Angel, R. Dekany, K. Hege, and N. Woolf were
stimulating and encouraging.
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