Maunakea & GLAO Performance Limits Mark Chun Institute for Astronomy 14 September 2014

Outline

- Statistics a quick summary
 - what measurements have been made & results
 - what we don't know
- **GLAO Performance Limits**
 - A tour of the major error terms and some implementation notes

Optical turbulence in the atmosphere

free-atmosphere

ground-layer surface-layer

Consider: in dome, surface layer, ground-layer, & free-atmosphere What we need: strength, distribution along line of sight, spatio-temporal spectrum

Some Surveys on Maunakea

	1980s NOAO Gemini Site Selection	GL	FA
[1989/2002/2005 SCIDAR/G-SCIDAR Dome	GL	FA
	2007-2008 Gemini MKGL study with SLODAR & LOLAS Chun et al 2009 MNRAS	GL	FA
[2008-2009 TMT 13N with MASS, DIMM, SODAR Schoeck et al 2009 PASP	GL	FA
[2009+ MKAM TMT MASS & DIMM	GL	FA
[2009+ CFHT OTP Dome		
[2009+ CFHT Dome DIMM Dome		
[2010 PTP (LunarShabar)	GL	
[2012 UH88/CFHT (multiple WFS experiment) Dome	GL	FA

Integrated Strength in layers above h>500m

GSCIDAR at UH88	Gemini MKGL	TMT 13N Site	MKAM (TMT
	Study	Testing	MASS)
0.42″	0.4″	0.33″	0.3″

Layers at:

1km : transitioning from E to W winds
 8-12km following the upper winds speed profile

MK compared to others

Schoeck et al. 2009 PASP

Gemini MKGL Study Pfrommer (UBC) **LunarSHABAR** mWFS Experiment Chun et al. 2009 MNRAS

D

h_{max}

 h_{gs}

Gemini MKGL Study Pfrommer (UBC) LunarSHABAR mWFS **Experiment**

PTP GL Seeing ($h_a < h < 1 \text{ km}$)

Cround In

Pfrommer 2010 UBC PhD. Thesis

The GL is mostly a surface layer+dome and not much else...

Gemini MKGL Study Pfrommer (UBC) LunarSHABAR mWFS **Experiment**

Ground, No.

Pfrommer 2010 UBC PhD. Thesis

Rene Racine's CFHT UM2013 Presentation Slide 4

t. UM 2013

Upwind, the GL is TILTED and UPLIFTED by the building.
1- GL uplift brings lower elevation, stronger optical turbulence in the line of sight.
2- GL effective or "pseudo" zenith distance < true zenith distance z at large z. A sec(z)^{0.6} correction increasingly underestimates the GL strength at large z.

Structure interactions, W wind, velocity rms (m/s)

Conce Conce Ince

CFHT IQ Study

Salmon et al 2009 and Racine 1984, 1989, 1991

CFHT OTP

mWFS

CFHT IQ Study

Salmon et al 2009 and Racine 1984, 1989, 1991

CFHT OTP

Figure 5: OTP slope covariance maps

mWFS on CFHT

Other stuff...

For older telescopes many terms in the IQ budget...

TABI	LE 4 (Salmon et al 2009) CONTRIBUTIONS	TO MEDIAN IQ
	(FWHM ["], 500 NM, ZENITH)	
Individual Com	ponents and Values	Total (arcsec)
Atmosphere	General (0.49") Ground layer (0.20")	0.55"
Local seeing	Primary mirror (0.09") Caisson (0.11") Tube (0.15") Cage (0.08") Slit (0.10") Wind (0.08") Other (dome wake?) (0.25")	0.43″
Optics	Primary mirror (0.24") MegaCam (0.08") Other optics, etc. (0.18")	0.33″
TOTAL		0.89″

Salmon et al. 2009 PASP

See

Atmosphere summary

Seeing in GL is 0.4-0.5" and all within the first 10s of meters
Seeing in FA is 0.3-0.4" and distributed throughout (layers at 1-2km, then very weak higher up)
"in-dome" seeing/IQ degradation at the older telescopes can be as large but is static or moves very slow.

Worries: MASS FA seeing and the outerscale in GL and dome

- Statistics - a quick summary

— what measurements have been made & results

— what we don't know

GLAO Performance Limits

A tour of the major error terms and some implementation notes

Gray-zone

Tokovinin 2004 PASP

"full" correction of low-alt layers depends on the field angle and r_{0,GL} or the shear of actuators over field

"partial" correction up a shear of at order a pupil.

"full" h<100m

"partial" 100m<h<600m

For MK no turbulence in gray zone \Rightarrow go wide!

Key GLAO IQ error terms

Error Term	imaka88	Comment
Uncorrected high-alt residual	400 nm rms	(D/r _{0,FA}) ^{5/3}
Tomographic Error	150 nm rms	averaging goes as (D/r _{0,FA}) ^{5/3} /N _{GS}
Pupil Distortion	90 nm rms	from simulations
Fitting Error	60 nm rms	wavefront outerscale is important
Static NCP Aberrations	50 nm rms	Most design/figure errors are NCP
Small terms	measurement error, bandwidth error, potentially atmos dispersion (NIR)	

Key GLAO IQ error terms

Error Term	imaka88	Comment	
Uncorrected high-alt residual	400 nm rms	/D / \5/3	
Tomographic Error	strometric error	budget is even /ro,FA) ^{5/3} /Ngs	
Pupil Distortion	Astronitor more cha	Ienging: trom simulations	
Fitting Error	60 nm rms	wavefront outerscale is important	
Static NCP Aberrations	50 nm rms	Most design/figure errors are NCP	
Small terms	measurement error, ba	ndwidth error, potentially atmos dispersion (NIR)	

DM Misconjugation

Misconjugation due to conjugation altitude of mirror (say an AM2)
 Misconjugation due to the tilt of the DM wrt the desired conjugate plane

SICO ID.

DM Misconjugation

Important when we go to the largest fields of view

D. Andersen (2009) using LAOS

Natural Guide Stars v. rLGS

- distribution of the GSs matters
 - 3 stars rarely make an equilateral triangle!
 - tomography helps some but does not "buy back" many fields.
- RLGS ideal less upper atm measured and no gray zone (no cone effect).

Simulations

Simulations need resolution in the GL... Maunakea (imaka sims)

8 layers in first 1000m

3 layers distributed out to 20km (RLGS sims)

imaka sims (O. Lai) include all the major terms - though pupil distortion is only the elongation/misconjugation of the DM

PSF variations may be limited by tip/tilt corrections.

AM2 v Relay

- [IQ Requirement is <u>somewhat</u> relaxed over classical AO but note NCP errors
- Pupil Quality Requirement is unchanged and <u>harder</u> to achieve. Pupil at DM over entire science field
- Std OAP relay falls apart at a few arcminutes.
- $pupil requirements \Rightarrow larger DMs$

AM2 v Relay

- An AM2 works for all but the largest fields of view...
- Feeds existing instrumentation, maximizes thruput,
- hits the large controllable error terms fitting, pupil dist, NCP errors)
- Very large fields \Rightarrow an AM1?

GLAO errors

Need to be smart about upper atm: tomography RLGS. AM2

a pathfinder for wide-field GLAO for the UH2.2m on Maunakea

Mark Chun

2014 Sept 15 CalTech GLAO Workshop

ìmaka project

- An NSF-funded testbed for wide-field GLAO on MK to develop on-sky astronomical/AO expertise in prep for GLAO on larger telescopes.
 - reuses hardware/software/expertise from around the MK AO community including UH, Subaru, Gemini, CFHT.
 - limit ourselves to natural GSs and design to do science and technical demonstrations on a limited set of "design targets"
 - Reconfigurable final focal plane and entrance FP (cal unit)
- Lab integration next year...

Major Components from other projects

Layout

Mechanical Design

- Stability and thermal changes in the alignment (IQ and distortion stability) are drivers given the overall size
- We also have a mass limitation at the back of the telescope (500# total)
- Working concept is a carbon-fiber box structure with lightweighted mirrors

Basic System Specs

AO Relay	0.4 x 0.3 deg acquisition for GS 12'x12' "Science FOV"
DM	CILAS curvature bimorph from Subaru AO36
WFSs	3-5 SHWFSs with 8x8 subap, 10 pixels/subap, 0.4″/pixel, Pupil Imaging mode
RTC	COTS PC and RoboAO s/w, 200Hz sampling
Science Cameras	STA10k H4RG-15

Example Fields

RSGC2-USNOB

M92-USNOB

Performances Estimates

- Developing error
 budgets and
 Monte-Carlo
 simulations
- Agree in FWHM~ 10%
- Detailed PSFsfrom simulations

NCP errors...

Performance Estimates

`imaka Team

- Mark Chun, Jessica Lu, Christoph Baranec, Mike Connelley (UH)
- Olivier Lai, Yutaka Hayano, Shin Oya (Subaru/NAOJ)
- Doug Toomey (Mauna Kea Infra-Red)
- Simon Thibault, Denis Brousseau (Laval)

http://www.ifa.hawaii.edu/~mchun/imaka.html

