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 Optical turbulence in the atmosphere

Consider: in dome, surface layer, ground-layer, & free-atmosphere 

What we need:
strength, distribution along line of sight, spatio-temporal spectrum

free-atmosphere
in dome

ground-layer
surface-layer
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Some Surveys on Maunakea
1980s NOAO Gemini Site Selection 

1989/2002/2005 SCIDAR/G-SCIDAR  

2007-2008 Gemini MKGL study with SLODAR & LOLAS

2008-2009 TMT 13N with MASS, DIMM, SODAR 

2009+ MKAM  TMT MASS & DIMM

2009+ CFHT OTP 

2009+ CFHT Dome DIMM

2010 PTP (LunarShabar)

2012 UH88/CFHT (multiple WFS experiment)

GL

GL

GL

GL

GL FA

FA

FA

FA

Dome

Dome

Dome GL FA

Dome

GL FA

Dome

Chun et al 2009 MNRAS

Schoeck et al 2009 PASP
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The Site
Free-

Atmosphere

Integrated Strength in layers above h>500m

Layers at:

1km : transitioning from E to W winds

8-12km following the upper winds speed profile

GSCIDAR at UH88 Gemini MKGL 
Study

TMT 13N Site 
Testing

MKAM (TMT 
MASS)

0.42” 0.4” 0.33” 0.3”
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MK compared to others
Schoeck et al. 2009 PASP

Free-

Atmosphere
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The Site
Ground-Layer

Gemini MKGL 
Study

Pfrommer 
(UBC) 
LunarSHABAR

mWFS 
Experiment
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MKGL LOLAS Profile

~0.45” GL ↔
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!

hgs

Chun et al. 2009 MNRAS
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The Site
Ground-Layer

Gemini MKGL 
Study

Pfrommer 
(UBC) 
LunarSHABAR

mWFS 
Experiment

PTP GL Seeing (ha < h < 1km)
0.15” @ 100m

0.48” @ 6m

Pfrommer 2010 UBC PhD. Thesis
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The Site
Ground-Layer

Gemini MKGL 
Study

Pfrommer 
(UBC) 
LunarSHABAR

mWFS 
Experiment

PTP GL Seeing (ha < h < 1km)
0.15” @ 100m

0.48” @ 6m

Pfrommer 2010 UBC PhD. Thesis

The GL is mostly a surface layer+dome 
and not much else...
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11

Structure interactions, W wind,
velocity rms (m/s)

Subaru to Keck wake

(when the wind is from east it’s 
the other way round…)

Konstantinos Vogiatzis
Thirty Meter Telescope

March 14, 2007
San Pedro Mártir, Baja, Mexico
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The Site
Dome Seeing

mWFS

CFHT IQ Study 
Salmon et al 2009 and 
Racine 1984, 1989, 1991

CFHT OTP
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The Site
Dome Seeing

mWFS

CFHT IQ Study 
Salmon et al 2009 and 
Racine 1984, 1989, 1991

CFHT OTP
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Dome Seeing
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Other stuff...
For older telescopes many terms in the IQ budget...

Dome Seeing
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Sunday, September 14, 2014



Atmosphere summary

Seeing in GL is 0.4-0.5” and all within the first 10s of meters

Seeing in FA is 0.3-0.4” and distributed throughout  (layers 
at 1-2km, then very weak higher up) 

“in-dome” seeing/IQ degradation at the older telescopes can 
be as large but is static or moves very slow.

Worries:  MASS FA seeing and the outerscale in GL and dome
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Gray-zone

“full” correction of low-alt layers 
depends on the field angle and r0,GL or 
the shear of actuators over field

“partial” correction up a shear of at 
order a pupil.

Tokovinin 2004 PASP

For MK no turbulence in gray zone ⇒ go wide!

imaka88 (12’ FOV) 

“full” 
h<100m

“partial” 
100m<h<600m
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Error Term imaka88 Comment

Uncorrected high-alt 
residual

Tomographic Error

Pupil Distortion

Fitting Error

Static NCP Aberrations

Small terms

400 nm rms (D/r0,FA)5/3

150 nm rms averaging goes as (D/r0,FA)5/3/NGS

90 nm rms from simulations

60 nm rms wavefront outerscale is important

50 nm rms Most design/figure errors are NCP

measurement error, bandwidth error, potentially atmos dispersion (NIR)measurement error, bandwidth error, potentially atmos dispersion (NIR)

Key GLAO IQ error terms
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Error Term imaka88 Comment

Uncorrected high-alt 
residual

Tomographic Error

Pupil Distortion

Fitting Error

Static NCP Aberrations

Small terms

400 nm rms (D/r0,FA)5/3

150 nm rms averaging goes as (D/r0,FA)5/3/NGS

90 nm rms from simulations

60 nm rms wavefront outerscale is important

50 nm rms Most design/figure errors are NCP

measurement error, bandwidth error, potentially atmos dispersion (NIR)measurement error, bandwidth error, potentially atmos dispersion (NIR)

Key GLAO IQ error terms

Astrometric error budget is even 

more challenging!
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DM Misconjugation

Misconjugation due to 
conjugation altitude of 
mirror (say an AM2)

Misconjugation due to the 
tilt of the DM wrt the 
desired conjugate plane 

side note
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DM Misconjugation
Important when we go to the largest fields of view
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         0     20     40     60     80    100   120   140   160
DM conjugation altitude (m)

0.6”

0.5”

0.4”

0.3”

R<20’
weak dome seeing

tomography included

side note
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Natural Guide Stars v. rLGS
distribution of the GSs matters

3 stars rarely make an 
equilateral triangle!

tomography helps some but 
does not “buy back” many 
fields.

RLGS ideal - less upper atm 
measured and no gray zone (no 
cone effect).
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Simulations
Simulations need resolution in the GL...

Maunakea (imaka sims)

8 layers in first 1000m

3 layers distributed out to 20km (RLGS sims)

imaka sims (O. Lai) include all the major terms - though pupil 
distortion is only the elongation/misconjugation of the DM

PSF variations may be limited by tip/tilt corrections.

Sunday, September 14, 2014



0.2         0.4         0.6         0.8         1.0
Seeing/FWHM (arcsec)

“P
ro

ba
bil

ity
”

1

0.8

0.6

0.4

0.2

0.0

IMAKA 2009
Sunday, September 14, 2014



AM2 v Relay

IQ Requirement is somewhat relaxed 
over classical AO but note NCP errors

Pupil Quality Requirement is 
unchanged and harder to achieve.  
Pupil at DM over entire science field 

Std OAP relay falls apart at a few 
arcminutes.

pupil requirements ⇒ larger DMs
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AM2 v Relay
An AM2 works for all but the 
largest fields of view...

Feeds existing instrumentation, 
maximizes thruput, 

hits the large controllable error 
terms fitting, pupil dist, NCP 
errors)

Very large fields ⇒ an AM1?
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GLAO errors

Need to be smart about upper atm:  tomography RLGS.

AM2 

reduces the large “controllable” error terms, helps 
existing instrumentation, other AO modes

brings “issues”✘

✔
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a pathfinder for 
wide-field GLAO for 

the UH2.2m on 
Maunakea

Mark Chun 

2014 Sept 15
CalTech GLAO Workshop
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`imaka project 

An NSF-funded testbed for wide-field GLAO on MK to develop 
on-sky astronomical/AO expertise in prep for GLAO  on larger 
telescopes.

reuses hardware/software/expertise from around the MK AO 
community including UH, Subaru, Gemini, CFHT.

limit ourselves to natural GSs and design to do science and 
technical demonstrations on a limited set of “design targets”  

Reconfigurable final focal plane and entrance FP (cal unit)

Lab integration next year...
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a wide-field 
GLAO pathfinder

Major Components 
from other projects

!
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a wide-field 
GLAO pathfinder

Layout

Subaru 
AO36

mWFS WFSs & RTC, 
RoboAO S/W

H4RG demo,
UH88 STA1600

0.4x0.3 deg FOV
12‘x12’ SciFOV

AO/IQ/Distortion 
CalUnit
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a wide-field 
GLAO pathfinder

Mechanical 
Design

Stability and thermal changes in the alignment (IQ and 
distortion stability) are drivers given the overall size

We also have a mass limitation at the back of the telescope 
(500# total)

Working concept is a carbon-fiber box structure with light-
weighted mirrors 
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a wide-field 
GLAO pathfinder

Basic System 
Specs

AO Relay

DM

WFSs

RTC

Science 
Cameras

0.4 x 0.3 deg acquisition for GS
12‘x12’ “Science FOV”

CILAS curvature bimorph from Subaru AO36

3-5 SHWFSs with 8x8 subap, 10 pixels/subap, 
0.4”/pixel, Pupil Imaging mode

COTS PC and RoboAO s/w, 200Hz sampling

STA10k 
H4RG-15
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a wide-field 
GLAO pathfinder

Example Fields

M92-USNOB

FldCenter: (259.2808, 43.1358)
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Note: DOES NOT account for inverted image in focal plane

RSGC2-USNOB

FldCenter: (279.8125, -6.0861)

10 5 0 -5 -10
Offset in RA (arcmin)

-10

-5

0

5

10

O
ffs

et
 in

 D
ec

 (a
rc

m
in

)

H4RG

STA10k

PS mini

18-in

16-in

14-in

12-in

R2= 11.1

11.023

R2= 10.5

 8.748

R2= 11.0

 5.696

R2= 10.0
 6.020

R2= 10.8
 6.046

R2=  8.2

10.820

R2= 10.9

11.033
R2=  9.9

 7.250

R2= 10.9

 7.832

Note: DOES NOT account for inverted image in focal plane
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a wide-field 
GLAO pathfinder

Performance 
Estimates

Developing error 
budgets and 
Monte-Carlo 
simulations

Agree in FWHM 
~ 10%

Detailed PSFs 
from simulations

NCP errors...

N.B.

imaka FWHM in SCI FOV
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a wide-field 
GLAO pathfinder

Performance 
Estimates
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`imaka Team

Mark Chun, Jessica Lu, Christoph Baranec, Mike Connelley (UH)

Olivier Lai, Yutaka Hayano, Shin Oya (Subaru/NAOJ)

Doug Toomey (Mauna Kea Infra-Red)

Simon Thibault, Denis Brousseau (Laval)

http://www.ifa.hawaii.edu/~mchun/imaka.html
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Schöck et al (2009)
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Seeing from above 13N (TMT)
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Schöck et al (2009)
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Seeing from above 13N (TMT)

Ground-Layer AO!
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