

The MilliArcSec camera (TMAS)

Astronomical Spectroscopy with Electron-Multiplied CCDs (EMCCDs)

July 28, 2015

Richard Dekany

Caltech Optical Observatories
California Institute of Technology

PALM-3000 Instruments

VERVE PRV demo? (TBD)

DARKNESS (UCSB, Summer 2016)

PHARO (Cornell, 1999)

From helescope

A LT

B by

Fig. X vc

C

C

D by

Fig. X vc

E

E

E

E

Fig. X vc

LS

To be a contact of the contact of the

Stellar Double Coronagraph (JPL, 2014)

Fiber Nuller (JPL, 2006)

SWIFT Visible IFU (Oxford, 2008)

P1640 (AMNH,2008)

TMAS (Caltech, 2012)

PALM-3000 Instruments

NASA Picture of the Day: Ganymede from the Ground - Sept 10, 2011

Credit: Damian Peach

HST Image

TMAS 1st-Light Image (Ganymede)

taken with initial sCMOS camera (an Andor NEO); September 26-27, 2012

Short-exposure image stack (S. Hildebrandt; no selection, no flatfielding)

SCMOS camera proved unusable due to variable bias and variable flat-field behavior

Hotivation for EMCCD camera

upgrade

The upgrade path...

- Over three engineering runs and 24 months, we borrowed and tested on the sky three different Andor Ultra 888 (EMCCD) camera within TMAS.
 - Unfortunately, on none of these runs was the delivered AO performance at visible wavelengths as good as for our first light run.
- In Jan 2015, we adopted a new science strategy for visible-light exoplanet science
 - Develop speckle nulling calibration schemes (D. Mawet and M. Bottom)
 - Co-mount with PHARO to enable flexible observing to exploit opportunities of exquisite AO performance (R. Jensen-Clem)
 - Enable better dark speckle data acquisition
 - Implement spectral differential imaging (SDI) to exploit H_{α} emissions, including circumstellar material, at a fine plate scale of 4 5 mas/pixel.
 - These motives prompted a rebuild of TMAS in 2015
 - Summer project for Akamai Scholar Jasmine Feliciano
- In collaboration with E. Serabyn (JPL), we also identified a longer-term solution for use of an Andor Ultra 888

The Big Change

TMAS must be reconstructed for co-mounting

Before: CAD model of TMAS on bench alone

After: CAD model of TMAS and PHARO on bench

Basic design of TMAS

TMAS summary

- We are using a commercial EMCCD camera for exoplanet direct imaging science
 - Stellar speckle calibration through SDI
 - Short exposure, very low noise
 - Speckle nulling algorithm development
 - Fast readout (relative to NIR PHARO)
 - Dark speckle development
 - Photon-counting, ease of use (relative to DARKNESS MKID's)
- TMAS will also support multipurpose fast-framing visible AO capability for synthesizing best optical spatial resolution
 - This is typically not an EM application