

Rev. 2.2

MAUNAL REV 2.1

By Galil Motion Control, Inc.

Galil Motion Control, Inc.

3750 Atherton Road
Rocklin, California 95765

Phone: (916) 626-0101
Fax: (916) 626-0102

Internet Address: support@galilmc.com
URL: www.galilmc.com

Rev 1/04

USER MANUAL

DMCWin32
Galil Windows API

Tool Kit

Page 2 DMCWin32 – Galil Windows API

OVERVIEW ..5

PROGRAMMING MODEL..6
Step 1 Register Controller ..6
Step 2 Declare Functions..6
Step 3 Open Communication ..6
Step 4 Download Program ...6
Step 5 Send Commands...6
Step 6 Close Communication ..6

VISUAL BASIC ..7
Declaration Files...7
Example 1: Sending Commands in VB ...7
Example 2: Downloading Programs in VB ..7

C/C++..9
Declaration Files.. 9
DMCCOM.H ... 9
DMCWIN.H (C++ only) ... 9
DMCMLIB.H .. 9
Linking Your Application with the Galil DLLs... 9

Example 1: Sending Commands Using DMCCOM.H ..9
Example 2: Downloading Programs using DMCCOM.H ..10
Example 3: Sending Commands Using the Class Library (C++) ..10

APPLICATION PROGRAMMING INTERFACE (DMCCOM.H) ..11
DLL API LIST FOR DMCCOM.H..11

Communication ...11
Registry..12
Binary Commands ...12
Data Record ..12
Other..12

ERROR CODES ..13
API FUNCTION DETAILS ..14

DMCAddGalilRegistry and DMCAddGalilRegistry2..14
DMCArrayDownload ..14
DMCArrayUpload...15
DMCAssignIPAddress...15
DMCBinaryCommand...15
DMCChangeInterruptNotification ..16
DMCClear ...16
DMCClose ...16
DMCCommand..16
DMCCommand_AsciiToBinary...17
DMCCommand_BinaryToAscii...17
DMCCompressFile..17
DMCCopyDataRecord ..18
DMCDeleteGalilRegistry ..18
DMCDiagnosticsOff ..18
DMCDiagnosticsOn ..18
DMCDownloadFile ...18
DMCDownloadFirmwareFile ...19
DMCDownloadFromBuffer...19
DMCEditRegistry ..19
DMCEnumGalilRegistry and DMCEnumGalilRegistry2..19
DMCError ...20

DMCWin32 – Galil Windows API Page 3

DMCFastCommand...20
DMCFile_AsciiToBinary...20
DMCFile_BinaryToAscii...20
DMCGetAdditionalResponse ..22
DMCGetAdditionalResponseLen ..22
DMCGetControllerDesc..22
DMCGetDataRecordByItemId ..22
DMCGetDataRecordConstPointer..23
DMCGetDataRecordItemOffsetById...23
DMCGetDataRecordConstPointerArray ..23
DMCGetDataRecordArray..24
DMCGetDataRecordRevision ...24
DMCGetDataRecordSize ..24
DMCGetGalilRegistryInfo and DMCGetGalilRegistryInfo2 ..24
DMCGetHandle...25
DMCGetTimeout ...25
DMCGetUnsolicitedResponse...25
DMCMasterReset ..25
DMCModifyGalilRegistry and DMCModifyGalilRegistry2..25
DMCOpen ...26
DMCOpen2 ...26
DMCReadData..26
DMCReadSpecialConversionFile ...26
DMCRefreshDataRecord ..27
DMCRegisterPnpControllers ..27
DMCReset ...27
DMCSelectController..27
DMCSendBinaryFile ...27
DMCSendCW2OnClose ..28
DMCSendFile..28
DMCSetTimeout ..28
DMCStartDeviceDriver...28
DMCStopDeviceDriver ...28
DMCUploadFile..29
DMCUploadToBuffer ..29
DMCVersion..29
DMCWaitForMotionComplete..29
DMCWriteData ...29

ADVANCED MOTION FUNCTIONS (DMCMLIB)..31
DMCELLIPSE ...31
DMCSPLINE...33
DMCSCURVE ..36
DMCHELIX..37
DMCGENERALTUNING..39
DMCAUTOTUNING..40

APPLICATION PROGRAMMING TOPICS..41
INTRODUCTION...41
DOWNLOADING PROGRAMS TO THE CONTROLLER ...41
CONFIGURING THE GALIL REGISTRY..41
INTERRUPT HANDLING ...42
DIAGNOSTICS ...43
MANAGING THE TIME-OUT...43
LOW-LEVEL I/O ...43

Page 4 DMCWin32 – Galil Windows API

MULTIPLE THREAD APPLICATIONS ..43
WAITING FOR MOTION TO COMPLETE ..43
BINARY COMMUNICATIONS ...44
DATA RECORD ACCESS..45

D..45
DMC-1700...45
DMC-1800...45
Data Record Structure...46
Data Record API Examples...47

DMCGetDataRecordByItemId ...47
DMCCopyDataRecord ...48
Advanced: DMCGetDataRecordConstPointer ...49
Advanced: DMCGetDataRecordArray (DMC-1700, 1800)...50
Advanced: QR Command (DMC-14x5/6, 18x2, 2xxx, 3xxx)..51

DISTRIBUTING YOUR APPLICATION..52
WINDOWS 98 SECOND EDITION, ME, 2000, WINDOWS XP ...52
WINDOWS NT 4.0 ..52
MICROSOFT RUN-TIME FILES ...52

DMCWin32 – Galil Windows API Page 5

Overview

This manual describes DMCWin32: the Galil Windows API (Application Programming Interface). It
include DLLs (dynamic link libraries) for developing programs on a PC to communicate with a Galil
controller as well as sample programs and utilities to help design a software interface. Any Windows
programming environment that can interface with DLLs can be used with DMCWin32, including
Microsoft Visual Basic, Microsoft Visual C++, and National Instruments LabView.

This section describes the basic requirements for programming in C, C++, and Visual Basic, along with
simple programming examples. The remaining sections document each function in the API and provide
more advanced program examples. For additional examples, refer to the source code contained in the C,
CPP and VB directories located under /DMCWIN.

The DMCWin32 DLL files are used within Windows development environments to create programs that
communicate with Galil controllers. Two libraries are included with the tool kit:

1) DMCCOM.H: This library contains the basic communication functions.

2) DMCMLIB.H: This library contains special advanced motion-related functions.

Using these DLLs, a program can send commands, upload and download programs, and check the status of
any controller in a system. Programming with the Galil DLLs is source code compatible across the
following Windows environments: 98SE, ME, NT4, 2000, and XP.

Page 6 DMCWin32 – Galil Windows API

Programming Model
No matter what platform is used to develop programs, the following model can be used as a reference. Although
there are many functions available, only a small number are needed for most programs.

Step 1 Register Controller
Before communicating with a Galil controller, it must be entered in the Galil registry. This is usually
done through the standard Galil software (SmartTerm, WSDK). This registry contains information on
each controller in the system including the type of interface and address. PCI and USB controllers use
Plug and Play to automatically enter information in the registry and all others have to be entered manually.

Step 2 Declare Functions
Before any of the functions can be used, they must be declared. Galil provides declaration files for Visual
Basic, C, and C++. See the details below for each development environment.

Step 3 Open Communication
Start a communication session with the controller using the DMCOpen function. Here, the controller
registry number is passed to the function and a handle is returned. Use this handle in all subsequent Galil
function calls.

Step 4 Download Program
To download a Galil language program (if one is required) to the controller, use the DMCDownloadFile
function. Here, a DMC program that resides on the host computer’s hard disk is downloaded into the
controller. Once downloaded, the program will run on the controller if the DMC command XQ is sent
using the DMCCommand function.

Step 5 Send Commands
To send live commands to the controller, use the DMCCommand function. Most commands can be
passed to the controller in this way. The response from the controller is returned as a string. Care should
be taken not to send commands that could cause a time out. These include trip points like AMX and AIX
and DMC commands that do not produce a response from the controller like DL. These special cases can
be handled with other functions like DMCFastCommand or DMCWriteData. See the API details for more
information.

Step 6 Close Communication
To end a communication session with the controller use the DMCClose function. This should be done at
the end of the program. If DMCClose is not called Windows will not release the handle and associated
resources provided in the DMCOpen function. When all the available handles are used Windows will
produce an error during the DMCOpen call. During program development the DMCClose function may
not be called due to crashes or aborts that cause the PC program to stop abnormally. It may be necessary
to reboot the PC to release the handles under these conditions.

DMCWin32 – Galil Windows API Page 7

Visual Basic

Declaration Files Before using the DLL functions, add the module file included in the \dmcwin\vb directory
named DMCCOM40.BAS. This module declares the functions, making them available for the VB project. To
add this file, select ‘Add Module’ from the ‘Project’ menu in VB5/6.

Example 1: Sending Commands in VB
Most commands are sent to the controller with the DMCCommand function. This function allows any Galil
command to be sent from VB to the controller. The DMCCommand function will return the response from the
controller in a string. Before sending any commands, the DMCCOpen function must be called. This function
establishes communication with the controller and is called only once.

The following code illustrates the use of DMCOpen and DMCCommand. Here, the controller is sent the command
TPX when a Command Button is pressed. The response is placed in a text box. To use this example, start a new
Visual Basic project, place a Text Box and a Command Button on a Form, add the DMCCOM40.BAS module, and
type the following code:

Dim Controller As Integer
Dim hDmc As Long
Dim RC As Long
Dim ResponseLength As Long
Dim Response As String * 256

Private Sub Command1_Click()
 RC = DMCCommand(hDmc, "TPX", Response, ResponseLength)
 Text1.Text = Val(Response)
End Sub

Private Sub Form_Load()
 ResponseLength = 256
 Controller = 1 RC = DMCOpen(Controller, 0, hDmc)
End Sub

Private Sub Form_Unload(Cancel As Integer)
 RC = DMCClose(hDmc)
End Sub

Where: ‘Controller’ is the number for the controller in the registry

‘hDmc’ is the Windows handle used to identify the controller. It is returned by DMCOpen.
 ‘RC’ is the return code for the function
 ‘ResponseLength’ is the response string length must be set to the size of the response string

‘Response’ is the string containing the controller response to the command

Example 2: Downloading Programs in VB
To download a program to the controller, use either DMCDownloadFile or DMCDownloadFromBuffer. Once the
file is downloaded to the controller, send the XQ command to start the program. The following example downloads
a simple program to the controller and executes it. The code is intended to be executed from within a Visual Basic
Module and does not require a Form to execute.

Dim Controller As Integer
Dim hDmc As Long
Dim RC As Long
Dim ResponseLength As Long
Dim Response As String * 256
Dim Buffer As String

Private Sub Main()

 ResponseLength = 256
 Controller = 1
 Buffer = "#A;PR1000;BGX;AMX;EN"

Page 8 DMCWin32 – Galil Windows API

 RC = DMCOpen(Controller, 0, hDmc)
 RC = DMCDownloadFromBuffer(hDmc, Buffer, "")
 RC = DMCCommand(hDmc, "XQ", Response, ResponseLength)
 RC = DMCClose(hDmc)
 End

End Sub

Note: See the DLL function descriptions later in this manual for more functions.

DMCWin32 – Galil Windows API Page 9

C/C++
The DLL functions can be used as included functions or through a class library.

Declaration Files

DMCCOM.H
All Galil communications programs written in C must include the DMCCOM.H file. This allows a program to
access the DLL functions through the declared function calls. The DMCCOM.H header file is located in the
\dmcwin\include directory.

DMCWIN.H (C++ only)
C++ programs can use the DMCCOM.H functions or use the class library defined in DMCWIN.H.
C++ programs that use the class library need the files DMCWIN.H and DMCWIN.CPP, which contain the class
definitions and implementations respectively. These can be found in the \dmcwin\cpp directory.

DMCMLIB.H
These advanced motion functions are not available as a C++ class library and are independent from the DMCCOM
functions. To use, include the file DMCMLIB.H located in the \dmcwin\include directory.

Linking Your Application with the Galil DLLs
To use the functions in DMCCOM.H, link your application with dmc32.lib. To use the functions in DMCMLIB.H,
link your application with DMCMLIB.lib. These library (.lib) files can be found in the \dmcwin\lib directory.

Example 1: Sending Commands Using DMCCOM.H
To initiate communication, declare a variable of type HANDLEDMC (a long integer) and pass the address of that
variable in the DMCOpen function. If the DMCOpen function is successful, the variable will contain the handle to
the Galil controller which is required for all subsequent function calls. The following simple example program
written as a Visual C++ console application tells the controller to move the X axis 1000 encoder counts. Remember
to add DMC32.LIB to your project prior to compiling.

#include <windows.h>
#include <dmccom.h>

long rc;
HANDLEDMC hDmc;
HWND hWnd;

int main(void)
{

// Connect to controller number 1
rc = DMCOpen(1, hWnd, &hDmc);
if (rc == DMCNOERROR)
{
 char szBuffer[64];
 // Move the X axis 1000 counts
 rc = DMCCommand(hDmc, "PR1000;BGX;", szBuffer, sizeof(szBuffer));

 // Disconnect from controller number 1 as the last action
 rc = DMCClose(hDmc);
}

 return 0;
 }

Page 10 DMCWin32 – Galil Windows API

Example 2: Downloading Programs using DMCCOM.H
The following example downloads a file from the hard drive using DMCDownloadFile() and executes it by sending
the command XQ.

Note: Files can also be downloaded from a buffer by using DMCDownloadFromBuffer().

long rc;
HANDLEDMC hDmc;
HWND hWnd;
char szBuffer[64];
char filename[] = “c:\\dmcwin\\yourfile.dmc”;

int main(void)
{

// Connect to controller number 1
rc = DMCOpen(1, hWnd, &hDmc);
//Download file
rc = DMCDownloadFile(hDmc, filename, NULL);
//Start program on controller at label ‘A’
rc = DMCCommand(hDmc, “XQ#A”, szBuffer, sizeof(szBuffer));

//Close communication
rc = DMCClose(hDmc);

return 0;

 }

In this example the label was set to NULL, causing the existing program to be overwritten. If a label is used in
place of NULL, the DMCDownloadFile will try to find that label within the program already present on the
controller and start the download from there. A “#” will append the program to the existing program.

Note: All existing programs must be halted before an upload or download occurs.

Example 3: Sending Commands Using the Class Library (C++)
Most of the API functions are available in the class library. An object of type CDMCWin is declared which allows
access to the class functions. When the class constructor is called, the communication channel is opened. To send
commands, use the .command() function. Unlike the function calls using DMCCOM.H, the handle does not need
to be passed to all subsequent class calls. Make sure to call the .close() function before ending the program so
Windows can release the handle.

This example tells the controller to start jogging the Y axis at 10000 counts per second:

CDMCWin controller(1, hWnd, 0);
controller.Command(“JG ,10000; BGY”, szBuffer, sizeof(sxBuffer));

DMCWin32 – Galil Windows API Page 11

Application Programming Interface
(DMCCOM.H)

DLL API List for DMCCOM.H
The following DLL functions are available with the DMCCOM.H header file. For more information see the
detailed descriptions later in this manual.

Communication
DMCOpen Open communications with interrupt support Page 26
DMCOpen2 Open communications with interrupt support Page 26
DMCClose Close communications Page 16
DMCSendCW2OnClose Clears most significant bit of unsolicited messages Page 28
DMCCommand Send a command Page 16
DMCFastCommand Send special commands Page 20
DMCArrayDownload Download an array Page 14
DMCArrayUpload Upload an array Page 15
DMCDownloadFile Download a file from hard disk Page 18
DMCUploadFile Upload file to hard disk Page 29
DMCCompressFile Compress a Galil language program file Page 17
DMCDownloadFromBuffer Download file from buffer Page 19
DMCUploadToBuffer Upload file to buffer Page 29
DMCSendFile Send a file Page 28
DMCDownloadFirmwareFile Download Firmware Page 19
DMCGetAdditionalResponse Read long response Page 22
DMCGetAdditionalResponseLen Read long response length Page 22
DMCGetUnsolicitedResponse Read card messages Page 25
DMCReadData Low level read function Page 26
DMCWriteData Low level write function Page 29
DMCClear Clear FIFO Page 16
DMCGetTimeout Return the current timeout Page 25
DMCSetTimeout Set timeout Page 28
DMCWaitForMotionComplete Wait for motion complete Page 29
DMCMasterReset Master reset controller Page 25
DMCReset Reset controller Page 27
DMCVersion Get firmware version Page 29

Page 12 DMCWin32 – Galil Windows API

Registry
DMCAddGalilRegistry and
DMCAddGalilRegistry2

Add a controller to the registry Page 14

DMCDeleteGalilRegistry Delete a controller from registry Page 18
DMCEditRegistry Registry Dialog (Requires DMCReg.ocx) Page 19
DMCEnumGalilRegistry and
DMCEnumGalilRegistry2

Read entire registry Page 19

DMCGetGalilRegistryInfo and
DMCGetGalilRegistryInfo2

Read registry for one controller Page 24

DMCModifyGalilRegistry and
DMCModifyGalilRegistry2

Modify a registry entry Page 25

DMCRegisterPnpControllers Update registry for PNP controllers (OBSOLETE) Page 27
DMCGetControllerDesc Get a description of the controller from the registry Page 22

Binary Commands
DMCBinaryCommand Send binary command Page 15
DMCCommand_AsciiToBinary Convert ASCII command to binary Page 17
DMCCommand_BinaryToAscii Convert a binary command to ASCII Page 17
DMCFile_AsciiToBinary Convert file of ASCII commands to binary Page 20
DMCFile_BinaryToAscii Convert file of binary commands to ASCII Page 20
DMCReadSpecialConversionFile Special conversion file Page 26
DMCSendBinaryFile Send a binary file Page 27

Data Record
DMCRefreshDataRecord Request a new data record Page 27
DMCGetDataRecordByItemId Return part of the data record (preferred method) Page 22
DMCGetDataRecordItemOffsetById Get data record item offset Page 23
DMCGetDataRecordConstPointer Get pointer to data record Page 23
DMCGetDataRecordRevision Get version of record Page 24
DMCGetDataRecordArray Return all cached data record (1700, 1800 only) Page 24
DMCGetDataRecordConstPointerArray Return a const pointer to all cached data records

(1700, 1800 only)
Page 23

DMCCopyDataRecord Copy data record into a structure Page 18
DMCGetDataRecordSize Returns number of bytes in data record Page 24

Other
DMCChangeInterruptNotification Notify for interrupt by handle or thread Page 16
DMCDiagnosticsOff Stop diagnostics Page 18
DMCDiagnosticsOn Start diagnostic file Page 18
DMCError Read error message Page 20
DMCGetHandle Return the controller handle Page 25
DMCSelectController Selection Dialog Page 27
DMCStartDeviceDriver Starts Galil device driver (NT4 only) Page 28
DMCStopDeviceDriver Stops Galil device driver (NT4 only) Page 28
DMCAssignIPAddress Assign the IP Address to an Ethernet controller Page 15

DMCWin32 – Galil Windows API Page 13

Error Codes
All functions return an error code. If the function returned DMCNOERROR (0), the function completed
successfully. An error code less than 0 is a local error (see the error codes above). An error code greater than 0 is
an Win32 API error (32-bit DLLs). These are documented in the Win32 Programming Reference.

0 DMCNOERROR No error occurred.
 DMCERROR_TIMEOUT A time-out occurred while waiting for a response from the Galil

controller.
-2 DMCERROR_COMMAND There was an error with the command sent to the Galil controller. The

full message depends on the error code returned from the Galil
controller.

-3 DMCERROR_CONTROLLER The Galil controller could not be found in Windows registry.
-4 DMCERROR_FILE File could not be opened. This error usually occurs when the file name

is invalid or the file can not be found.
-5 DMCERROR_DRIVER Device driver could not be opened, or a read or write error occurred.
-6 DMCERROR_HANDLE Invalid Galil controller handle. This error will occur if you try to

communicate with the Galil controller without first calling DMCOpen.
-7 DMCERROR_HMODULE Support dynamic link library could not be loaded. This error will occur

if DMCBUS16.DLL or DMCBUS32.DLL can not be found for bus
controllers and if DMCSER16.DLL or DMCSER32.DLL can not be
found for serial controllers.

-8 DMCERROR_MEMORY Out of memory.
-9 DMCERROR_BUFFERFULL Response from the controller was larger than the response buffer

supplied. The user-supplied buffer for DMCCommand was too small
to fit the complete response from the Galil controller. You can call
DMCGetAdditionalResponseLen to find out how much data is left to
retrieve and then call DMCGetAdditionalResponse to retrieve the
additional response data.

-10 DMCERROR_RESPONSEDATA Response from the controller overflowed the internal additional
response buffer. The response from the Galil controller was so large
that it overflowed both the user-supplied buffer and the internal
additional response buffer. You must increase the size of the user-
supplied buffer.

-11 DMCERROR_DMA Could not communicate with DMA channel.
-12 DMCERROR_ARGUMENT One or more required arguments to a DMC API function call was

NULL.
-13 DMCERROR_DATARECORD Could not access data record.
-14 DMCERROR_DOWNLOAD File download failed. The problem is most likely a file that has too

many lines or one or more lines which exceed the line length restriction.
-15 DMCERROR_FIRMWARE Could not update the controller's firmware.
-16 DMCERROR_CONVERSION Could not convert the DMC command (ASCII to binary or binary to

ASCII).
-17 DMCERROR_REGISTRY Could not access or modify the controller's registry information. You

need to log-on to Windows (Windows NT that is) with Administrator
privileges.

-18 DMCERROR_RESOURCE Windows reports a resource conflict with the current hardware
configuration. This error could occur if you tried to manually assign
resources to a Galil plug-and-play controller.

-19 DMCERROR_BUSY Could not write to the controller because it is currently busy. You may
need to set the time-out value higher because the previous command is
taking longer to process by the controller than expected.

Page 14 DMCWin32 – Galil Windows API

-20 DMCERROR_DEVICE_
DISCONNECTED

A Windows plug-and-play controller, such as one which communicates
through USB, was disconnected from the system. You must close the
handle to the controller (using DMCClose) as soon as possible.

-21 DMCERROR_TIMEING_ERROR

Data is not being transferred to controller fast enough to maintain time
synchronization.

-22 DMCERROR_WRITEBUFFER_
TOO_LARGE

The user supplied buffer is too large. Must be < 1024 bytes.

-23 DMCERROR_NO_MODIFY_
PNP_CONTROLLER

Registry modification of PnP controllers is not allowed.

-24 DMCERROR_FUNCTION_
OBSOLETE

This function is obsolete.

-25 DMCERROR_STREAMING_
COMMAND_IN_PROGRESS

A different process is using a streaming command(LS,UL,ED,QD,QU).
Try the DMCCommand or DMCWriteData function again later.

-26 DMCERROR_DEVICEDRIVER_
VERSION_TOO_OLD

The device driver needed to communicate with the selected controller is
too old for this communication dll.

-27 DMCERROR_STREAMING_CO
MMAND_MUST_BE_SOLITARY

Streaming commands (LS, UL, ED, QD, QU) cannot be mixed with
other commands on the command line.

API Function Details
The following section provides detailed descriptions of each DMCCOM command. For each command listed, a C
function prototype is provided, along with descriptions of each parameter.

Syntax varies for Visual Basic and C++; you can compare the syntax differences by looking at the
DMCCOM40.BAS for Visual Basic and DMCWIN.CPP for C++.

DMCAddGalilRegistry and DMCAddGalilRegistry2
LONG FAR GALILCALL DMCAddGalilRegistry(PGALILREGISTRY pgalilregistry, PUSHORT pusController);

LONG FAR GALILCALL DMCAddGalilRegistry2(PGALILREGISTRY2 pgalilregistry2, PUSHORT pusController);

Add a Galil controller to the Windows registry. The controller number is returned in the argument pusController.
The DMCAddGalilRegistry2 function is a replacement for DMCAddGalilRegistry.
pgalilregistry/pgalilregistry2 Pointer to a GALILREGISTRY or GALILREGISTRY2 struct.
pusController Pointer to an unsigned short that will receive the Galil controller number.

DMCArrayDownload
LONG FAR GALILCALL DMCArrayDownload(HANDLEDMC hdmc, PSZ pszArrayName, USHORT usFirstElement,

USHORT usLastElement, PCHAR pchData, ULONG cbData, PULONG cbBytesWritten);

Download an array to the Galil controller. The array must already exist in the controller. Array data can be
delimited by a comma or CR (0x0D) or CR/LF (0x0D0A).

Note: The firmware on the controller must be recent enough to support the QD command.

hdmc Handle to the Galil controller.
pszArrayName Array name to download to the Galil controller.
usFirstElement First array element.
usLastElement Last array element.
pchData Buffer to write the array data from. Data does not need to be NULL

terminated.
cbData Length of the array data in the buffer.

DMCWin32 – Galil Windows API Page 15

cbBytesWritten Number of bytes written.

DMCArrayUpload
LONG FAR GALILCALL DMCArrayUpload(HANDLEDMC hdmc, PSZ pszArrayName, USHORT usFirstElement,
 USHORT usLastElement, PCHAR pchData, ULONG cbData, PULONG pulBytesRead, SHORT fComma);

Upload an array from the Galil controller to the PC. The array must exist on the controller. Array data will be
delimited by a comma or CR (0x0D) depending of the value of fComma.

Note: The firmware on the controller must be recent enough to support the QU command.

hdmc Handle to the Galil controller.
pszArrayName Array name to upload from the Galil controller.
usFirstElement First array element.
usLastElement Last array element.
pchData Buffer to read the array data into. Array data will not be NULL terminated.
cbData Length of the buffer.
pulBytesRead Number of bytes read.
fComma 1 comma delimited, 0 carriage return

DMCAssignIPAddress
LONG FAR GALILCALL DMCAssignIPAddress(HWND hWnd, PGALILREGISTRY2 pgalilregistry2);

Assign an IP Address to an Ethernet controller. The controller must be in BOOTP broadcast mode.

Note: This function is for Ethernet controllers only.

hwnd The window handle of the calling application. If NULL, the window with the

current input focus is used.
szIPAddress The IP address as a string. Example: "160.35.50.1".

DMCBinaryCommand
LONG FAR GALILCALL DMCBinaryCommand(HANDLEDMC hdmc, PBYTE pbCommand, ULONG ulCommandLength,
 PCHAR pchResponse, ULONG cbResponse);

Send a DMC command in binary format to the Galil controller. Most commands have a binary equivalent that will
be processed faster by the controller.

Note: This function is for Optima Series controllers only.

hdmc Handle to the Galil controller.
pbCommand The command to send to the Galil controller in binary format.
ulCommandLength The length of the command (binary commands are not null-terminated).
pchResponse Buffer to receive the response data. If the buffer is too small to receive all the

response data from the controller, the error code
DMCERROR_BUFFERFULL will be returned. The user may get additional
response data by calling the function DMCGetAdditionalResponse. The
length of the additional response data may ascertained by call the function
DMCGetAdditionalResponseLen. If the response data from the controller is
too large for the internal additional response buffer, the error code
DMCERROR_RESPONSEDATA will be returned.

cbResponse Length of the buffer.

Page 16 DMCWin32 – Galil Windows API

DMCChangeInterruptNotification
LONG FAR GALILCALL DMCChangeInterruptNotification(HANDLEDMC hdmc, LONG lHandle);

Change the window handle used in DMCOpen or the thread ID used in DMCOpen2. This value is for notification
of interrupts.

hdmc Handle to the Galil controller.
lHandle New window handle or thread ID.

DMCClear
LONG FAR GALILCALL DMCClear(HANDLEDMC hdmc);

Clear the Galil controller FIFOs.

hdmc Handle to the Galil controller.

DMCClose
LONG FAR GALILCALL DMCClose(HANDLEDMC hdmc);

Close communications with the Galil controller. Failing to call DMCClose can result in memory leaks.

hdmc Handle to the Galil controller.

DMCCommand
LONG FAR GALILCALL DMCCommand(HANDLEDMC hdmc, PSZ pszCommand, PCHAR chResponse,
 ULONG cbResponse);

Send a DMC command in ASCII format to the Galil controller.

Note: This function can only send commands or groups of commands up to 1024 bytes long.

hdmc Handle to the Galil controller.
pszCommand The command to send to the Galil controller.
pchResponse Buffer to receive the response data. If the buffer is too small to receive all the

response data from the controller, the error code
DMCERROR_BUFFERFULL will be returned. The user may get additional
response data by calling the function DMCGetAdditionalResponse. The
length of the additional response data may ascertained by call the function
DMCGetAdditionalResponseLen. If the response data from the controller is
too large for the internal additional response buffer, the error code
DMCERROR_RESPONSEDATA will be returned.

cbResponse Length of the buffer.

DMCWin32 – Galil Windows API Page 17

DMCCommand_AsciiToBinary
LONG FAR GALILCALL DMCCommand_AsciiToBinary(HANDLEDMC hdmc, PSZ pszAsciiCommand,
 ULONG ulAsciiCommandLength, PBYTE pbBinaryResult, ULONG cbBinaryResult,
 ULONG FAR *pulBinaryResultLength);

Convert an ASCII DMC command to a binary DMC command.

Note: This function is for the optima series controllers only.

hdmc Handle to the Galil controller.
pszAsciiCommand ASCII DMC command(s) to be converted.
ulAsciiCommandLength Length of DMC command(s).
pbBinaryResult Buffer to receive the translated DMC command.
cbBinaryResult Length of the buffer.
pulBinaryResultLength Length of the translated DMC command.

DMCCommand_BinaryToAscii
LONG FAR GALILCALL DMCCommand_BinaryToAscii(HANDLEDMC hdmc, PBYTE pbBinaryCommand,
 LONG ulBinaryCommandLength, PSZ pszAsciiResult, ULONG cbAsciiResult,
 ULONG FAR *pulAsciiResultLength);

Convert a binary DMC command to an ASCII DMC command.

Note: This function is for the optima series controllers only.

Hdmc Handle to the Galil controller.
pbBinaryCommand Binary DMC command(s) to be converted.
ulBinaryCommandLength Length of DMC command(s).
pszAsciiResult Buffer to receive the translated DMC command.
cbAsciiResult Length of the buffer.
pulAsciiResultLength Length of the translated DMC command.

DMCCompressFile
LONG FAR GALILCALL DMCCompressFile(PSZ pszInputFileName, PSZ pszOutputFileName,

 USHORT usLineWidth, PUSHORT pusLineCount);

Compress a DMC file so that program space in the controller is fully utilized. Lines are put together whenever
possible to make more lines available. Leading and trailing spaces are removed as well.

pszInputFileName The name of the DMC file to compress.
pszOutputFileName The name of the resulting compressed DMC file.
usLineWidth The maximum line width. For most controllers, this value is either 40 or 80.
pusLineCount The line count of the resulting compressed DMC file is returned on output.

Output Only.

Page 18 DMCWin32 – Galil Windows API

DMCCopyDataRecord
LONG FAR GALILCALL DMCCopyDataRecord(HANDLEDMC hdmc, PVOID pDataRecord);

Get a copy of the data record used for fast polling. The data record is only as recent as the last call made to
DMCRefreshDataRecord.

hdmc Handle to the Galil controller.
pDataRecord A copy of the data record is returned on output. Output Only.

DMCDeleteGalilRegistry
LONG FAR GALILCALL DMCDeleteGalilRegistry(SHORT sController);

Delete a Galil controller in the Windows registry. If a Plug-and-Play controller (USB or PCI) is deleted, the
computer must be rebooted to recover the controller in the registry.

sController Galil controller number. Use -1 to delete all Galil controllers.

DMCDiagnosticsOff
LONG FAR GALILCALL DMCDiagnosticsOff(HANDLEDMC hdmc);

Turn off diagnostics log.

hdmc Handle to the Galil controller.

DMCDiagnosticsOn
LONG FAR GALILCALL DMCDiagnosticsOn(HANDLEDMC hdmc, PSZ pszFileName, BOOL fAppend);

Turn on diagnostics to log all communications to the controller.

hdmc Handle to the Galil controller.
pszFileName File name for the diagnostic file.
fAppend TRUE if the file will open for append, otherwise FALSE.

DMCDownloadFile
LONG FAR GALILCALL DMCDownloadFile(HANDLEDMC hdmc, PSZ pszFileName, PSZ pszLabel);

Download a Galil-language application program to the controller from a file on the hard drive.

hdmc Handle to the Galil controller.
pszFileName Name of file to download to the Galil controller.
pszLabel Program label at which to insert the contents of pszFileName. The

application program in the controller will be overwritten from this label on.
Passing NULL causes the entire application program in the controller to be
overwritten.

DMCWin32 – Galil Windows API Page 19

DMCDownloadFirmwareFile
LONG FAR GALILCALL DMCDownloadFirmwareFile(HANDLEDMC hdmc, PSZ pszFileName,

 SHORT fDisplayDialog);

Update the controller's firmware. This function will open a binary firmware file and write new firmware to the flash
EEPROM of the controller.

Note: This function is for the DMC-1200, DMC-14x5, DMC-1600, DMC-1700, DMC-1800, DMC-18x2, DMC-
2000, DMC-2100, DMC-2200, DMC-21x2/3, and DMC-34x5 only.

hdmc Handle to the Galil controller.
pszFileName File name to download to the Galil controller.
fDisplayDialog Display a progress dialog while the firmware file is being downloaded.

DMCDownloadFromBuffer
LONG FAR GALILCALL DMCDownloadFromBuffer(HANDLEDMC hdmc, PSZ pszBuffer, PSZ pszLabel);

Download a Galil-language application program from a memory buffer to the Galil controller.

hdmc Handle to the Galil controller.
pszBuffer String of DMC commands to download to the Galil controller.
pszLabel Program label at which to insert the contents of pszBuffer. The application

program in the controller will be overwritten from this label on. Passing
NULL causes the entire application program in the controller to be
overwritten.

DMCEditRegistry
VOID FAR GALILCALL DMCEditRegistry(HWND hwnd);

Edit the Windows registry: add, change, or delete Galil motion controllers. This function requires the Galil
ActiveX control DMCReg.ocx to be installed and registered on the PC.

Note: This function invokes a dialog window.

hwnd The window handle of the calling application. If NULL, the window with the

input focus is used.

DMCEnumGalilRegistry and DMCEnumGalilRegistry2
LONG FAR GALILCALL DMCEnumGalilRegistry(USHORT FAR* pusCount, PGALILREGISTRY pgalilregistry);

LONG FAR GALILCALL DMCEnumGalilRegistry2(USHORT FAR* pusCount, PGALILREGISTRY2 pgalilregistry2);

Enumerate or list all the Galil controllers in the Windows registry. The user needs to make two calls to this
function. The first call should have a NULL for the argument pgalilregistry. The number of GALILREGISTRY
structs (number of Galil controllers in the Windows registry) will be returned in the argument pusCount. The
second call should have sufficient memory allocated for all the GALILREGISTRY structs to be returned and pass
the pointer to that memory as the argument pgalilregistry. It is the users responsibility to allocate and free memory
to hold the GALILREGISTRY structs. The DMCEnumGalilRegistry2 function is a replacement for
DMCEnumGalilRegistry.

pusCount Pointer to the number of GALILREGISTRY structs returned.

Page 20 DMCWin32 – Galil Windows API

pgalilregistry/pgalilregistry2 Pointer to a GALILREGISTRY or GALILREGISTRY2 struct.

DMCError
LONG FAR GALILCALL DMCError(HANDLEDMC hdmc, LONG lError, PCHAR pchMessage, LONG cbMessage);

Retrieve the error description for an error code when a Galil API function does not return DMCNOERROR.

hdmc Handle to the Galil controller.
pchMessage Buffer to receive the error message text.
cbMessage Length of the buffer.

DMCFastCommand
LONG FAR GALILCALL DMCFastCommand(HANDLEDMC hdmc, PSZ pszCommand);

Send a DMC command in ASCII format to the Galil controller and do not wait for a response. Use this function
with caution because command responses will not be removed from the controller’s output. In some applications it
may be necessary to first send the Galil command CW,1 to allow the controller to continue program execution when
the controller’s output FIFO is full.

Use this function for Galil commands which do not return an acknowledgment from the controller such as providing
data for the DL and QD commands.

Note: This function can only send commands or groups of commands up to 1024 bytes long.

hdmc Handle to the Galil controller.
pszCommand The command to send to the Galil controller.

DMCFile_AsciiToBinary
LONG FAR GALILCALL DMCFile_AsciiToBinary(HANDLEDMC hdmc, PSZ pszInputFileName,
 PSZ pszOutputFileName);

Convert a file consisting of ASCII commands to a file consisting of binary commands.

Note: This function is for the optima series controllers only.

hdmc Not used.
pszInputFileName File name for the input ASCII file.
pszOutputFileName File name for the output binary file.

DMCFile_BinaryToAscii
LONG FAR GALILCALL DMCFile_BinaryToAscii(HANDLEDMC hdmc, PSZ pszInputFileName,
 PSZ pszOutputFileName);

Convert a file consisting of binary commands to a file consisting of ASCII commands.

Note: This function is for the optima series controllers only.

hdmc Not used.
pszInputFileName File name for the input binary file.
pszOutputFileName File name for the output ASCII file.

DMCWin32 – Galil Windows API Page 21

Page 22 DMCWin32 – Galil Windows API

DMCGetAdditionalResponse
LONG FAR GALILCALL DMCGetAdditionalResponse(HANDLEDMC hdmc, PCHAR pchResponse, ULONG cbResponse);

Query the Galil controller for more response data. There will be more response data available if the DMCCommand
function returned DMCERROR_BUFFERFULL. Once this function is called, the internal additional response
buffer is cleared.

hdmc Handle to the Galil controller.
pchResponse Buffer to receive the response data.
cbResponse Length of the buffer.

DMCGetAdditionalResponseLen
LONG FAR GALILCALL DMCGetAdditionalResponseLen(HANDLEDMC hdmc, PULONG pulResponseLen);

Query the Galil controller for the length of additional response data. There will be more response data available if
the DMCCommand function returned DMCERROR_BUFFERFULL.

hdmc Handle to the Galil controller.
pulResponseLen Buffer to receive the additional response data length.

DMCGetControllerDesc
LONG FAR GALILCALL DMCGetControllerDesc(USHORT usController, PSZ pszControllerDesc,
 ULONG cbControllerDesc);

Get a text description of the controller from the registry.

usController Galil controller number.
pszControllerDesc Buffer to receive the controller description. Output only.
cbControllerDesc Length of the buffer.

DMCGetDataRecordByItemId
LONG FAR GALILCALL DMCGetDataRecordByItemId(HANDLEDMC hdmc, USHORT usItemId, USHORT usAxisId, PUSHORT

pusDataType, PLONG plData);

Get a data item from the data record. Gets one item from the data record by using a predefined ID (see data record
IDs defined in DMCDRC.H). To retrieve data record items by offset instead of ID, use the function
DMCGetDataRecord.

hdmc Handle to the Galil controller.
usItemId Data record item ID.
usAxisId Axis ID used for axis data items.
pusDataType Data type of the data item. The data type of the data item is returned on output.

Output Only.
plData Buffer to receive the data record data. Output only.

DMCWin32 – Galil Windows API Page 23

DMCGetDataRecordConstPointer
LONG FAR GALILCALL DMCGetDataRecordConstPointer(HANDLEDMC hdmc, const char **pchDataRecord);

Get a const pointer to the data record. Using this method to access the information in the data record eliminates the
copying necessary with DMCCopyDataRecord. Additional const pointers can be created to individual data items
by using DMCGetDataRecordItemOfsetById(). These two functions allow a one-time setup. Then, all that is
required to access information in the data record is to call DMCRefreshDataRecord() and then dereference the
desired pointer into the data record.

hdmc Handle to the Galil controller.
pchDataRecord Pointer to a const pointer to the data record.

DMCGetDataRecordItemOffsetById

LONG FAR GALILCALL DMCGetDataRecordItemOffsetById(HANDLEDMC hdmc, USHORT usItemId,

USHORT usAxisId, LPUSHORT pusOffset, LPUSHORT pusDataType);

Get the total offset for a data item by data item ID (see data record IDs defined in DMCDRC.H). The returned offset
and data type can then be used to extract a value from the data record pointer retrieved using
DMCGetDataRecordConstPointer.

hdmc Handle to the Galil controller.
usItemId Data record item Id.
usAxisId Axis Id used for axis data items.
pusOffset Total offset (number of bytes) from the beginning of the data record to the data

item. Output Only.
pusDataType Data type of the data item. The data type of the data item is returned on output.

Output Only.

DMCGetDataRecordConstPointerArray
LONG FAR GALILCALL DMCGetDataRecordConstPointerArray(HANDLEDMC hdmc, const char **pchDataRecord,

LPUSHORT pusNumDataRecords);

Get a const pointer to the available data records. This function retrieves all the available cached data records from
a PCI or ISA controller. For DMC-1800 controllers, depending on the hardware/software version, the data record
may be accessed through 2nd FIFO or Dual Port RAM. The newest version of controller board (Rev. H and above
for 0-4 axes board, and Rev. D and above for 5-8 axes board) supports both Dual Port RAM and 2nd FIFO
functions. Version 7.0.3.0 of the PCI drivers (Glwdmpci.sys for Windows XP, 2000, ME,and 98SE, and
GalilPCI.sys for NT4.0) automatically accesses the data record using the Dual Port RAM on the newer controller
versions with firmware version M1 and higher.

Note: Use of this function requires Glwdmpci.sys, Glwdmisa.sys, and GalilPCI.sys driver versions 7.0.0.0 or
higher. The cache depth is set by controller properties stored in the Galil Registry. Do not call
DMCRefreshDataRecord prior to calling this function.

hdmc Handle to the Galil controller.
pchDataRecord Const pointer to an array of data records.
psNumDataRecords The number of data records contained in the character array.

Page 24 DMCWin32 – Galil Windows API

DMCGetDataRecordArray
LONG FAR GALILCALL DMCGetDataRecordArray(HANDLEDMC hdmc, CDMCFullDataRecord **pDataRecordArray,

LPUSHORT pusNumDataRecords);

Get an array of data records. This function retrieves all the available cached data records from a PCI and ISA
controller with 2nd FIFO. For DMC1800 controllers, depending on the hardware/software version, the data record
may be accessed through 2nd FIFO or Dual Port RAM.

Note: Use of this function requires Glwdmpci.sys, Glwdmisa.sys, and GalilPCI.sys driver versions 7.0.0.0 or
higher. The cache depth is set by controller properties stored in the Galil Registry. Do not call
DMCRefreshDataRecord prior to calling this function.

hdmc Handle to the Galil controller.
pchDataRecord Pointer to an array of CDMCFullDataRecord objects. CDMCFullDataRecord

contains members for every possible item in a record. If a member doesn't
apply to a given controller (such as axes 5-8 on a four axis controller) then
these members must be disregarded.

psNumDataRecords The number of data records contained in the data record array.

DMCGetDataRecordRevision
LONG FAR GALILCALL DMCGetDataRecordRevision(HANDLEDMC hdmc, PUSHORT pusRevision);

Get the revision of the data record structure.

hdmc Handle to the Galil controller.
pusRevision The revision of the data record structure is returned on output. Output Only.

DMCGetDataRecordSize
LONG FAR GALILCALL DMCGetDataRecordSize(HANDLEDMC hdmc, PUSHORT pusRecordSize);

Get the size of the data record.

Note: this function is for the DMC-1600, DMC-1700, and DMC-1800 only.

hdmc Handle to the Galil controller.
pusRecordSize The size of the data record is returned on output. Output Only.

DMCGetGalilRegistryInfo and DMCGetGalilRegistryInfo2
LONG FAR GALILCALL DMCGetGalilRegistryInfo(USHORT usController, PGALILREGISTRY pgalilregistry);

LONG FAR GALILCALL DMCGetGalilRegistryInfo2(USHORT usController, PGALILREGISTRY2 pgalilregistry2);

Get Windows registry information for a given Galil controller. The DMCGetGalilRegistryInfo2 function is a
replacement for DMCGetGalilRegistryInfo.

usController Galil controller number.
pgalilregistry/pgalilregistry2 Pointer to a GALILREGISTRY or GALILREGISTRY2 struct.

DMCWin32 – Galil Windows API Page 25

DMCGetHandle
LONG FAR GALILCALL DMCGetHandle(USHORT usController, PHANDLEDMC phdmc);

Get the handle for a Galil controller which was already opened using DMCOpen or DMCOpen2. The handle to
the Galil controller is returned in the argument phdmc.

usController A number between 1 and 64. Up to 64 Galil controllers may be addressed per

process.
phdmc Buffer to receive the handle to the Galil controller to be used for all subsequent

API calls. Users should declare a variable of type HANDLEDMC and pass
the address of the variable to the function.

DMCGetTimeout
LONG FAR GALILCALL DMCGetTimeout(HANDLEDMC hdmc, LONG FAR* pTimeout);

Get the current time-out value, which determines how long the communications driver will wait for a command
response from the controller.

hdmc Handle to the Galil controller.
pTimeout Buffer to receive the current time-out value in milliseconds.

DMCGetUnsolicitedResponse
LONG FAR GALILCALL DMCGetUnsolicitedResponse(HANDLEDMC hdmc, PCHAR chResponse, ULONG cbResponse);

Query the Galil controller for unsolicited responses. These are messages output from programs running in the
Galil controller. The most common command to produce messages is MG.

hdmc Handle to the Galil controller.
pchResponse Buffer to receive the response data.
cbResponse Length of the buffer.

DMCMasterReset
LONG FAR GALILCALL DMCMasterReset(HANDLEDMC hdmc);

Master reset the Galil controller. This returns the controller to its factory default setting, erasing all data saved
with BN, BP, and BV. Ensure that important data is backed up before performing a master reset. The master
reset may take up to 5 seconds. Make sure the timeout is large enough before performing the master reset.

hdmc Handle to the Galil controller.

DMCModifyGalilRegistry and DMCModifyGalilRegistry2
LONG FAR GALILCALL DMCModifyGalilRegistry(USHORT usController, PGALILREGISTRY pgalilregistry);

LONG FAR GALILCALL DMCModifyGalilRegistry2(USHORT usController, PGALILREGISTRY2 pgalilregistry2);

Change a Galil controller in the Windows registry. The DMCModifyGalilRegistry2 function is a replacement for
DMCModifyGalilRegistry.

usController Galil controller number.
pgalilregistry/pgalilregistry2 Pointer to a GALILREGISTRY or GALILREGISTRY2 struct.

Page 26 DMCWin32 – Galil Windows API

DMCOpen
LONG FAR GALILCALL DMCOpen(USHORT usController, HWND hwnd, PHANDLEDMC phdmc);

Open communications with the Galil controller. The handle to the Galil controller is returned in the argument
phdmc. For every DMCOpen, you must issue a DMCClose.

Note: hwnd is not used for controllers which do not support bus interrupts.

usController A number between 1 and 64. Up to 64 Galil controllers may be addressed per

process.
hwnd The window handle to use for notifying the application program of an interrupt

via PostMessage.
phdmc Buffer to receive the handle to the Galil controller to be used for all subsequent

API calls. Users should declare a variable of type HANDLEDMC and pass
the address of the variable to the function.

DMCOpen2
LONG FAR GALILCALL DMCOpen2(USHORT usController, LONG lThreadID, PHANDLEDMC phdmc);

Open communications with the Galil controller with interrupt handling. The handle to the Galil controller is
returned in the argument phdmc. For every DMCOpen2, you must issue a DMCClose.

usController A number between 1 and 64. Up to 64 Galil controllers may be addressed per

process.
lThreadID The thread ID identifies the calling thread and is also used for notifying the

application program of an interrupt via PostThreadMessage.
phdmc Buffer to receive the handle to the Galil controller to be used for all subsequent

API calls. Users should declare a variable of type HANDLEDMC and pass
the address of the variable to the function.

DMCReadData
LONG FAR GALILCALL DMCReadData(HANDLEDMC hdmc, PCHAR pchBuffer, ULONG cbBuffer,
 PULONG pulBytesRead);

Low-level I/O function to read data from the Galil controller. The function will read whatever is currently in the
controller’s output FIFO (bus controller) or communications port input queue (serial controller). The function will
read up to cbBuffer characters from the controller. The data placed in the user buffer (pchBuffer) is NOT NULL
terminated. The data returned is not guaranteed to be a complete response - you may have to call this function
repeatedly to get a complete response.

hdmc Handle to the Galil controller.
pchBuffer Buffer to read the data into. Data will not be NULL terminated.
cbBuffer Length of the buffer.
pulBytesRead Number of bytes read.

DMCReadSpecialConversionFile
LONG FAR GALILCALL DMCReadSpecialConversionFile(HANDLEDMC hdmc, PSZ pszFileName);

Read into memory a special BinaryToAscii/AsciiToBinary conversion table.

Note: This function is for the PC based controllers only.
hdmc Handle to the Galil controller.
pszFileName File name for the special conversion file.

DMCWin32 – Galil Windows API Page 27

DMCRefreshDataRecord
LONG FAR GALILCALL DMCRefreshDataRecord(HANDLEDMC hdmc, ULONG ulLength);

Refresh the data record.

hdmc Handle to the Galil controller.
ulLength Refresh size in bytes. Set to 0 unless you do not want a full-buffer refresh.

DMCRegisterPnpControllers
LONG FAR GALILCALL DMCRegisterPnpControllers(USHORT* pusCount);

OBSOLETE. Update the Windows registry for all Galil plug-and-play controllers. This function may add new
controllers to the registry or update existing ones.

pusCount Pointer to the number of Galil plug-and-play controllers registered (and/or

updated).

DMCReset
LONG FAR GALILCALL DMCReset(HANDLEDMC hdmc);

Reset the Galil controller.

hdmc Handle to the Galil controller.

DMCSelectController
SHORT FAR GALILCALL DMCSelectController(HWND hwnd);

Select a Galil motion controller from a list of registered controllers. Returns the selected controller number or -1 if
no controller was selected.

Note: This function invokes a dialog window.

hwnd The window handle of the calling application. If NULL, the window with the

input focus is used.

DMCSendBinaryFile
LONG FAR GALILCALL DMCSendBinaryFile(HANDLEDMC hdmc, PSZ pszFileName);

Send a file consisting of DMC commands in binary format to the Galil controller. Commands are executed
immediately.

Note: This function is for the optima series controllers only.

hdmc Handle to the Galil controller.
pszFileName File name to send to the Galil controller.

Page 28 DMCWin32 – Galil Windows API

DMCSendCW2OnClose
LONG FAR GALILCALL DMCSendCW2OnClose(HANDLEDMC hdmc, BOOL *pbValue);

Determines if the controller is sent CW2 command on closing. The CW2 command causes the controller to NOT
set the most significant bit of unsolicited messages to 1 (please see the Galil Motion Control command reference).
The default behavior is TRUE, which means the CW2 command is sent prior to closing a controller handle.

hdmc Handle to the Galil controller.
pbValue Desired Boolean value. On function return pbValue contains the previous

value.

DMCSendFile
LONG FAR GALILCALL DMCSendFile(HANDLEDMC hdmc, PSZ pszFileName);

Send a file consisting of DMC commands in ASCII format to the Galil controller. Commands are executed
immediately.

hdmc Handle to the Galil controller.
pszFileName File name to send to the Galil controller.

DMCSetTimeout
LONG FAR GALILCALL DMCSetTimeout(HANDLEDMC hdmc, LONG lTimeout);

Set time-out value. If the time-out value is set to zero, the DLLs will ignore time-out errors. This is useful for
sending Galil commands which do not return a response, such as providing records to the DL or QD commands.

hdmc Handle to the Galil controller.
lTimeout Time-out value in milliseconds.

DMCStartDeviceDriver
LONG FAR GALILCALL DMCStartDeviceDriver(USHORT usController);

Start the device driver associated with the given controller. All controller handles must be closed. Use this
function to recycle the device driver after making a configuration change through the Windows registry.

Note: For bus controllers on Windows NT4 only.

usController Galil controller number.

DMCStopDeviceDriver
LONG FAR GALILCALL DMCStopDeviceDriver(USHORT usController);

Stop the device driver associated with the given controller. All controller handles must be closed. Use this
function to recycle the device driver after making a configuration change through the Windows registry.

Note: For bus controllers on Windows NT4 only.

usController Galil controller number.

DMCWin32 – Galil Windows API Page 29

DMCUploadFile
LONG FAR GALILCALL DMCUploadFile(HANDLEDMC hdmc, PSZ pszFileName);

Upload the application program from the Galil controller to a file on the hard disk.

hdmc Handle to the Galil controller.
pszFileName Name of PC File to store the application program from the Galil controller in.

DMCUploadToBuffer
LONG FAR GALILCALL DMCUploadToBuffer(HANDLEDMC hdmc, PCHAR pchBuffer, ULONG cbBuffer);

Upload the application program from the Galil controller to a memory buffer on the PC.

hdmc Handle to the Galil controller.
pchBuffer Buffer to store the application program uploaded from the Galil controller.
cbBuffer Length of the buffer.

DMCVersion
LONG FAR GALILCALL DMCVersion(HANDLEDMC hdmc, PCHAR pchVersion, ULONG cbVersion);

Get the firmware version that is running on the Galil controller.

hdmc Handle to the Galil controller.
pchVersion Buffer to receive the version information.
cbVersion Length of the buffer.

DMCWaitForMotionComplete
LONG FAR GALILCALL DMCWaitForMotionComplete(HANDLEDMC hdmc, PSZ pszAxes, SHORT fDispatchMsgs);

Wait for motion complete by creating a thread to query the controller. The function returns when motion is
complete.

hdmc Handle to the Galil controller.
pszAxes Which axes to wait for: X, Y, Z, W, A, B, C, D, E, F, G, H, S or T. To wait

for more than one axis (other than coordinated motion), simply concatenate the
axis letters in the string.

fDispatchMsgs Set to TRUE if you want to get and dispatch Windows messages while waiting
for motion complete.

DMCWriteData
LONG FAR GALILCALL DMCWriteData(HANDLEDMC hdmc, PCHAR pchBuffer, ULONG cbBuffer,
 PULONG pulBytesWritten);

Low-level I/O function to write data to the Galil controller. Data is written to the Galil controller only if it is "ready"
to receive it. The function will attempt to write exactly cbBuffer characters to the controller.

hdmc Handle to the Galil controller.
pchBuffer Buffer to write the data from. Data does not need to be NULL terminated.
cbBuffer Length of the data in the buffer. Must be less than 1024 bytes for bus

controllers.

Page 30 DMCWin32 – Galil Windows API

pulBytesWritten Number of bytes written.

DMCWin32 – Galil Windows API Page 31

Advanced Motion Functions
(DMCMLIB)

These functions perform advanced functions that can extend the capabilities of the motion controller.

DMCEllipse
This function allows a controller to perform elliptical motion. When it is called, it will create a text file containing
VP commands that define an ellipse. This file can then be sent to the card to perform the motion using
DMCSendFile or inserted into a larger sequence of VP and CR commands.

LONG GALILCALL DMCEllipse(char *filename, int FirstOffset, int SecondOffset, double a, double b,

double theta, double delta_theta, double increment, double rotation);

filename Location used to save the calculated VP commands
FirstOffset Starting location for the first axis in encoder counts
SecondOffset Starting location for the second axis in encoder counts
a and b Major and minor axis lengths in encoder counts
theta Starting angle in degrees
delta_theta Total angular distance to travel in degrees
increment Increment advancement of theta used to calculate a new set of points in

degrees
rotation Angular translation of the major axis in degrees

Description
The parameters sent to the DMCEllipse function are similar to those for the CR command. An ellipse is defined by
the starting angle, ending angle, and the major and minor axis. This function takes those values and creates an
ellipse using VP commands. The end result is a sequence of line segments that produce the curve.

The first point calculated is at the angular position theta. The next is at theta+increment and so on until the final
angle (theta+delta_theta) is reached. Obviously, the length of the computed segments will determine how smooth
the curve will be. To control the coarseness of the curve use a small increment value. The smaller the increment
the more points are created.

FirstOffset and SecondOffset determine the position of the first point of the curve.

Page 32 DMCWin32 – Galil Windows API

Ellipse with starting angle of 30 degrees, a delta angle of 190 and an offset starting position.

Using rotation the entire ellipse can be translated a number of degrees.

Although it is not clear by the drawing, the starting position is unchanged by the rotation.

Note: The DMCEllipse function can be used to create circles with a very large radius. The Galil CR command is
limited to 6000000. To make larger circles make a=b=radius of circle.

Error Codes
If there are no errors the DMCEllipse function returns a 0. Here are the conditions that can generate errors and the
code that is returned.

Condition Code
Bad arguments: delta_theta positive but increment negative and visa versa; delta_theta = 0;
increment=0; a or b <=0

-12

Could not open output file -4

DMCWin32 – Galil Windows API Page 33

Example
This C program uses the DMCEllipse function to make an ellipse. The ellipse is calculated and put into a file.
Then the file is sent to the controller to perform the motion.

#include "DMCMLIB.H"

int main(void)
{
 long rc;
 char filename[] = "c:\\ellout.sen";
 HANDLEDMC hDmc;
 HWND hWnd;
 char szBuffer[80];

 //make the output file
 rc = DMCEllipse(filename, 1000, 1500, 2000.0, 800.0, 30.0, 190.0, 5.0, 30.0);

 //send the output file
 rc = DMCOpen(1, hWnd, &hDmc);
 rc = DMCSendFile(hDmc, filename);

 //start motion
 rc = DMCCommand(hDmc, "VE", szBuffer, sizeof(szBuffer));
 rc = DMCCommand(hDmc, "BGS", szBuffer, sizeof(szBuffer));

 rc = DMCClose(hDmc);

 return 0;
}

Here the ellipse started with offsets 1000 and 1500, with a major axis of 2000 , minor axis of 800, starting angle of
30, delta angle of 190 and a rotation of 30. To make the motors move the DMCSendFile is used to take the VP
commands from the file and put them in the coordinated motion segment buffer inside the controller. The LE sent
by DMCCommand tells the controller the sequence is ended and the BGS command starts the motion.

It is not necessary to include DMCCOM.H in the above example because it is already included in the
DMCMLIB.H library header file.

DMCSpline
Use DMCSpline to fit a curve through the points that define a 1-8 axis move to remove infinite accelerations around
corners.

LONG GALILCALL DMCSpline(char *source_filename, char *output_filename, double delta_vector);

source_filename Input file
output_filename Output file
delta_vector Vector distance between spline fit points

Description
DMCSpline fits a curve through the points in the input file using the equation:

where v = vector distance

For each segment in the input file coefficients are calculated for each axis then the points are created as a function
of the vector distance. A point is created for every v where v = 0 to the total vector distance with increments of
delta_vector.

Page 34 DMCWin32 – Galil Windows API

The input file must be in the following form:

LI n,n,n,n,n,n,n,n < s
LI n,n,n,n,n,n,n,n < s
LI n,n,n,n,n,n,n,n < s
…

where n = number in the range +/-8,000,000
s = speed of the vector in the range 2-8,000,000

Each segment must be at least 2 counts long or an error will occur. If a speed value is not specified do not use the
less than sign. A negative speed is ignored. The number of axis is defined by the number of commas in the first
line. Make sure the number of commas match on each and every line. The LI (or any non-numeric characters) at
the beginning of the line is ignored and can be removed.

Error Codes
If there are no errors the DMCSpline function returns a 0. Here are the conditions that can generate errors and the
code that is returned.

Condition Code
Axis distance greater than 8 characters long or speed over 12 characters long. -12
More than 8 axis are specified in input file -12
Could not open output or input file or input file is empty -4

Example
This input file defining a two axis move is used:

LI 1000,1000
LI 1000,0
LI 0,1000
LI -1000,0
LI 0,-1000

If plotted this is what the original file looks like:

DMCWin32 – Galil Windows API Page 35

After the spline fit has been run the path looks like this:

Note: A smaller delta_vector will result in a smoother curve but it will also create more LI points in the output file.
If the delta_vector is larger than the segment then the no smoothing will occur on that segment.

Here is a sample C program to create a spline motion. This program uses splinein.txt for the input file, splinout.txt
for the output and 10 counts for the vector increment.

#include "DMCMLIB.H"
int main(void)
{
 long rc;
 char outfile[] = "c:\\splinout.txt";
 char infile[]= “c:\\splinein.txt”;

HANDLEDMC hDmc;
 HWND hWnd;
 char szBuffer[80];

//make the spline fit
rc = DMCSpline(infile, outfile, 10.0);

 //send the output file
 rc = DMCOpen(1, hWnd, &hDmc);
 rc = DMCSendFile(hDmc, filename);

 //start motion
 rc = DMCCommand(hDmc, "LE", szBuffer, sizeof(szBuffer));
 rc = DMCCommand(hDmc, "BGS", szBuffer, sizeof(szBuffer));

 rc = DMCClose(hDmc);

 return 0;
}

Page 36 DMCWin32 – Galil Windows API

DMCSCurve
This function generates an S-curve motion profile for a given point to point move.

ULONG GALILCALL DMCSCurve(char Axis, unsigned long Distance, unsigned long Speed,

unsigned long Acceleration, unsigned long Jerk, PSZ FileName);

Axis Axis on which S-curve is to be performed
Distance Length of move, expressed in encoder counts
Speed Desired slew speed (encoder counts/sec)
Acceleration Desired acceleration rate (encoder counts/sec2). The deceleration rate is set to

the same value so that the motion profile is symmetrical.
Jerk Maximum acceptable jerk (encoder counts/sec3)
FileName Destination path for DMC output file

Description
This function generates an S-curve motion profile based on a set of motion constraints. If the specified constraints
would result in a discontinuous profile (i.e. triangular acceleration or velocity) the function optimizes the parameters
so that a true S-curve is generated. The motion profile is generated through a series of contour data (CD) moves.

Note: there is a small amount of rounding error in this function which may cause the actual length of a move to
vary from the specified length by a few counts (usually less than 10).

The following figure shows an exaggerated example of an S-curve. The trapezoidal graph is a 5000 count Position
Relative move with a slew speed of 25000 and an acceleration of 256000. The S-curve graph is the same move
generated by the DMCSCurve function with a limitation on jerk of 10000 counts/sec3.

0

1000

2000

3000

4000

5000

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

Time

D
is

ta
nc

e

Trapezoidal
S-Curve

Error Codes
If there are no errors, DMCSCurve returns a 0. The following codes are returned in the event of an error:

Condition Code
Could not open output file -4
Out of memory -8
Bad arguments: One or more arguments to a function was NULL or invalid -12
Invalid Distance parameter -97
Invalid Speed parameter -98
Invalid Acceleration parameter -99

DMCWin32 – Galil Windows API Page 37

Example
The following C program uses the DMCSCurve function to generate an S-curve, send the resulting output file to the
controller and execute it.

#include “dmcmlib.h”

void main(void)
{

long rc;
char filename[] = "c:\\windows\\desktop\\scurve.dmc";
HANDLEDMC hDmc;
HWND hWnd;

// make output file

rc = DMCSCurve('X',10000,50000,256000,15625000,filename);
// DMCSCurve(char Axis, unsigned long Distance, unsigned long Speed,
// unsigned long Acceleration, unsigned long Jerk, PSZ FileName)

// send output file

rc = DMCOpen(1, hWnd, &hDmc);
rc = DMCDownloadFile(hDmc, filename);

// start motion

rc = DMCCommand(hDmc, “XQ”, szBuffer,sizeof(szBuffer));
}

In the above example, the X axis is used to generate an S-curve profile. The length of the move is 10000 counts,
speed is 50000 counts/sec, acceleration is 256000 counts/sec2 and jerk is 15625000 counts/sec3.

After the output file has been generated, it is downloaded to the controller and executed using functions from
DMCCOM.H, which has already been included in the DMCMLIB.H header file.

DMCHelix
This function generates a helical motion profile. Two axes follow a coordinated circular path while a third axis
generates a linear motion perpendicular to the circle.
The function also compensates for offset error (Desired Distance - Actual Distance) which results from round-off
error in the GR command.

ULONG GALILCALL DMCHelix(char PlaneAxis1, char PlaneAxis2, char TraverseAxis, short Pitch,

ulong Radius, short StartAngle, long Dist, ulong Speed, ulong Accel, ulong Decel,
PSZ FileName);

PlaneAxis1, PlaneAxis2 Coordinated axes for circular motion
TraverseAxis Perpendicular axis about which the helix is generated
Pitch Pitch of helix, expressed in encoder counts traversed per circle. The sign of the

pitch determines the direction of the circle: Positive pitch= counter-clockwise,
Negative pitch=clockwise

Radius Radius of circle, expressed in encoder counts
StartAngle Beginning angle of helix, expressed in degrees
Dist Desired traverse distance of geared axis
Speed, Accel, Decel Helical motion parameters. These parameters apply directly to the circular

motion, not the traverse motion.
FileName Destination path for DMC output file

Description
Helical motion is a combination of two types of motion: a circular move in one plane and a linear move
perpendicular to the plane of the circle. PlaneAxis1 and PlaneAxis2 define the plane of the circle while TraverseAxis
defines the axis used for the linear move. The Pitch parameter relates the circular motion to the linear motion: it is

Page 38 DMCWin32 – Galil Windows API

the number of encoder counts traversed by the TraverseAxis per circle. The sign of Pitch determines the direction of
the circle. For example, in the figure below Pitch is a negative number since the circle is drawn in the clockwise
direction.

Error Codes
If there are no errors, DMCHelix returns a 0. The following codes are returned in the event of an error:

Condition Code
Bad arguments: One or more arguments to a function was NULL or invalid -12
Could not open output file -4

Example
The following C program uses the DMCHelix function to generate a helix, sends the resulting output file to the
controller, and executes it.

#include “dmcmlib.h”

void main(void)
{

long rc;
char filename[] = "c:\\windows\\desktop\\helix.dmc";
HANDLEDMC hDmc;
HWND hWnd;

// make output file

rc = DMCHelix('X', 'Y', 'Z', -360, 5000, 0, 100000, 50000, 256000, 256000, filename);
// DMCHelix(PlaneAxis1, PlaneAxis2, TraverseAxis, Pitch, Radius, StartAngle, Dist, Speed,
// Accel, Decel, FileName)

// send output file

rc = DMCOpen(1, hWnd, &hDmc);
rc = DMCDownloadFile(hDmc, filename);

// start motion

rc = DMCCommand(hDmc, “XQ”, szBuffer,sizeof(szBuffer));

}

In the above example, the X and Y axes are used for circular motion while the Z axis is used for linear motion. The
pitch of the helix is -360, which means that the Z axis will move forward 360 counts for every XY circle. Since the
sign of the pitch is negative, the helix will be generated in the clockwise direction. The radius is 5000, start angle is
0, traversed distance is 100000, speed is 50000, and both acceleration and deceleration are 256000.

DMCWin32 – Galil Windows API Page 39

DMCGeneralTuning
Use this function to create a DMC program file that can be downloaded and run to automatically tune the servo
motor.

LONG GALILCALL DMCGeneralTuning(CHAR chAxis, USHORT usStepSize, PSZ pszFileName);

chAxis The axis to be tuned.
UsStepSize The step size used during the tuning process.
PszFileName File name use to save the auto tune program.

Description
General tuning is a method used by Galil to automatically tune servo motors. The DMCGeneralTuning function
creates a Galil program and stores it in a file. The file must be downloaded and then executed on a Galil controller
to perform the tuning.

Once the Galil program is run the servo motor will be stepped back and forth and its position error monitored.
Gradually the PID values are increased until the motor becomes unstable. The values are then backed off. The
final values should be appropriate for most servo systems. Manual fine tuning may be needed to produce the best
system response.

While general tuning is the most flexible tuning method from Galil it may not work on all systems. If this is the
case, we recommend using WSDK where other tuning methods are available.

Error Codes
If there are no errors the DMCGeneralTuning function returns a 0. A non zero return value indicates an error
occurred. See the header file DMCCOM.H for a definition of the error codes.

Example
This C program creates the automatic tuning file. This file is then downloaded and run on the controller.

#include "windows.h"
#include "dmccom.h"
#include "dmcmlib.h"

int main(void)
{
 int rc;
 char filename[] = "c:\\gtune.dmc";
 USHORT stepsize = 300;
 HANDLEDMC hDmc;
 HWND hWnd=0;
 char szBuffer[64];
 char axis='X';

 //Create tuning file
 rc = DMCGeneralTuning(axis, stepsize, filename);

 //Open communications with the controller
 rc = DMCOpen(1, hWnd, &hDmc);

 //Download the file
 rc = DMCDownloadFile(hDmc, filename, NULL);

 //Execute the file

rc = DMCCommand(hDmc, "XQ", szBuffer, sizeof(szBuffer));

 return 0;
}

Page 40 DMCWin32 – Galil Windows API

DMCAutoTuning
Use this function to create a DMC program file that can be downloaded and run to automatically tune the servo
motor.

LONG GALILCALL DMCAutoTuning(CHAR chAxis, double dPulseMagnitudeVolts, USHORT usPulseDurationMS,

LPSTR lpstrFileName);

chAxis The axis to be tuned.
dPulseMagnitudeVolts Pulse magnitude in volts to be sent to the amplifier.
usPulseDurationMS Pulse duration in milliseconds.
lpstrFileName File name used to save the auto tune program.

Description
DMCAutoTuning is an alternative to the DMCGeneralTuning function to automatically tune servo motors. The
DMCAutoTuning function creates a Galil program and stores it in a file. The file must be downloaded and then
executed on a Galil controller to perform the tuning.

The program generated by DMCAutoTuning will send a series of pulses to the amplifier of the specified voltage
and duration. These disturbances are used to determine the optimum crossover frequency of the system. After the
best crossover frequency is found, the PID values are adjusted for best response at the selected frequency. The final
values should be appropriate for most servo systems. Manual fine tuning may be needed to produce the best
system response.

While auto tuning is the most flexible tuning method from Galil it may not work on all systems. If this is the case,
we recommend using WSDK where other tuning methods are available.

Error Codes
If there are no errors the DMCAutoTuning function returns a 0. A non zero return value indicates an error
occurred. See the header file DMCCOM.H for a definition of the error codes.

Example
This C program creates the automatic tuning file. This file is then downloaded and run on the controller.

#include "windows.h"
#include "dmccom.h"
#include "dmcmlib.h"

void main(void)
{
 int rc;
 char filename[] = "c:\\atune.dmc";
 double pulsesize = 5.5;
 USHORT pulseduration 20;

 HANDLEDMC hDmc;
 HWND hWnd=0;
 char szBuffer[64];
 char axis='X';

 //Create tuning file

rc = DMCAutoTuning(axis, pulsesize, pulseduration, filename)

 //Open communications with the controller
 rc = DMCOpen(1, hWnd, &hDmc);

 //Download the file
 rc = DMCDownloadFile(hDmc, filename, NULL);

 //Execute the file

rc = DMCCommand(hDmc, "XQ", szBuffer, sizeof(szBuffer));
}

DMCWin32 – Galil Windows API Page 41

Application Programming Topics

Introduction
This section discusses a number of topics of interest to a PC programmer interfacing with a Galil controller. In
additions, a number of sample programs are included in the DMCWIN directory under \C\Samples, \CPP\Samples,
and \VB\Samples.

Downloading Programs to the Controller

Two API functions are provided to download Galil language programs to the controller: DMCDownloadFile and
DMCDownloadFromBuffer. DMCDownloadFromBuffer assumes that each line of one or more commands is
separated by a CR/LF, just as if your buffer was a mirror image of a text file. The program label argument can be
used to download the Galil language program to a specific label or program line, or may be set to NULL to replace
any existing Galil language program.

You may also use the Galil "DL" command to build your own download function. If you do, make sure that you
set the time-out (using the API function DMCSetTimeout) to zero as the DL command will not return an
acknowledgment from the controller (except in the case of an error) until the end of file character ('\' or Cntl-Z) is
sent. Remember to restore the time-out value before exiting your function.

Configuring the Galil Registry
The Galil registry API functions can be used to test if your controller is registered at the beginning of your
application. The following code illustrates this:

GALILREGISTRY galilregistry;

// Is the controller registered?
if (DMCGetGalilRegistryInfo(1, &galilregistry) == DMCERROR_CONTROLLER)
{
 long rc;
 unsigned short controller;

 // Fill in your controller info, e.g., galilregistry.usAddress = 1000
 // Register the controller
 rc = DMCAddGalilRegistry(&galilregistry, &controller);
}

Page 42 DMCWin32 – Galil Windows API

Interrupt Handling

Application programs can receive notification of interrupts from the controller by handling the
WM_DMCINTERRUPT message which is defined in DMCCOM.H. The wParam or WORD parameter of the
message contains the interrupt status from the controller. The lParam or DWORD parameter is the HANDLEDMC
(which was returned from DMCOpen or DMCOpen2), which is useful if you have more than one controller
installed which may issue interrupts. The WM_DMCINTERRUPT message is posted to your application using
either PostMessage or PostThreadMessage depending on if you set the interrupt notification to a window handle
(HWND) or a thread Id (see the text for API functions DMCOpen and DMCOpen2). Interrupt notification can be
changed by using the API function DMCChangeInterruptNotification. For standard Windows SDK programming,
the WM_DMCINTERRUPT message is retrieved by using GetMessage for HWND or GetThreadMessage for
thread Id.

For MFC applications, you will need the following code:

In your .H file, manually add the function prototype for the interrupt handling function to your message map, after
the Class Wizard comments.

//{{AFX_MSG(CMyApp)

afx_msg void OnTimer(UINT nIDEvent);

afx_msg void OnCommand1

afx_msg void OnCommand2

//}}AFX_MSG

afx_msg LONG OnDMCInterrupt(UINT nWP, LONG nLP);

DECLARE_MESSAGE_MAP()

In your .CPP file, manually add the ON_MESSAGE macro to your message map, after the Class Wizard
comments.

BEGIN_MESSAGE_MAP(CMyApp, CWinApp)

 //{{AFX_MSG_MAP(CMyApp)

 ON_WM_TIMER()

 ON_COMMAND(IDC_COMMAND1, OnCommand1)

 ON_COMMAND(IDC_COMMAND2, OnCommand2)

 //}}AFX_MSG_MAP

 ON_MESSAGE(WM_DMCINTERRUPT, OnDMCInterrupt)

END_MESSAGE_MAP()

In your .CPP file, manually add the interrupt handling function:

LONG CMyApp::OnDMCInterrupt(UINT nWP, LONG nLP)

{

 short nStatus = (short)nWP;

 return 0L;

}

DMCWin32 – Galil Windows API Page 43

Diagnostics

There are two API functions DMCDiagnosticsOn and DMCDiagnosticsOff which can be used to provide a detailed
trace of communications between your application and the controller. The trace output gets very large very
quickly, but it does provide a lot of detail, especially when error conditions arise.

To cut down on the amount of trace being output, call DMCDiagnosticsOn as close to the part of your program you
wish to debug as possible. In addition, DMCDiagnosticsOn can be called with a flag to append trace output rather
than replace trace output.

Managing the Time-out

The time-out value used by the API functions is often misinterpreted. The time-out value is used by API functions
such as DMCCommand to control how long the function will wait before being able to send a command to the
controller (controller status set to ready-to-receive) or how long to wait for a complete response (usually a ":" or
"?"). Lowering the time-out value does not mean that the DMCCommand or other API functions will respond
faster, as most of the time the API functions return long before the time-out has expired. In fact, setting the time-
out value too low will cause some functions, such as DMCDownloadFile to fail. For most Galil commands and
API functions, the default value of 1000 is usually adequate. Some Galil commands such as master reset (^R^S or
the API function DMCMasterReset) may take up to five seconds to complete, so the time-out value may need to be
temporarily raised. If you do not care about the response from the controller and/or about time-out conditions, you
can set the time-out value to zero.

The time-out value is initialized to the value stored in the Windows Registry database each time you call
DMCOpen. You can get the current time-out value with the API function DMCGetTimeout. You can set the
current time-out value with the API function DMCSetTimeout.

Note: the lowest you can set the time-out value in the Windows Registry database is 1 ms. The default time-out
value is 1000 ms or 1 second.

Low-Level I/O
There are two functions available for performing low-level I/O: DMCWriteData and DMCReadData. They are
ideal if you need to send data to the controller which is time critical, such as contour data or linear interpolation
segments. The most important point to remember if you use DMCWriteData to send commands to the controller is
that you need to periodically call DMCReadData or DMCClear to clear the outbound FIFO or communications
buffer. Failure to do so will cause communications and application programs to halt if the outbound FIFO or
communications buffer fills up (unless CW,1 is sent). On Galil bus controllers, the outbound FIFO is configured
to hold 512 bytes.

Multiple Thread Applications
If you are using multiple threads in your application program and more than one thread makes calls to the Galil
DLLs, your program is protected because the API functions are thread safe. The thread safety also allows
concurrent communications on different handles.

Waiting for Motion to Complete
A common programming task in communicating with Galil controllers is having to write a wait for motion to

Page 44 DMCWin32 – Galil Windows API

complete function. This is because sending a Galil command such as AMX (wait for the motion on the X axis to
complete before continuing) from the PC to the controller will cause communications to/from the controller to stop
until the motion is complete. The API function named DMCWaitForMotionComplete does most of the work for
you. The function is multi-threaded so as to query the controller in the most efficient manner. The function has
an argument named fDispatchMsgs that is used to determine whether or not to keep getting and dispatching
Windows messages while waiting. For console programs or program threads which have no windows, the
argument should be set to FALSE since there is no message loop. For programs or program threads which have
windows, the argument should be set to TRUE so your program can continue to process messages while waiting.

Binary Communications
All Galil controllers are communicated with in ASCII format. That is, you send commands in ASCII and the
controller responds in ASCII. All controllers but the DMC-1000, 1300, 1500, 1410, 1411, 1412, and 1417 add a
binary form of communication: you can send commands in binary format. The controller responds to binary
commands the same as ASCII commands: by ASCII. The advantage of sending commands in binary is speed of
execution. If the command is already in binary form, it does not need to be decoded by the controller, resulting in
higher throughput. Sending contour data is one area where speed is critical and may benefit from sending
commands in binary.

Use the API function DMCBinaryCommand to send a command to the controller in binary. Use the API function
DMCSendBinaryFile to send a file of binary commands to the controller. In addition, there are API functions to
convert commands and files to/from ASCII/binary. Note that converting a command from ASCII to binary in-line
or on-the-fly may still result in improved throughput. Following is an example of converting a command from
ASCII to binary on-the-fly then sending it to the controller.

LONG rc;
CHAR szCommand = "PR1000,2000"
CHAR szResponse[256];
BYTE BinaryCommand[32];
ULONG BinaryCommandLength;

// Convert a command from ASCII to binary
rc = AsciiCommandToBinaryCommand(szCommand, strlen(szCommand), BinaryCommand,
 sizeof(BinaryCommand), &BinaryCommandLength);

// Send the binary command to the controller and get the response
rc = BinaryCommand(BinaryCommand, BinaryCommandLength, szResponse,
 sizeof(szResponse));

DMCWin32 – Galil Windows API Page 45

Data Record Access
Some Galil controllers can provide a block of data in binary format containing the state of the axes and I/O. This
data record should be used instead of conventional commands (TP, TI…) when many data items are required at a
high rate (for example to refresh a graphical user interface). The data record can be up to 264 bytes long.

There are four different methods to access the data record: Primary Communication Channel (QR command),
Secondary FIFO, DMA, and Dual Port RAM. Regardless of which method is used, the format of the data is the
same. The following table shows which controllers support which method(s):

Table 1. Controllers that support data record access.

Controller Bus QR Command

Secondary
FIFO

Direct Memory
Access (DMA)

Dual Port
RAM

DMC-1200 PC/104 ■
DMC-14x5/6 Ethernet/Serial ■
DMC-1600 Compact PCI ■
DMC-1700 ISA ■ ■
DMC-1800 PCI ■ ■
DMC-18x2 PCI ■
DMC-2xxx Ethernet/Serial ■
DMC-3xxx Ethernet/Serial ■

DMC-1200, 14x5/6, 18x2, 2xxx, 3xxx
For controllers with only one communication port like the DMC-18x2 and DMC-21x3, the data record is requested
by the QR command. This command is issued over the Primary communication channel like any other command,
but the response is in a compact binary form rather than ASCII.

DMC-1700
For DMC-1700 controllers, the data record is sent from the controller to the PC using either DMA or the secondary
FIFO channel. The command DR is used to set the update rate and select the Data Record Access method (DMA
or FIFO). The data record is always available, even if the primary FIFO channel is blocked because a trip-point
(such as AM) is pending.

DMC-1800
For DMC-1800 controllers, the data record may be accessed through the secondary FIFO or Dual Port RAM.
(Previous board versions supported only the secondary FIFO--Rev. G and below for 1-4 axes board, and Rev. C and
below for 5-8 axes board). Version 7.0.3.0 of the PCI drivers (Glwdmpci.sys for Windows XP, 2000, ME, and
98SE, and GalilPCI.sys for NT4.0) automatically accesses the data record using the Dual Port RAM on controllers
with firmware version M1 and higher. The command DR is used to set the update rate and DU selects the data
record access method (Dual Port RAM or FIFO).

Page 46 DMCWin32 – Galil Windows API

Data Record Structure
Table 2. The data items available in the data record, the constant IDs uses to access them, and their sizes.
Data Item ID for

DMCGetDataRecordByItemId
Data Type

Sample Number (time stamp) DRIdSampleNumber unsigned short int
Inputs 1 – 8 DRIdGeneralInput0 unsigned char
Inputs 9 – 16 DRIdGeneralInput1 unsigned char
Inputs 17 – 24 DRIdGeneralInput2 unsigned char
Inputs 25 – 32 DRIdGeneralInput3 unsigned char
Inputs 33 – 40 DRIdGeneralInput4 unsigned char
Inputs 41 – 48 DRIdGeneralInput5 unsigned char
Inputs 49 – 56 DRIdGeneralInput6 unsigned char
Inputs 57 – 64 DRIdGeneralInput7 unsigned char
Inputs 65 – 72 DRIdGeneralInput8 unsigned char
Inputs 73 – 80 DRIdGeneralInput9 unsigned char
Outputs 0 – 8 DRIdGeneralOutput0 unsigned char
Outputs 9 – 16 DRIdGeneralOutput1 unsigned char
Outputs 17 – 24 DRIdGeneralOutput2 unsigned char
Outputs 25 – 32 DRIdGeneralOutput3 unsigned char
Outputs 33 – 40 DRIdGeneralOutput4 unsigned char
Outputs 41 – 48 DRIdGeneralOutput5 unsigned char
Outputs 49 – 56 DRIdGeneralOutput6 unsigned char
Outputs 57 – 64 DRIdGeneralOutput7 unsigned char
Outputs 65 – 72 DRIdGeneralOutput8 unsigned char
Outputs 73 – 80 DRIdGeneralOutput9 unsigned char
Error Code DRIdErrorCode unsigned char
Status DRIdGeneralStatus unsigned char
Segment Count (S) DRIdSegmentCountS unsigned short int
Coordinated Move Status (S) DRIdCoordinatedMoveStatusS unsigned short int
Coordinated Move Distance (S) DRIdCoordinatedMoveDistanceS long
Segment Count (T) DRIdSegmentCountT unsigned short int
Coordinated Move Status (T) DRIdCoordinatedMoveStatusT unsigned short int
Coordinated Move Distance (T) DRIdCoordinatedMoveDistance

T
long

Analog Input 1* DRIdAnalogInput1 short int
… … …
Analog Input 8* DRIdAnalogInput8 short int
* Since the Analog Input data is contained in the Axis Information section, you can only retrieve data for the analog inputs up to the number of
axes on your controller. This is because Analog Input 1 is with the X axis information, Analog Input 2 with the Y axis information, and so on.

Axis Information (Repeated for each Axis)
Status DRIdAxisStatus unsigned short int
Switches DRIdAxisSwitches unsigned char
Stop Code DRIdAxisStopCode unsigned char
Reference Position DRIdAxisReferencePosition long
Motor Position DRIdAxisMotorPosition long
Position Error DRIdAxisPositionError long
Auxiliary Encoder Position DRIdAxisAuxillaryPosition long
Velocity DRIdAxisVelocity long
Torque DRIdAxisTorque short int

DMCWin32 – Galil Windows API Page 47

Data Record API Examples
Several API functions are provided to use the Data Record Access feature. DMCRefreshDataRecord gets a new
copy of the data record and places it in system memory. This function must be called each time you wish to update
the data record. DMCGetDataRecordByItemId gets a specific item from the copy of the data record already in
memory (DMCDRC.H defines the data record item IDs). DMCCopyDataRecord is used to copy the data record
from system memory to a local buffer in your application program.

Advanced users can use DMCGetDataRecordConstPointer for even higher-speed access,
DMCGetDataRecordArray to access many data records stored over time, or the QR command if DMCWin32 is
not used or to custom tailor the size of the data record.

DMCGetDataRecordByItemId
Use the DMCGetDataRecordByItemId function to return a single record item as in this Win32 console example:

#include "windows.h"
#include "Dmccom.h"
#include "stdio.h"

int main(void)
{
 long rc;
 HANDLEDMC hDmc;
 HWND hWnd=0;
 ULONG length=0;
 USHORT DataType;
 ULONG data;

 //Connect to controller #1
 rc = DMCOpen(1,hWnd, &hDmc);

 if (rc==DMCNOERROR)
 {
 //refresh local copy of data record
 rc = DMCRefreshDataRecord(hDmc, length);

 //get data record data item

rc = DMCGetDataRecordByItemId(hDmc, DRIdAxisMotorPosition, DRIdAxis1,
&DataType, &data);

 printf("Position of X is: %d%",(int)data);
 }

 rc = DMCClose(hDmc);

return 0;
}

DMCRefreshDataRecord is used to copy the data record into a buffer in the DLL. All calls to read a record item
are done on this local copy. If the data is time sensitive, the buffer should be refreshed just before any call to
DMCGetRecordByItemId.

The item returned from DMCGetRecordByItemId is specified by the second parameter passed to the function. In
this case, the constant DRIdAxisMotorPosition is passed to get the motor position. The third parameter,
DRIdAxis1, specifies the axis. The constants used to define the record items are in the header file Dmcdrc.h and
are automatically included by Dmccom.h.

Page 48 DMCWin32 – Galil Windows API

DMCCopyDataRecord
DMCCopyDataRecord can be used to retrieve a separate copy of the current data record (current as of the last call
to the function DMCRefreshDataRecord) that will not be overwritten by the next call to
DMCRefreshDataRecord. The structure DMCDATARECORD can be used as template for the data returned.
The actual length of the data returned can be determined by using the function DMCGetDataRecordSize. You
MUST allocate sufficient storage for the entire data record before calling the function DMCCopyDataRecord. An
example follows:

#include "windows.h"
#include "Dmccom.h"
#include "stdio.h"

int main(void)
{
 long rc;
 HANDLEDMC hDmc;
 HWND hWnd=0;
 ULONG length=0;
 USHORT RecordSize;
 DMCDATARECORD MyDataRecord;

 //Connect to controller #1
 rc = DMCOpen(1,hWnd, &hDmc);

 if (rc==DMCNOERROR)
 {
 //refresh local copy of data record
 rc = DMCRefreshDataRecord(hDmc, length);

 //make sure the data record will fit in the structure
 rc = DMCGetDataRecordSize(hDmc, &RecordSize);

 if (sizeof(MyDataRecord) >= RecordSize)
 //copy data record to the structure
 rc = DMCCopyDataRecord(hDmc, (PVOID)&MyDataRecord);

printf("Position of X is:%d%", (int)
MyDataRecord.AxisInfo[0].MotorPosition);

 }

 rc=DMCClose(hDmc);

 return 0;
}

Here the data record is first copied to a local buffer with DMCRefreshDataRecord and then placed into our data
record structure with DMCCopyDataRecord. As with the single item method the data must be refreshed before
being read to make sure it is up to date.

Note: you may wish to alter the DMCDATARECORD structure depending on your controller's configuration. See
the header file DMCDRC.H for more details.

DMCWin32 – Galil Windows API Page 49

Advanced: DMCGetDataRecordConstPointer
There is a very slight performance penalty when using DMCGetDataRecordByItemId. To gain a little more
speed, you could use the API function DMCGetDataRecordConstPointer instead.

The following sample code demonstrates how to retrieve the sample number:

#include <windows.h>
#include "dmccom.h"
#include <stdio.h>

long rc;
HANDLEDMC hDmc;
HWND hWnd;
ULONG DRlength=0;
USHORT DataType;
LONG oldDRData=0;
const char *pchDataRecord;
unsigned short *pMyLong;
USHORT usOffset; //Total offset (number of bytes) from the beginning of the data
 //record to the data item. Output Only.
USHORT usDataType; //Data type of the data item. The data type of the
 //data item is returned on output. Output Only.

void main(int argc, char* argv[])
{
 rc=DMCOpen(1, hWnd, &hDmc); //Connect to controller #1 in Galil registry

 if (rc==DMCNOERROR)
 {
 //Find data record offset

rc= DMCGetDataRecordItemOffsetById(hDmc, DRIdSampleNumber, DRIdAxis1, &usOffset,
&usDataType);

 //Setup constant pointer to data record
 rc= DMCGetDataRecordConstPointer(hDmc, &pchDataRecord);

 //Define data item variables using the offsets
 pMyLong = (unsigned short*)(pchDataRecord + usOffset);

 do
 {
 rc= DMCRefreshDataRecord(hDmc,DRlength);
 printf("SAMPLE NUMBER: %d\n", (int)*pMyLong);
 }while(1);

 rc=DMCClose(hDmc); //Close connection
 }
}

Page 50 DMCWin32 – Galil Windows API

Advanced: DMCGetDataRecordArray (DMC-1700, 1800)
With Glwdmpci.sys, Glwdmisa.sys, and GalilPCI.sys driver versions 7.0.0.0 and higher, one can use the functions
DMCGetDataRecordArray or DMCGetDataRecordConstPointerArray to obtain pointers to the data records.
The number of data records (cache depth) is set in the Galil Registry.

The following example uses the DMCGetDataRecordArray to get an array of data records and then retrieves the
sample number and X axis motor position from those records.

long main(int argc, char* argv[])
{
 long rc = 0L;
 int i=0,sample,xpos;
 char szBuffer[256];
 HANDLEDMC hDmc;
 const char * pointer2record;
 USHORT numberofrecord=0;
 USHORT datarecordsize;
 struct CDMCFullDataRecord * pdatarecordarray;
 USHORT numberofdatarecord=0;

 /* Open a handle to controller number 1 */

rc = DMCOpen2(5, GetCurrentThreadId(), &hDmc);
 if (rc)
 {
 printf("Could not open controller number 5. RC=%ld\n", rc);
 return rc;
 }

 rc = DMCCommand(hDmc, "DR-1", szBuffer, sizeof(szBuffer));
 Sleep(50); //give enough time to fill up the data record catch.
 rc = DMCGetDataRecordSize(hDmc, &datarecordsize);
 if (rc)
 {
 printf("Could not get data record size. RC=%ld\n", rc);
 DMCClose(hDmc);
 return rc;
 }

 rc = DMCGetDataRecordArray(hDmc, &pdatarecordarray, &numberofdatarecord);
 if (rc)
 {
 printf("Could not get data record. RC=%ld\n",rc);

 DMCClose(hDmc);
 return rc;

 }

 while (i<numberofdatarecord){
 sample = pdatarecordarray[i].SampleNumber;
 xpos = pdatarecordarray[i].AxisInfo[0].MotorPosition;
 printf("sample %d position %d \n",sample,xpos);
 i=i+1;
 }

 /* Close the handle */
 DMCClose(hDmc);
 return rc;
}

DMCWin32 – Galil Windows API Page 51

Advanced: QR Command (DMC-14x5/6, 18x2, 2xxx, 3xxx)
For controllers that do not have a second communication channel, the QR command can be used to retrieve a data
record. This command returns, in binary format, a copy of the current data record on demand. There is no need
to call the function DMCRefreshDataRecord. Use the DMCDATARECORDQR structure (defined in
DMCDRC.H) to overlay the binary data returned. It can be used with the function DMCCommand in the following
way:

#include "windows.h"
#include "Dmccom.h"
#include "stdio.h"

int main(void)
{
 long rc;
 HANDLEDMC hDmc;
 HWND hWnd=0;
 DMCDATARECORDQR MyDataRecordQR;

 //Connect to controller #1
 rc = DMCOpen(1,hWnd, &hDmc);

 if (rc==DMCNOERROR)
 {

rc = DMCCommand(hDmc, "QR\r", (LPCHAR)&MyDataRecordQR,
sizeof(MyDataRecordQR));

printf("X Pos: %d", MyDataRecordQR.DataRecord.AxisInfo[0].MotorPosition);

 }

 rc=DMCClose(hDmc);

 return 0;
}

QR is sent using DMCCommand and a pointer to the response is returned. This pointer has been cast as a
LPCHAR so that the DMCCommand would accept it. The QR command can return a full copy of the data record
or a subset depending on the arguments used with it. For more information, consult the Galil Command Reference
for your controller.

Note: you may wish to alter the DMCDATARECORDQR structure depending on your controller's firmware and
number of axes. See the header file DMCDRC.H for more details.

Page 52 DMCWin32 – Galil Windows API

Distributing Your Application

This section lists the run time files that need to be distributed with software developed with DMCWIN. For
additional information, please consult DISTNOTE.TXT located within the DMCWIN directory.

Windows 98 Second Edition, ME, 2000, Windows XP
For PCI bus controllers, use GLWDMPCI.SYS. For ISA bus controllers, use GLWDMISA.SYS. For USB, use
GLWDMUSB.SYS. These files must reside in the WINDOWS\SYSTEM32\DRIVERS directory.

These device drivers are normally installed using .INF files. You can place GLWDMPCI.INF, GLWDMISA.INF,
and GLWDMUSB.INF in the WINDOWS/INF or WINNT/INF directory and the operating system will find the
Galil INF files when looking for a driver for the controller.

You should also copy DMC32.DLL and DMCBUS32.DLL (for bus controllers), or DMCSER32.DLL (for serial
controllers) in the WINDOWS\SYSTEM or WINNT\SYSTEM32 directory. You will also need to copy and register
dmcreg.ocx.

Note: the WINDOWS or WINNT directory may have a different, user-specified name.

Windows NT 4.0
For ISA bus controllers, copy GALIL.SYS to the WINNT\SYSTEM32\DRIVERS directory. For PCI or
CompactPCI controllers, copy GALILPCI.SYS to the WINNT\SYSTEM32\DRIVERS directory.

You should also copy DMC32.DLL and DMCBUS32.DLL (for bus controllers), or DMCSER32.DLL (for serial
controllers) in the WINNT\SYSTEM32 directory. You will also need to copy and register dmcreg.ocx with the
communication dlls.

Note: the WINNT directory may actually have a different, user-specified name.

Microsoft Run-time Files
Make sure the target PC has the MSVCRT.DLL and MFC42.DLL Microsoft run-time files.

Note: If your project is built using Visual Basic or Delphi, or a Version of Visual C++ other than 6.0, you will
also need to distribute the run-time files for those tools.

	Overview
	Programming Model
	Step 1 Register Controller
	Step 2 Declare Functions
	Step 3 Open Communication
	Step 4 Download Program
	Step 5 Send Commands
	Step 6 Close Communication

	Visual Basic
	Declaration Files Before using the D
	Example 1: Sending Commands in VB
	Example 2: Downloading Programs in VB

	C/C++
	
	Declaration Files
	DMCCOM.H
	DMCWIN.H (C++ only)
	DMCMLIB.H
	Linking Your Application with the Galil DLLs

	Example 1: Sending Commands Using DMCCOM.H
	Example 2: Downloading Programs using DMCCOM.H
	Example 3: Sending Commands Using the Class Library (C++)

	Application Programming Interface (DMCCOM.H)
	DLL API List for DMCCOM.H
	Communication
	Registry
	Binary Commands
	Data Record
	Other

	Error Codes
	API Function Details
	DMCAddGalilRegistry and DMCAddGalilRegistry2
	DMCArrayDownload
	DMCArrayUpload
	DMCAssignIPAddress
	DMCBinaryCommand
	DMCChangeInterruptNotification
	DMCClear
	DMCClose
	DMCCommand
	DMCCommand_AsciiToBinary
	DMCCommand_BinaryToAscii
	DMCCompressFile
	DMCCopyDataRecord
	DMCDeleteGalilRegistry
	DMCDiagnosticsOff
	DMCDiagnosticsOn
	DMCDownloadFile
	DMCDownloadFirmwareFile
	DMCDownloadFromBuffer
	DMCEditRegistry
	DMCEnumGalilRegistry and DMCEnumGalilRegistry2
	DMCError
	DMCFastCommand
	DMCFile_AsciiToBinary
	DMCFile_BinaryToAscii
	DMCGetAdditionalResponse
	DMCGetAdditionalResponseLen
	DMCGetControllerDesc
	DMCGetDataRecordByItemId
	DMCGe
	DMCGetDataRecordItemOffsetById
	DMCGetDataRecordConstPointerArray
	DMCGetDataRecordArray
	DMCGetDataRecordRevision
	DMCGetDataRecordSize
	DMCGetGalilRegistryInfo and DMCGetGalilRegistryInfo2
	DMCGetHandle
	DMCGetTimeout
	DMCGetUnsolicitedResponse
	DMCMasterReset
	DMCModifyGalilRegistry and DMCModifyGalilRegistry2
	DMCOpen
	DMCOpen2
	DMCReadData
	DMCReadSpecialConversionFile
	DMCRefreshDataRecord
	DMCRegisterPnpControllers
	DMCReset
	DMCSelectController
	DMCSendBinaryFile
	DMCSendCW2OnClose
	DMCSendFile
	DMCSetTimeout
	DMCStartDeviceDriver
	DMCStopDeviceDriver
	DMCUploadFile
	DMCUploadToBuffer
	DMCVersion
	DMCWaitForMotionComplete
	DMCWriteData

	Advanced Motion Functions (DMCMLIB)
	DMCEllipse
	DMCSpline
	DMCSCurve
	DMCHelix
	DMCGeneralTuning
	DMCAutoTuning

	Application Programming Topics
	Introduction
	Downloading Programs to the Controller
	Configuring the Galil Registry
	Interrupt Handling
	Diagnostics
	Managing the Time-out
	Low-Level I/O
	Multiple Thread Applications
	Waiting for Motion to Complete
	Binary Communications
	Data Record Access
	DMC-1200, 14x5/6, 18x2, 2xxx, 3xxx
	DMC-1700
	DMC-1800
	Data Record Structure
	Data Record API Examples
	DMCGetDataRecordByItemId
	DMCCopyDataRecord
	Advanced: DMCGetDataRecordConstPointer
	Advanced: DMCGetDataRecordArray (DMC-1700, 1800)
	Advanced: QR Command (DMC-14x5/6, 18x2, 2xxx, 3xxx)

	Distributing Your Application
	Windows 98 Second Edition, ME, 2000, Windows XP
	Windows NT 4.0
	Microsoft Run-time Files

