Palomar Adaptive Optics Test Plan | Title | AO Platescale Measurement | |---------------------|---| | Version | 1.0 | | Date released | 4/9/2008 | | Lead | A. Bouchez | | Time requested | 1 hr. | | Required conditions | < 4 mags. extinction (able to close HO loop on V=6 stars) | ### **Purpose** Measure the plate scale at the PHARO, AO acquisition camera (ACAM), and LOWFS. ## **Previous analysis** The nominal values before the winter 07/08 AO refurbishment were: | THE HOLLING VALUE SCIENCE AND WHITEH CANCELLING TO THE BOTTOM WOLD. | | | | | |---|-----------------------------|-------------------------|--|--| | Focus | Plate Scale | Reference | | | | PHARO (25" field) | 25.09 +/- 0.04 mas/pixel | Metchev Ph.D. | | | | PHARO (40" field) | 40.0 mas/pixel | design | | | | ACAM | [0.163, 0.182] arcsec/pixel | 4/2/07 engineering test | | | | LOWFS | 373 nm/arcsec | design | | | | PHARO cass ring orientation for N up: 334.92 +/- 0.12 degrees (Metchev Ph.D.) | | | | | ## **Test procedure** #### A. PHARO platescale and field orientation. - 1. Choose a binary from the list on the TWiki page. These are "calibration binarie" with well-known orbits, separation 2.5-15.0". Acquire the brighter component in the HOWFS. - 2. Close the TT and DM loops and very roughly optimize framerates and gain. - 3. Set PHARO up to image bright stars (25" field, StdX, Ks, 0.1%, 1.4s integ.) and set in continuous acquisition. Adjust filter an integration to get ~10k counts peak. - 4. Adjust SSM pointing such that both components are well centered in PHARO's field. - 5. Record 1 image in each of 4 dither positions, 5" box. - 6. Open loops and offset telescope 10" north or south, to move brighter star off the reflective spot. - 7. Adjust ACAM integration time to get ~100 cts on brighter star. - 8. Record 1 images in each of 2 dither positions in ACAM (10" above and below spot). - 9. Offset 60" and record both PHARO and ACAM sky frames. - 10. Return to the stars and acquire each in turn with the HOWFS. With TT and DM loops locked on the HOWFS, acquire the other star with the LOWFS by offloading centroids to LOWFS position. Record the final LOWFS positions which zero the centroids (the difference between these positions will be twice the star separation.) - 11. Repeat steps 1-11 on two more binary stars, if possible with different PA. Caltech Optical Observatories / NASA Jet Propulsion Laboratory Palomar Adaptive Optics | Results and conclusions | | | |-------------------------|--|--| |