Next Generation Adaptive Optics System

Laser Guide Star Facility
Beam Transport Optics
Preliminary Design
KAON 662

May 4, 2010
Version V1.3

Prepared By J. Chin, T. Stalcup, J. Bell, D. Medeiros, E. Wetherell
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author(s)</th>
<th>Reason for revision / remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Oct 19, 2009</td>
<td></td>
<td>Initial release</td>
</tr>
<tr>
<td>1.1</td>
<td>Oct 20, 2009</td>
<td>EW</td>
<td>Add KAON number (was TBD)</td>
</tr>
<tr>
<td>1.2</td>
<td>Nov 03, 2009</td>
<td>JC</td>
<td>Updated risk summary</td>
</tr>
<tr>
<td>1.3</td>
<td>May 4, 2010</td>
<td>TS</td>
<td>Revisions for PDR</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

REVISION HISTORY ... 2
TABLE OF CONTENTS ... 3

1 INTRODUCTION ... 3
2 REFERENCES ... 6
2.1 REFERENCED DOCUMENTS ... 6
2.2 ACRONYMS AND ABBREVIATIONS ... 6

3 OVERVIEW ... 8
4 KECK II CENTER LAUNCH PROJECTION SYNERGY ... 9
5 DESIGN ... 9
5.1 OPTO-MECHANICAL DESIGN .. 9
5.1.1 Long Relay Design (LRD) ... 9
5.1.2 Short Route Design (SRD) ... 12
5.1.3 Flexure ... 16
5.1.4 Tube Design .. 19
5.2 SCALABILITY .. 19
5.3 ELECTRONICS .. 19
5.3.1 Motion Control System .. 19
5.4 DIAGNOSTICS .. 19
5.5 SAFETY .. 19
5.6 INTERFACES .. 20
5.6.1 Mechanical Interface to the telescope ... 20
5.6.2 Internal Interfaces within the LLF .. 21

6 SYSTEM PERFORMANCE ... 22
6.1 OPTICAL .. 22
6.1.1 Transmission ... 22
6.1.2 Wavefront Error .. 22
6.1.3 Pointing Errors .. 22
6.2 MECHANICAL ... 22
6.2.1 Mass ... 22
6.2.2 Heat Dissipation and Glycol requirements ... 23
6.3 ELECTRICAL ... 23

7 OPERATIONS ... 23
7.1 MODES ... 23
7.1.1 Operational Mode .. 23
7.1.2 Alignment Mode ... 23
7.2 PROCEDURES .. 23
7.2.1 Alignment .. 23
7.2.2 Cleaning (Maintenance) .. 24
7.3 OPERATIONAL RESOURCES AND PREVENTATIVE MAINTENANCE ... 24

8 DEVELOPMENT AND TESTING .. 24
9 REQUIREMENTS COMPLIANCE VERIFICATION ... 24
10 DELIVERABLES ... 24
11 MANAGEMENT .. 25
 11.1 BUDGET ... 25
 11.2 SCHEDULE ... 25
 11.3 RISK AND RISK REDUCTION PLAN ... 25
 11.3.1 Flexure Motion ... 26
 11.3.2 Vibration .. 26
1 INTRODUCTION

As part of the Next Generation Adaptive Optics System (NGAO), a Laser Launch Facility (LLF) System is needed to propagate the laser beam. One component of the LLF System is the Beam Transport Optics (BTO). The BTO is a set of opto-mechanical devices and beam tubes that are attached to the Keck II telescope. It receives the three beams from the Switchyard and relays them to the Beam Generation System (BGS). The BTO, along with the Switchyard, ensures the laser beams enter the BGS with the proper alignment. This document provides the preliminary design of the BTO.
2 REFERENCES

2.1 Referenced Documents

Documents referenced are listed in Table 1. Copies of these documents may be obtained from the source listed in the table.

<table>
<thead>
<tr>
<th>Ref. #</th>
<th>Document #</th>
<th>Revision or Effective Date</th>
<th>Source</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>KOR 90</td>
<td>x.x</td>
<td>WMKO</td>
<td>Keck Observatory Report</td>
</tr>
<tr>
<td>3</td>
<td>KAON 210</td>
<td>1.0</td>
<td>WMKO</td>
<td>Keck 2 Projection System Flexure</td>
</tr>
<tr>
<td>4</td>
<td>KAON 511</td>
<td>0.3</td>
<td>WMKO</td>
<td>NGAO System Design Manual</td>
</tr>
<tr>
<td>5</td>
<td>KAON 510</td>
<td>1.0</td>
<td>WMKO</td>
<td>NGAO Preliminary Technical Risk Evaluation</td>
</tr>
<tr>
<td>6</td>
<td>KAON 686</td>
<td>1.0</td>
<td>WMKO</td>
<td>NGAO Laser Launch Facility System Performance and Diagnostics</td>
</tr>
<tr>
<td>7</td>
<td>KAON 717</td>
<td>1.0</td>
<td>WMKO</td>
<td>NGAO Telescope Tube Flexure Measurements</td>
</tr>
</tbody>
</table>

Table 1: Reference Document

2.2 Acronyms and Abbreviations

Table 2 defines the acronyms and abbreviations used in this document.

<table>
<thead>
<tr>
<th>Acronym/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGS</td>
<td>Beam Generation System</td>
</tr>
<tr>
<td>BTO</td>
<td>Beam Transport Optics</td>
</tr>
<tr>
<td>BTOS</td>
<td>Beam Transport Optical System</td>
</tr>
<tr>
<td>DDR</td>
<td>Detailed Design Review</td>
</tr>
<tr>
<td>IFSM</td>
<td>Infrared Fast Steering Mechanism</td>
</tr>
<tr>
<td>KAON</td>
<td>Keck Adaptive Optics Note</td>
</tr>
<tr>
<td>LE</td>
<td>Laser Enclosure</td>
</tr>
<tr>
<td>LGS</td>
<td>Laser Guide Star</td>
</tr>
<tr>
<td>LGSF</td>
<td>Laser Guide Star Facility</td>
</tr>
<tr>
<td>LLF</td>
<td>Laser Launch Facility</td>
</tr>
<tr>
<td>LRD</td>
<td>Long Relay Design</td>
</tr>
<tr>
<td>NGAO</td>
<td>Next Generation Adaptive Optics System</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>RBC</td>
<td>Right Bent Cassegrain</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>SRD</td>
<td>Short Relay Design</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>WMKO</td>
<td>W.M.K. Observatory</td>
</tr>
</tbody>
</table>

Table 2: Acronyms and Abbreviations
3 OVERVIEW

The LLF layout is shown in Figure 1. This is an updated figure from one presented in the NGAO System Design Review in KAON 511. The Beam Transport Optics (BTO) includes the functions represented by the components that are not in the rectangles. The main function of the BTO is to transport the beam from the laser enclosure, along the telescope structure, to the Beam Generation System (BGS).

![Figure 1: Laser Launch Facility Layout](image)

The location of where the BTO fits into the overall NGAO System is shown in Figure 2. The BTO will have a mechanical interface mainly to the telescope and partially in the f/15 module to mate with the BGS.
4 KECK II CENTER LAUNCH PROJECTION SYNERGY

The Keck II Center Launch Projection System (CLPS) project will share some similarity with the NGAO Laser Launch Facility Design. Of the three subsystems, the BTO will be most similar. The designs presented in this document will also be applicable to the CLPS. It is the intention for the CLPS and NGAO to use an identical BTO. The optics and the tube structures will be size sufficiently large to accommodate three lasers instead of one for the CLPS project.

5 DESIGN

5.1 Opto-Mechanical Design

The main criteria for the BTO design are to maximize throughput and minimize wavefront errors by minimizing reflections, and to produce no additional vignetting of the telescope pupil. Cleanliness, ease of installation, alignment and maintenance are also important factors. The design will also be scalable to add additional beams if necessary. Based on these criteria, two possible designs were considered. Note that some of the figures below were from the conceptual studies and may not show the proper size beam enclosure tubes or junction boxes. This does not affect the discussion about how the route was chosen.

5.1.1 Long Relay Design (LRD)

The LRD design starts from the Switchyard located in the LE on the front section of the elevation ring. This is similar to the current location of existing output window of the Keck II laser table where the L4 launch tube starts. From there, a fold mirror (M1) will send the beam over in the +X direction to the corner of the elevation ring (Figure 3). Figure 4 shows the LRD path from the side view of the telescope. A second mirror (M2) will send the beam in the +Z and −Y direction to the spiders near the top end. The beams will run outside of the telescope pupil. At the top end, another mirror (M3) will jog the beam over to the M4 position (Figure 5), where it will follow the spider in the +Z direction to the secondary socket. The beam will follow the spider and will not vignette the telescope. Once the beam reaches the secondary socket, M5 and M6 will fold the beam into the BGS. The full path of the beam will be in sealed tubes to prevent stray light from affecting observations as well as for cleanliness.
There are several locations where the beam tubes can be attached to the telescope structure. The tubes will be approximately 2”x4” leaving M1 and will be sized 1” x 3” over the spider to not vignette the telescope pupil.

There are several advantages to this design path. By having the beams approach the secondary from the -Y direction of the telescope, any structure added to the spider in the + Z direction will not collide with the Nasmyth Deck. This will allow greater freedom in the size of the structures to be implemented on the telescope. Another advantage to this design is the possibility of installing a laser at the Right Bent Cassegrain (RBC) location in case all three lasers do not fit in the currently planned enclosure. If a laser is installed at this location, any additional beams can join the LRD path at M4 and continue on to the BGS. The RBC location is located directly under M4 when the telescope is at zenith. This provides a scalability advantage to this design. A final advantage is entering the BGS from the -Y direction. The BGS assembly will be located on the -Y direction of the launch telescope as it is easier to service and perform alignments in this orientation.
Figure 4: Side view of LRD

Figure 5: Leg between M3 and M4
The LRD does have one major disadvantage. From an installation and alignment point of view, it is more difficult to access the locations of M3 and M4. The LRD design, as compared to the Short Route Design (SRD), shown later, will also have tube attachments points that are difficult to access.

5.1.2 Short Route Design (SRD)

The second proposed design, the SRD, is the one that was chosen as the preferred solution since it is a more direct path to the secondary socket. The SRD will exit the LE similar to the LRD but it will not require the initial folding mirror. This assumes the lasers and the Switchyard can direct the beam properly to the mirror M1 near the existing L4 position.

The beam will travel in a similar path as the current Keck II laser up toward the L4 location from the LE. At this corner, two mirrors will jog the beam onto the top of the spider after which it will enter the telescope fixed hub. Here there will be a combination of four mirrors, M3 through M6, to propagate the beam into the BGS. Since it comes from the +Y direction it will require a more complicated path around the fixed hub to enter the BGS. It would be possible to situate the BGS on the opposite side of the LTA and reduce the number of mirrors required, however, this would make installation, alignment, and servicing of the BGS more difficult.
In addition to the obvious advantage of a shorter path to minimize the lever arm over which telescope flexure operates, the SRD offers easier access to its component locations for installation, alignment, and servicing. The telescope can be placed at a lower elevation to provide access to these attached points with the JLG man lift or possibly a hydraulic lift since it is much closer to the dome floor and the Nasmyth deck. Since the L4 launch tube has similar attachment points in the existing Keck II design (Figure 8), it may be possible to reuse some of this structure.
A major concern of the SRD design is the presence of pinch points along the SRD path between the telescope and the Nasmyth Deck. This limits the allowable space at the L4 location and the top end to attach components. At the L4 location (Figure 9), the beams are required to fold over to the +Z direction of the spiders. The current knuckle or corner structure clears the Nasmyth Deck by no more than 35 to 50 mm when the telescope is at 20° to 23° elevation. Any opto-mechanical fixtures that must be located in this area have only approximately 20cm in the +Z direction. Two fold mirrors and an optional PSD need to be located here.

The location where the beams enter the secondary socket (Figure 10) is also limited in volume when the telescope travels to horizon near the Nasmyth Deck. This location provides slightly more space than the
L4 location, approximately 30cm. In either the LRD or the SRD, there is significant infrastructure at the secondary socket that must be considered in the design (Figure 11)

Figure 10: Pinch point at the secondary socket

Figure 11: Telescope socket infrastructure
The SRD requires a more complicated beam path to fold the beam into the BGS. This path was designed to fit close to the LTA support structure to maximize accessibility into the f/15 module for service.

![Image](image_url)

Figure 12: SRD entry into the BGS assembly. The orange tube is the laser beam enclosure. The junction boxes are transparent in this image to show the placement of the mirrors.

5.1.3 Flexure

Understanding the telescope flexure is crucial to determine the needed motion control to assure the laser beams will enter the BGS properly at the top end. The telescope was designed to function as a Serrurier truss telescope where the sag of the primary relative to the elevation bearing matches that of the secondary relative to the elevation bearing such that the two mirrors stay on a common optical axis. However, since the laser enclosure is mounted close to the elevation bearing the front end of the telescope moves a relatively large amount with respect to the laser enclosure.
5.1.3.1 Telescope flexure magnitude

Based on the telescope design presented in KOR 90, with a 2 ton instrument package the top ring will deflect 1.7mm due to gravity for horizon pointing relative to zenith pointing. KOR 90 also mentions a 19 arcsec tilt of the top ring about an unspecified axis. The worst case would be if this axis is close to the elevation bearing and it would then contribute an additional 1.2 mm of translation at the top ring. KOR 90 presented no other data about the local deformations expected around the telescope structure.

This data from KOR 90 does not agree with previous flexure data collected in 2001 between L3 and L4 in the current Keck 2 laser projection system as detailed in KAON 210. That test measured 12 mm of motion between L3 and L4 which is much larger than the design value of 2.9 mm. To reconcile this discrepancy, more testing was performed in September 2009 and the results are detailed in KAON 717. This new testing measured approximately 2.9 mm of flexure between the elevation ring and the top ring, although only from zenith down to 23 degrees and not from zenith to horizon as the model numbers were.

Another potential source of flexure data is the pointing corrections currently used for the Keck II laser system. The worst case offset is approximately 19 arcseconds on sky, however as this is the sum of several factors such as internal laser flexure, residual sodium distance error, secondary tilt, telescope pointing models, and acquisition camera offsets it is not straightforward to convert this to a simple telescope flexure term.

5.1.3.2 Flexure correction system

The first consideration for the flexure correction system is how many active mirrors are required. In general, using two active mirrors would allow correcting both decenter and angular errors resulting in perfect correction of the flexure effects. If possible, however, using only one active mirror would result in significant savings for both budget and system complexity. A single active mirror could correct for changes in either position or angle, but not both simultaneously. In fact, correcting one term would potentially increase the other.

To determine the feasibility of using a single mirror corrector, the worst case system behaviour was approximated by assuming that the measured flexure amount of 3 mm from KAON 717 directly appears at the pupil forming lens in the BGS system along with an additional angular error of 19 arcseconds as described in KOR 90. From the BGS design document, the plate scale at the pupil forming lens is 0.633 mm/arcsecond. This would result in an on-sky error due to the decenter term of 3/0.633 or 4.7 arcseconds. The angular demagnification of the BGS is 171, so the on-sky error due to the angular flexure term is 19/171 or 0.1 arcseconds. Therefore, without active BTO flexure control the total error should be approximately 4.8 arcseconds on sky. If a single active mirror is placed in the laser enclosure switchyard to correct this flexure, it can reposition the beam at the BGS pupil forming lens such that there is no error due to decenter. However, as it is only a single mirror it introduces an angular error in this process determined by the amount the spot moved and the distance from the steering mirror. As an estimate, assume 3 mm of spot motion 23 m away from the steering mirror, which results in an additional 27 arcseconds of angular error. The total angular error in this case is then the sum of the 27 arcseconds of error from the steering mirror and the 19 arcseconds of flexure described in KOR 90 for a total of 46 arcseconds. After accounting for the magnification of the launch optics, this results in an on-sky error of just 0.27 arcseconds. If desired, this could be reduced by commanding the spot location to some small offset from the true center position. In this case, a spot offset of 430 microns would correct for the residual 0.27 arcseconds of error.

A final consideration for the single steering mirror option is that while the spot location at the entrance to the BGS is stabilized, the laser footprint will still move around on the intermediate mirrors in the BTO system. Since the BTO consists entirely of flat mirrors vignetting is the only concern as the laser spots move around. All of the mirrors do not have size constraints and can easily be oversized by the few millimetres necessary to allow plenty of room for the laser footprint to move around. The beam tube over
the spider is the only size constrained element, but here, too, it should not be a problem. By definition, the spot position will be corrected at the BGS. The total motion of the laser footprint at the other, outer, end of the spider then depends on the angular error of the beams. For the angular error of 46 arcseconds calculated earlier, the beam footprint should move by just 1.3 mm at the end of the spider. Since the beam diameter for no truncation at that point in the system is approximately 6 mm, there is plenty of room for the expected motion due to flexure inside the 25 mm beam tube over the spider. The relay design was analyzed in more detail using zemax to incorporate both the motion of the mirror due to the telescope flexure and the effects of steering the laser beams to maintain the proper BGS input. The expected motion of the laser spot at both the first mirror on the top ring and at the entrance to the spider tube is shown in Figure 13. This figure shows the zenith pointing case in blue, 3 mm of uncorrected flexure in green, and the resulting spot location after correcting the spot location at the BGS is shown in red.

Beam Displacement at top ring
Beam Displacement at spider

![Figure 13: Beam motion for the long relay design at M3, left, and M4, right.](image)

For the single mirror flexure correction system, the mirror would need to have enough range to move the laser spot at the BGS by 3 mm. If the separation between the steering mirror and the BGS is 23 m, this would be a total range of 27 arcseconds. To position the laser with an on-sky accuracy of 0.1 arcsecond, the required precision of the spot placement at the BGS would be 64 microns. This would imply a tilt accuracy of 0.57 arcseconds for the steering mirror. This range of 27 arcseconds and a precision of 0.57 arcseconds is equivalent to a range of 131 µrad and an accuracy of 2.8 µrad. This level of accuracy would be challenging for a mirror based on mechanical actuators, but is well within the range for a mirror using piezoelectric actuators.

Each laser will have its own steering mirror in the laser enclosure switchyard and position sensor at the BGS. This is primarily to correct for drift in the individual laser pointing from each laser head. For more detail, see the laser enclosure switchyard design document.
The expected 3 mm of flexure motion may be greater than the range of the position sensing devices used in the BGS. To ensure that the lasers are always within the dynamic range of the PSDs, the steering mirrors will use an open-loop lookup table to calculate their nominal position whenever the PSD signal is invalid.

5.1.4 Tube Design

The BTO tubes will be of different sizes depending on its location. The tubes at the spider location in front of the pupil will be no wider than an inch so that they will not increase the pupil obscuration and telescope emissivity. The tubes exiting from the LE will be larger, at least 2”x4”; this will allow for easier handling and provide structural integrity at the attachment points. The attachment points to the telescope will be compliant so as not to impact telescope performance. The tubes will be slightly pressurized from the LE to the BGS with a modest 1 to 2 SCFM of purge air starting at the BGS to maintain cleanliness within the tube structure. To ensure there is no turbulence due to a chimney effect, a window will be added at the LE. The Switchyard is expected to generate over 150 W of heat which will be removed by liquid cooling; however, the window will prevent any remaining heat from going through the BTO structure. The exterior of the tube shall be painted with low emissivity paint similar to the trusses and spiders on the telescope. The interior of the tubes will preferably have a rough, dark finish to reduce scattered light and reflections from accidental beam to tube contact, however this may not be practical and is not absolutely necessary.

5.2 Scalability

The current plan is to install three 25W lasers in the existing Keck II LE. If this is not possible due to the size of the lasers or any other reason, an auxiliary location may be needed to host one of the three lasers. This laser can be placed at the RBC location as mentioned earlier. In the case of the LRD, the output beam from this third laser can go directly in the +Z direction of the telescope to join the existing BTO path. This design will allow the additional beams if necessary without significant changes to the design. In the case of the SRD, laser(s) at the RBC can propagate through an identical SRD on the –Y sector of the telescope and join the laser beams coming from the LE at the secondary socket. In both cases, the two sets of beams will be combined into a single pattern in a passive box on the top ring. Since each laser will have its own flexure control system consisting of a steering mirror in the laser enclosure and position sensors at the BGS, the laser pattern at the BGS will be maintained without the use of active mirrors in the BTO.

5.3 Electronics

5.3.1 Motion Control System

Based on the flexure tests completed, no moving devices are needed in the BTO. A steering mirror in the Switchyard will provide sufficient compensation. It is possible to actuate a mirror at the M4 location of the LRD or M1 location of the SRD in the unlikely case the flexure is much larger than anticipated. This would provide a “mid-course correction” for the beam path.

5.4 Diagnostics

The nominal LLF design places all diagnostics within the Switchyard and BGS. If the motorized stage upgrade described in section 5.3.1 is needed in the BTO due to flexure compensation, a position sensing diode will be required in the BGS to support the steering of the beams.

5.5 Safety

Since Keck II does not use the f/40 IFSM module, the f/15 will be taken out only for servicing. During these periods, the laser shutter should not open. To ensure the BTO is properly installed, interlock switches will be placed at the f/15 module/BGS end. These switches will determine the status of the f/15, BGS as well as tubes in the f/15 module. If the interlocks are not met, the laser shutters cannot be opened. Some of the interlock signals such as the f/15 module “installed” can be provided by the Keck II local controls system. Additionally, solid plates will be used to cap the open ends of the BTO tubes when not mated
together. This not only prevents any possibility of accidental chamber illumination, it will also reduce optical contamination of the system.

5.6 Interfaces

5.6.1 Mechanical Interface to the telescope

There will be attachment points between the tubes and the telescope similar to those for the current L4 launch tube. At each location where a mirror exists, an enclosure will be installed around the mirror for service, alignment and cleanliness. Access ports will be provided to allow alignment and cleaning. The enclosures will be similar to that in Figure 14.

![Figure 14: SRD M1/M2 at the telescope spider connection. The box is shown with an open access cover.](image)

At the secondary socket, mirrors and tubes will be attached to the telescope structure and the f/15 module. This will be done such that they will not interfere with the installation and removal of the f/15 module. A removable section is included to allow disconnection when the secondary module is removed from the telescope for servicing as shown in Figure 15. This section will be removed and the ends capped to maintain cleanliness.
Figure 15: Removable beam tube section at secondary module.

5.6.1.1 Infrastructure Interfaces such as Power, Pneumatic and Glycol

No infrastructure requirements will be needed for power, pneumatic or glycol. These are available at the Switchyard and secondary socket if they become necessary in the design.

5.6.2 Internal Interfaces within the LLF

5.6.2.1 Mechanical Interface to the Beam Generation System

A portion of the BTO will be attached to the secondary module and will attach to the BGS via a single mechanical tube structure.

5.6.2.2 Mechanical Interface to the Switchyard

The mechanical interface to the Switchyard will be a permanent connection with a window between the beam tube and the LE.

5.6.2.3 Electrical Interface to the Safety System

The BTO shall have a small set of electrical signals with the Safety System. These will be two wire low voltage DC analog signals. These signals will provide status of the beam tubes in the secondary socket as well as the f/15 module status in the telescope. These interlocks are to ensure the infrastructure is in place to safely propagate the laser from the Switchyard to the BGS.
6 SYSTEM PERFORMANCE

6.1 Optical

6.1.1 Transmission

The total number of mirrors in the SRD chosen is 6, with two additional transmissive surfaces for the laser enclosure window. The coating values of 0.998 for reflective and 0.998 for transmissive surfaces were used based on a quote from Advanced Thin Films. An additional factor of 0.995 is applied to account for accumulation of contaminants on the mirror surfaces. This results in a total BTO throughput for the SRD of 98.8% when clean and for five mirrors and 95.9% with the 0.5% dirt accumulation.

6.1.2 Wavefront Error

There are no powered elements, so the only source of wavefront error is random surface errors. The specification for the flat mirrors is a figure error of 7 nm rms, which for the 6 mirrors in the SRD results in a total rms wavefront error of 17 nm.

6.1.3 Pointing Errors

See section 5.1.3.2 for a detailed analysis of the required steering mirror motion and resulting pointing errors due to telescope flexure. Another source of error not included in that analysis is the flexure of the various mirror mounts that make up the BTO, either due to the mount itself or due to local deformations in the telescope structure. The pointing error due to these motions will simply add to the total beam motion from the telescope flexure and be corrected the same way. The mirror mount flexure will be considered during the detailed mechanical design and kept to a small enough value to meet the overall pointing specification.

6.2 Mechanical

6.2.1 Mass

The estimated mass of the BTO is shown in Table 3 and Table 4 for the two designs. With the LRD, approximately 100 Kg will need to be added to the Cassegrain location to compensate for the added mass on the telescope to balance about Z. For Y, it is relative balanced since mass will be added to both + and – Y.

<table>
<thead>
<tr>
<th>Ref#</th>
<th>Item</th>
<th>Location (m from CG)</th>
<th>Mass (kg)</th>
<th>Moment (Kg*m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1, M2 section</td>
<td>+1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>M2, M3 section</td>
<td>+6</td>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>M3, M4 section</td>
<td>+12</td>
<td>20</td>
<td>240</td>
</tr>
<tr>
<td>4</td>
<td>M4, M5 section</td>
<td>+12</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>5</td>
<td>M5, M6 section</td>
<td>+12</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td>675</td>
</tr>
</tbody>
</table>
Table 3: LRD Mass

For the SRD, the estimated total mass to the telescope will be 75 Kg. To compensate for this, 100 Kg will be added to the Cassegrain location for Z and mass must be added to counter balance in Y as well since almost all of the mass will be added in the +Y axis.

<table>
<thead>
<tr>
<th>Ref#</th>
<th>Item Location (m from CG)</th>
<th>Mass (kg)</th>
<th>Moment (Kg*m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M1, M2 section +6</td>
<td>40</td>
<td>240</td>
</tr>
<tr>
<td>2</td>
<td>M2, M3 section +12</td>
<td>20</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>M3, M4 section +12</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>M4, M5 section +12</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>660</td>
</tr>
</tbody>
</table>

Table 4: SRD Mass

6.2.2 Heat Dissipation and Glycol requirements

No glycol requirements are needed in the BTO.

6.3 Electrical

No electrical power will be required by the BTO.

7 OPERATIONS

7.1 Modes

7.1.1 Operational Mode

During normal operations, the BTO shall operate at full laser power with three beams operating at 25 watts of CW 589nm light.

7.1.2 Alignment Mode

During alignment mode the laser beams will be operated at low power, about 50mW each. This power level is sufficient to visually monitor the beam pattern on each element of the BTO while minimizing the hazard due to stray beams.

7.2 Procedures

7.2.1 Alignment

An initial alignment will not require the 589nm laser, and may be done using an alignment laser placed in the Switchyard to simulate one of the main laser units. As there are no powered elements in the BTO, most of the alignment is not very critical. The goal for most of the elements is simply to ensure that the laser asterism is centered on the various mirrors, there is no vignetting, and the presence of a sufficient clear margin around the pattern to allow for motion due to flexure. Starting at the laser enclosure, each mirror will be adjusted to center the laser beam pattern on the next mirror in the system. The final mirror will then be adjusted to correctly place the pattern on the BGS input position sensors.

Prior to propagating a high power beam through the BTO, the Switchyard steering mirrors must be calibrated to ensure the motion control model accurately places the laser beams in the capture range of the BGS position sensors.
7.2.2 Cleaning (Maintenance)

The BTO shall be designed for a 10 year life time. To minimize the cleaning required, the BTO shall be designed as a sealed unit to minimize particulate contamination. However, considerations shall be made in the design to allow access to clean the optics in the BTO and possibly recoat/replace optics as necessary. The frequency of cleaning shall depend on how well the BTO is sealed to prevent particulates contamination. The need for cleaning will be indicated by throughput measurements of the overall system. Scheduling system cleaning based on performance metrics instead of at periodic intervals will reduce both the resource requirements and the potential for damage to the system while ensuring that the overall system performance does not suffer. This procedure shall be turned over to the operations team during BTO handover. BTO cleaning will require both personnel and telescope resources to access BTO optics.

7.3 Operational Resources and Preventative Maintenance

Additional information shall be provided during DDR on required operational resources. Outside of troubleshooting of the BTO, the operations team will be required to support maintenance procedures in 7.2.

8 Development and Testing

This section will be presented at the DDR.

9 Requirements Compliance Verification

The compliance matrix will be presented as a whole for the Laser Guide Star Facility Compliance Matrix document.

10 Deliverables

Figure 16 shows the deliverables for the BTO.
11 MANAGEMENT

11.1 Budget

This section will be presented in KAON 686 examining the Laser Launch Facility as a whole. As mentioned earlier, the NGAO BTO will be similar to the CLPS BTO. The cost of the fabrication and integration of the BTO will be assumed under the CLPS project. This is not true for other LLF subsystems as NGAO will have its own.

11.2 Schedule

This section will be presented in KAON 686 examining the Laser Launch Facility as a whole.

11.3 Risk and Risk Reduction Plan

Error! Reference source not found. shows individual risks within BGS in accordance with KAON 510.
Table 5: Risk Matrix

<table>
<thead>
<tr>
<th>#</th>
<th>Consequence</th>
<th>Likelihood</th>
<th>Description</th>
<th>Status</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flexure is larger than expected</td>
<td>2</td>
<td>Flexure testing does not show this is the case; however, there may be flexure within the switchyard.</td>
<td>An additional stage will be added to compensate for this flexure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Vibration on the telescope</td>
<td>2</td>
<td>More data will be gathered to determine if this is an issue.</td>
<td>The steering PZT stages at the Switchyard can have an additional input to compensate for telescope motion < 60 Hz.</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Risk Analysis

11.3.1 Flexure Motion

The flexure was measured from the elevation ring to a location near the L4 position. However, additional flexure may occur between the elevation ring and the Switchyard. This flexure will depend on how stiff the elevation ring is and how the Switchyard is attached. A similar test can be completed to measure the existing flexure between the laser table and the elevation ring since the Switchyard will be attached similarly. If the flexure is found to be larger than the 3mm measured, the current design will allow the addition of motors to remedy this flexure.

11.3.2 Vibration

The downlink tip tilt stages will remove a significant amount of the vibration on the telescope. Based on experiences on the interferometer, vibration up to 30 Hz are common on the Keck II telescope. If the downlink stages are unable to compensate, the current design of the PZT stage in the Switchyard can be used. This stage is primarily designed for steering of the beam to compensate for flexure; but can have an additional input for vibration compensation.