ZTF bulk flow and shear simulations

January 28th, 2016

U	lr	ic	h	F	ei	n	ď	t
		_	-	-				

Oskar Klein Centre

Reminder

Results of SNfactory bulk flow/dipole study (Feindt et al. 2013):

- No evidence for backside infall to Shapley
- Mass of Shappley insufficient to explain velocities
- Sloan Great Wall may explain remaining velocity

Velocity tidal field:

- Adds 6 new parameters (1 monopole, 5 quadrupole/shear)
- Can estimate distance to attractor
- Only few shear analyses in the literature so far

$$\vec{v}(\vec{x}) = \vec{v}_0 + H\vec{x} + \sum \vec{x}$$
constant local boost velocity to H₀
constraint of H₀
constraints distance to attractor

Simulated SNe

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

Dipole velocity amplitude

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

Dipole velocity uncertainty

 \rightarrow If we want to fit dipole and shear, southern SNe will be essential.

U. Feindt - ZTF BF/Shear simulations

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

First shear eigenvalue

→ Adding 600 southern SNe improves uncertainties by 20-30% (instead of 13% from \sqrt{N})

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

How about using galaxies?

6dFGRS has ~10⁴ FP distances on southern hemisphere (~3-4 times larger uncertainties) → Corresponds to ~600 Sne

Extends only to $z \sim 0.055$ but this actually helps the analysis

Backup (same slides as 3-7 but show redshift shells)

Simulated SNe

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

Dipole velocity amplitude

Expectation: 300 km/s

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

Dipole velocity uncertainty

 \rightarrow If we want to fit dipole and shear, southern SNe will be essential.

U. Feindt - ZTF BF/Shear simulations

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

First shear eigenvalue

→ Adding 600 southern SNe improves uncertainties by 20-30% (instead of 13% from \sqrt{N})

(v = 300 km/s, I = 300 deg, b = 30 deg, shear = 1.5 km/s/Mpc in dipole direction)

How about using galaxies?

