The ZTF SNIa program

Craar Klein centre

+ PhD students in Berlin and OKC

Ariel Goobar

ZTF SNIa science goals

- Cosmological sample: new low-z anchoring set
- Set uncertinty floor for LSST, WFIRST: Host galaxy environment dependencies, dust
- Local anisotropies measurement
- Sample to trigger Near-IR SNIa Hubble diagram (Baron-Nugent+12, ...)
- **Extragalactic extinction** (Amanullah+14,15, Johansson+14)
- Interaction w. companion, CSM and surface radioactivity, dark phase of SNIa (first 4 days) (Nugent +11,Goobar+14,15,Cao+15, Kromer+16, ...)
- Late time lightcurves and spectra to understand nebular physics and interaction (>100 d).
- High-resolution spectroscopy: CSM and ISM studies. (Maguire+14, Ferretti+16...)
- Diversity in SNIa properties (Maguire+14, ...)
- Feasibility of photometric ID for e.g., LSST
- Lensed SNe?

UNDER CONSTRUCTION

(selected PTF/iPTF papers on the subject)

This

talk!

ZTF SNIa science goals

- Cosmology: challenge the ΛCDM paradigm

- Cosmological sample: new low-z anchoring set
- Set uncertinty floor for LSST, WFIRST: Host galaxy environment dependencies, dust
 - Local anisotropies measurement
 - Sample to trigger Near-IR SNIa Hubble diagram (Baron-Nugent+12, ...)
 - Extragalactic extinction (Amanullah+14,15, Johansson+14)
 - Interaction w. companion, CSM and surface radioactivity, dark phase of SNIa (first 4 days) (Nugent +11,Goobar+14,15,Cao+15, Kromer+16, ...)
 - Late time lightcurves and spectra to understand nebular physics and interaction (>100 d).
 - High-resolution spectroscopy: CSM and ISM studies. (Maguire+14, Ferretti+16...)
 - Diversity in SNIa properties (Maguire+14, ...)
 - Feasibility of photometric ID for e.g., LSST
 - Lensed SNe?

What is the origin of the accelerated cosmic expansion?

What is the origin of the accelerated cosmic expansion? - challenging Λ

- Cosmological constant (Λ), consistent with *existing* data but is 10⁶⁰-10¹²⁰ times lower than the expected vacuum energy density
- Completely new physics?
- <u>Combined</u> studies of lowand high-redshift SNe provides the key for testing models for the cosmic acceleration: time-evolution
- High-z, HST programs now;
 WFIRST in the future
- ZTF: can provide critical low-z sample

What is the origin of the accelerated cosmic expansion?

- Cosmological constant (Λ), consistent with *existing* data but is 10⁶⁰-10¹²⁰ times lower than the expected vacuum energy density
- Completely new physics?
- <u>Combined</u> studies of lowand high-redshift SNe provides the key for testing models for the cosmic acceleration: time-evolution
- High-z, HST programs now;
 WFIRST in the future
- ZTF: can provide critical low-z sample

$$\rho_{DE} = \rho_{DE}^{0} a^{-3(1+w)}; w = w_0 + w_a(1-a)$$

$$\rightarrow w = -1 \text{ makes } \rho_{DE} \text{ constant}$$

Current measurement precision on dark energy Anchoring the Hubble diagram DE FoM significantely improved with ~2000 SNe Ia @ z≤0.1

The Type Ia Supernova Hubble Diagram 2016

Calibration requirements – impact of photometric <u>bias</u>

ZTF data alone sensitive to cosmic acceleration

But(!) requires 2 bands for necessary color corrections

Potential concern: Crear Klein Diversity in color correction, R_v

Potential concern: Crear Klein Diversity in color correction, R_v

Minimum 2 bands - and at least 3 to also fit R_v

 $\Delta m_B = A_B = (\mathbf{R}_v + 1) \cdot \mathbf{E}(\mathbf{B} - \mathbf{V})$

Prospects of also measuring *average* R_V with gri

Monte-Carlo study using low-z reddening and R_v distributions

Prospects of also measuring *average* R_V with gri

Target SNIa sample

SNIa rates: 3-4000 Sne Ia/year within FoV and redshift range of interest

- 1800 spectroscopicaly ID:ed SNe Ia in galaxies (ideally in the DESI footprint) and within PTF Hα survey.
- Redshift range $z \le 0.1$; with up to 1 mag reddening discovered >1 mag below peak.
- High galactic latitude, E(B-V)_{MW} < 0.1
- **P48 photometric coverage**: gr + ideally i-band (1 week cadence, reddening + *typing*)
- 2-filter lightcurves (gr) with 3-day cadence, SNR>10 (TBD), ≥15 points. Coverage to day +40
- High-cadence sample, single band (~2000 sq.deg), for *very early* discoveries
- Multi-band (+ spectroscopy) follow-up highly desireable

Photometric typing (I)

Photometric typing (II)

Cadences in gri = (3,3,7)

Craw Klein First look at i-band P48 data

R-band

i-band

First look at i-band P48 data

CCD=00	CCD=01	CCD=02	¢CD≠03	CCD=04	CCD=05
I=20.4	I=20.4	I=20.5		I=20.9	I=21.0
CT=0.10	CT=0.11	CT=0.26		CT=0.26	CT=0.30
CCD=06	CCD=07	CCD=08	CCD=09	CCD=10	CCD=11
I=20.5	I=20.4	I=20.5	I=20.7	I=20.6	I=20.5
CT=0.23	CT=0.11	CT=0.26	CT=0.20	CT=0.20	CT=0.14

Angular dependent Hubble diagram: studying matter *distribution* from coherent motions: challenging CDM?

Ariel Goobar

Dipole vs Λ<u>CDM</u> prediction: **ZTF in the right ballpark**

Summary & Outlook

- ZTF excellent discovery machine for producing the low-z SNIa anchoring sample for precision cosmology to put ACDM to severe tests: great legacy value!
- Requirements: 2+1 bands and 1% calibration.
- Active working group: Stockholm-Berlin-Berkeley.
- Willing to collaborate/share tools with other science groups. Suggestion: lets use same tools to compare FoM of different survey modes for ZTF.

