
System Software

KUKA Sunrise.OS 1.11
KUKA Sunrise.Workbench 1.11

Operating and Programming Instructions for System Integrators

KUKA Roboter GmbH

Issued: 29.07.2016

Version: KUKA Sunrise.OS 1.11 SI V1

KUKA Sun-

rise.OS 1.11

KUKA Sun-

rise.Wor...

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...

2 / 557 Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

© Copyright 2016

KUKA Roboter GmbH

Zugspitzstraße 140

D-86165 Augsburg

Germany

This documentation or excerpts therefrom may not be reproduced or disclosed to third parties without
the express permission of KUKA Roboter GmbH.

Other functions not described in this documentation may be operable in the controller. The user has
no claims to these functions, however, in the case of a replacement or service work.

We have checked the content of this documentation for conformity with the hardware and software
described. Nevertheless, discrepancies cannot be precluded, for which reason we are not able to
guarantee total conformity. The information in this documentation is checked on a regular basis, how-
ever, and necessary corrections will be incorporated in the subsequent edition.

Subject to technical alterations without an effect on the function.

Translation of the original documentation

KIM-PS5-DOC

Publication: Pub KUKA Sunrise.OS 1.11 SI (PDF) en

Book structure: KUKA Sunrise.OS 1.11 SI V1.1

Version: KUKA Sunrise.OS 1.11 SI V1

Contents

Contents
1 Introduction .. 17

1.1 Target group .. 17

1.2 Industrial robot documentation ... 17

1.3 Representation of warnings and notes .. 17

1.4 Trademarks .. 18

1.5 Terms used .. 18

2 Product description ... 21

2.1 Overview of the robot system .. 21

2.2 Overview of the software components ... 21

2.3 Overview of KUKA Sunrise.OS .. 22

2.4 Overview of KUKA Sunrise.Workbench ... 23

2.5 Intended use of the system software ... 24

3 Safety .. 25

3.1 Legal framework .. 25

3.1.1 Liability .. 25

3.1.2 Intended use of the industrial robot .. 25

3.1.3 EC declaration of conformity and declaration of incorporation 26

3.2 Safety functions ... 26

3.2.1 Terms used ... 27

3.2.2 Personnel .. 28

3.2.3 Workspace, safety zone and danger zone ... 29

3.2.4 Safety-oriented functions .. 30

3.2.4.1 EMERGENCY STOP device ... 31

3.2.4.2 Enabling device ... 31

3.2.4.3 “Operator safety” signal ... 32

3.2.4.4 External EMERGENCY STOP device ... 32

3.2.4.5 External safety stop 1 (path-maintaining) ... 32

3.2.4.6 External enabling device .. 33

3.2.4.7 External safe operational stop ... 33

3.2.5 Triggers for safety-oriented stop reactions ... 33

3.2.6 Non-safety-oriented functions ... 34

3.2.6.1 Mode selection ... 34

3.2.6.2 Software limit switches .. 35

3.3 Additional protective equipment ... 36

3.3.1 Jog mode .. 36

3.3.2 Labeling on the industrial robot ... 36

3.3.3 External safeguards .. 36

3.4 Safety measures .. 37

3.4.1 General safety measures .. 37

3.4.2 Transportation ... 38

3.4.3 Start-up and recommissioning .. 38

3.4.4 Manual mode .. 40

3.4.5 Automatic mode .. 41

3.4.6 Maintenance and repair .. 41

3.4.7 Decommissioning, storage and disposal .. 42

3.4.8 Safety measures for “single point of control” .. 42
3 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

4 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3.5 Applied norms and directives .. 43

4 Installing KUKA Sunrise.Workbench ... 45

4.1 PC system requirements ... 45

4.2 Installing Sunrise.Workbench .. 45

4.3 Uninstalling Sunrise.Workbench .. 45

5 Operation of KUKA Sunrise.Workbench ... 47

5.1 Starting Sunrise.Workbench .. 47

5.2 Overview of the user interface of Sunrise.Workbench .. 47

5.2.1 Repositioning the views .. 49

5.2.2 Closing views and files ... 49

5.2.3 Displaying different perspectives on the user interface .. 49

5.2.4 Toolbar – Programming perspective ... 50

5.3 Creating a Sunrise project with a template .. 51

5.4 Creating a new robot application ... 54

5.4.1 Creating a new Java package .. 54

5.4.2 Creating a robot application with a package ... 54

5.4.3 Creating a robot application for an existing package .. 54

5.5 Setting the robot application as the default application ... 54

5.6 Creating a new background task ... 55

5.6.1 Creating a background task with a package ... 55

5.6.2 Creating a background task for an existing package .. 56

5.7 Workspace ... 56

5.7.1 Creating a new workspace ... 56

5.7.2 Switching to an existing workspace .. 56

5.7.3 Switching between the most recently opened workspaces 56

5.7.4 Archiving projects ... 57

5.7.5 Loading projects from archive to the workspace .. 57

5.7.6 Loading projects from the directory to the workspace .. 57

5.8 Sunrise projects with referenced Java projects ... 57

5.8.1 Creating a new Java project ... 58

5.8.1.1 Inserting robot-specific class libraries in a Java project 58

5.8.2 Referencing Java projects .. 59

5.8.3 Canceling the reference to Java projects ... 59

5.9 Renaming an element in the Package Explorer .. 59

5.9.1 Renaming a project or Java package ... 59

5.9.2 Renaming a Java file .. 59

5.10 Removing an element from Package Explorer .. 60

5.10.1 Deleting an element from a project ... 60

5.10.2 Removing a project from Package Explorer ... 60

5.10.3 Deleting a project from the workspace ... 60

5.11 Activating the automatic change recognition ... 60

5.12 Displaying release notes ... 61

6 Operating the KUKA smartPAD .. 63

6.1 KUKA smartPAD control panel .. 63

6.1.1 Front view ... 63

6.1.2 Rear view ... 65
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Contents
6.1.3 Disconnecting and connecting the smartPAD .. 66

6.2 KUKA smartHMI user interface .. 68

6.2.1 Navigation bar ... 69

6.2.2 Status display ... 70

6.2.3 Keypad .. 71

6.2.4 Station level .. 71

6.2.5 Robot level .. 73

6.3 Calling the main menu ... 75

6.4 Setting the user interface language ... 76

6.5 Changing user group ... 77

6.6 CRR mode – controlled robot retraction .. 77

6.7 Changing the operating mode .. 78

6.8 Activating the user keys ... 79

6.9 Resuming the safety controller .. 80

6.10 Coordinate systems ... 80

6.11 “Override” window .. 82

6.12 “Jogging type” window ... 82

6.13 Jogging the robot ... 84

6.13.1 “Jogging options” window .. 84

6.13.2 Setting the jog override ... 86

6.13.3 Axis-specific jogging with the jog keys .. 87

6.13.4 Cartesian jogging with the jog keys .. 87

6.13.4.1 Null space motion .. 88

6.14 Manually guiding the robot ... 89

6.15 Frame management ... 89

6.15.1 “Frames” view .. 89

6.15.2 Teaching frames ... 91

6.15.3 Teaching frames with the hand guiding device ... 93

6.15.4 Manually addressing frames ... 93

6.16 Program execution ... 94

6.16.1 Selecting a robot application ... 94

6.16.2 Setting the program run mode .. 96

6.16.2.1 Program run modes ... 97

6.16.3 Setting the manual override .. 97

6.16.4 Starting a robot application forwards (manually) .. 98

6.16.5 Starting a robot application forwards (automatically) .. 98

6.16.6 Resetting a robot application .. 98

6.16.7 Repositioning the robot after leaving the path .. 98

6.16.8 Stopping a background application manually ... 99

6.16.9 Starting a background application manually ... 99

6.17 Display functions .. 100

6.17.1 Displaying the end frame of the motion currently being executed 100

6.17.2 Displaying the axis-specific actual position ... 101

6.17.3 Displaying the Cartesian actual position ... 101

6.17.4 Displaying axis-specific torques .. 102

6.17.5 Displaying an I/O group and changing the value of an output 103

6.17.6 Displaying information about the robot and robot controller 105

6.18 Backup Manager .. 106

6.18.1 Overview of Backup Manager ... 106
5 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.18.2 Backing up data manually .. 109

6.18.3 Restoring data manually ... 109

6.18.4 Configuring the network path for restoration .. 109

7 Start-up and recommissioning ... 111

7.1 Switching the robot controller on/off .. 111

7.1.1 Switching on the robot controller and starting the System Software 111

7.1.2 Switching off the robot controller .. 111

7.2 smartPAD software update .. 111

7.3 Performing a PDS firmware update ... 112

7.4 Position mastering ... 112

7.4.1 Mastering axes ... 112

7.4.2 Manually unmastering axes .. 113

7.5 Calibration ... 113

7.5.1 Tool calibration ... 113

7.5.1.1 TCP calibration: XYZ 4-point method .. 114

7.5.1.2 Defining the orientation: ABC 2-point method ... 116

7.5.1.3 Defining the orientation: ABC world method ... 118

7.5.2 Calibrating the base: 3-point method ... 119

7.6 Determining tool load data ... 121

8 Brake test ... 125

8.1 Overview of the brake test ... 125

8.2 Creating the brake test application from the template ... 127

8.2.1 Adapting the brake test application for testing against the minimum brake holding torque
130

8.2.2 Changing the motion sequence for torque value determination 130

8.2.3 Changing the starting position for the brake test .. 131

8.3 Programming interface for the brake test .. 131

8.3.1 Evaluating the torques generated and determining the maximum absolute value 131

8.3.2 Polling the evaluation results of the maximum absolute torques 133

8.3.3 Creating an object for the brake test .. 134

8.3.4 Starting the execution of the brake test .. 135

8.3.5 Evaluating the brake test .. 136

8.3.5.1 Polling the results of the brake test ... 138

8.4 Performing a brake test ... 140

8.4.1 Evaluation results of the maximum absolute torques (display) 141

8.4.2 Results of the brake test (display) ... 141

9 Project management ... 143

9.1 Sunrise projects – overview ... 143

9.2 Frame management .. 143

9.2.1 Creating a new frame ... 144

9.2.2 Designating a frame as a base ... 144

9.2.3 Moving a frame ... 145

9.2.4 Deleting a frame ... 145

9.2.5 Displaying/editing frame properties .. 146

9.2.6 Properties view for frames in application data .. 146

9.2.6.1 “General” tab ... 146

9.2.6.2 “Transformation” tab .. 147
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Contents
9.2.6.3 “Redundancy” tab ... 147

9.2.6.4 “Teach information” tab ... 147

9.2.6.5 “Measurement” tab ... 147

9.2.7 Inserting a frame in a motion instruction ... 148

9.3 Object management ... 148

9.3.1 Geometric structure of tools .. 148

9.3.2 Geometric structure of workpieces ... 149

9.3.3 Creating a tool or workpiece ... 150

9.3.4 Creating a frame for a tool or workpiece ... 150

9.3.5 Displaying/editing frame properties .. 151

9.3.6 Properties view for frames in object templates ... 151

9.3.6.1 “General” tab ... 151

9.3.6.2 “Transformation” tab .. 151

9.3.6.3 “Safety” tab .. 152

9.3.6.4 “Measurement” tab ... 152

9.3.7 Defining a default motion frame .. 152

9.3.8 Load data .. 153

9.3.8.1 Entering load data ... 154

9.3.9 Safety-oriented tools ... 154

9.3.9.1 Configuring a safety-oriented tool .. 155

9.3.9.2 Tool properties – Load data tab .. 156

9.3.9.3 Tool properties – Safety tab .. 157

9.3.10 Safety-oriented workpieces .. 158

9.3.10.1 Configuring a safety-oriented workpiece ... 159

9.3.10.2 Workpiece properties – Load data tab .. 160

9.3.11 Copying object templates ... 160

9.4 User administration .. 160

9.4.1 Changing the password .. 161

9.5 Project synchronization, overview .. 161

9.5.1 Transferring the project to the robot controller .. 162

9.5.2 Synchronizing a project .. 163

9.6 Loading the project from the robot controller ... 164

9.7 Converting the safety configuration to a new software version 164

10 Station configuration and installation ... 167

10.1 Station configuration overview ... 167

10.2 “Software” tab ... 167

10.2.1 Eliminating errors in the software catalog ... 167

10.3 “Configuration” tab ... 168

10.3.1 IP address range for KUKA Line Interface (KLI) .. 168

10.3.2 Manual guidance support .. 169

10.3.3 General safety settings .. 169

10.3.4 Configuration parameters for calibration ... 170

10.3.5 Configuration parameters for Backup Manager .. 171

10.4 “Installation” tab .. 172

10.4.1 Installing system software on the robot controller ... 172

10.5 Software options .. 174

10.5.1 Installing a software option ... 174

10.5.2 Installing or updating the virus scanner .. 176
7 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
10.5.3 Installing a language package .. 176

10.5.4 Uninstalling a software option ... 176

11 Bus configuration .. 179

11.1 Configuration and I/O mapping in WorkVisual – overview .. 179

11.2 Overview of field buses ... 179

11.3 Creating a new I/O configuration ... 180

11.4 Opening an existing I/O configuration ... 180

11.5 Creating Sunrise I/Os .. 181

11.5.1 “Create I/O signals” window .. 182

11.5.2 Creating an I/O group and inputs/outputs within the group 183

11.5.3 Editing an I/O group ... 184

11.5.4 Deleting an I/O group ... 184

11.5.5 Changing an input/output of a group .. 184

11.5.6 Deleting an input/output of a group .. 184

11.5.7 Exporting an I/O group as a template ... 184

11.5.8 Importing an I/O group from a template .. 185

11.6 Mapping the bus I/Os .. 185

11.6.1 I/O Mapping window .. 185

11.6.2 Buttons in the “I/O Mapping” window ... 186

11.6.3 Mapping Sunrise I/Os ... 187

11.7 Exporting the I/O configuration to the Sunrise project ... 187

12 External control ... 189

12.1 Overview of external controller .. 189

12.2 Configuring the external controller via the I/O system ... 189

12.3 Configuring the external controller via the UDP interface .. 190

12.4 External controller input signals ... 190

12.5 External controller output signals .. 191

12.6 Signal diagrams ... 192

12.7 Configuring the external controller in the project settings .. 193

12.7.1 Input/output parameters of the I/O interface ... 194

12.7.2 Input/output parameters of the UDP interface .. 195

12.8 Formatting of the UDP data packets ... 195

12.8.1 Status messages of the robot controller ... 195

12.8.2 Controller messages of the external client ... 198

12.9 External control via UDP – Start-up example .. 199

12.9.1 Starting up the external controller ... 199

12.9.2 Programming the external controller .. 200

12.10 Configuring the signal outputs for a project that is not externally controlled 201

12.10.1 Output parameters of the I/O interface ... 202

12.10.2 Output parameters of the UDP interface .. 202

13 Safety configuration .. 203

13.1 Overview of safety configuration ... 203

13.2 Safety concept ... 203

13.3 Permanent Safety Monitoring .. 206

13.4 Event-driven Safety Monitoring ... 207

13.5 Atomic Monitoring Functions ... 208
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Contents
13.5.1 Standard AMFs ... 209

13.5.2 Parameterizable AMFs ... 210

13.5.3 Extended AMFs .. 212

13.5.4 Availability of the AMFs depending on the kinematic system 213

13.6 Worst-case reaction times of the safety functions in the case of a single fault 213

13.6.1 Worst-case reaction times of the LBR iiwa monitoring functions 214

13.6.2 Worst-case reaction times of the KMP 400 monitoring functions 217

13.7 Deactivation of safety functions via an input .. 219

13.8 Safety configuration (SafetyConfiguration.sconf file) ... 220

13.8.1 Overview of safety configuration and start-up .. 221

13.8.2 Opening the safety configuration .. 222

13.8.2.1 Evaluating the safety configuration .. 222

13.8.2.2 Overview of the graphical user interface for the safety configuration 223

13.8.3 Configuring the safety functions of the PSM mechanism 224

13.8.3.1 Opening the Customer PSM table .. 224

13.8.3.2 Creating safety functions for the PSM mechanism .. 226

13.8.3.3 Deleting safety functions of the PSM mechanism ... 226

13.8.3.4 Editing existing safety functions of the PSM mechanism 226

13.8.4 Configuring the safe states of the ESM mechanism ... 227

13.8.4.1 Adding a new ESM state ... 227

13.8.4.2 Opening a table for an ESM state .. 228

13.8.4.3 Deleting an ESM state ... 229

13.8.4.4 Creating a safety function for the ESM state ... 229

13.8.4.5 Deleting a safety function of an ESM state .. 230

13.8.4.6 Editing an existing safety function of an ESM state ... 230

13.8.4.7 Deactivating the ESM mechanism ... 230

13.8.4.8 Switching between ESM states ... 230

13.8.5 Mapping safety-oriented tools ... 231

13.9 Activating the safety configuration ... 233

13.9.1 Deactivating the safety configuration .. 233

13.9.2 Restoring the safety configuration .. 234

13.10 Using and parameterizing the AMFs .. 234

13.10.1 Evaluating the safety equipment on the KUKA smartPAD 234

13.10.2 Evaluating the operating mode ... 235

13.10.3 Evaluating the motion enable ... 235

13.10.4 Monitoring safe inputs ... 235

13.10.5 Manual guidance with enabling device and velocity monitoring 236

13.10.5.1 Monitoring of enabling switches on hand guiding devices 236

13.10.5.2 Monitoring functions during manual guidance ... 238

13.10.5.3 Velocity monitoring during manual guidance ... 238

13.10.6 Evaluating the position referencing ... 239

13.10.7 Evaluating the torque referencing ... 239

13.10.8 Velocity monitoring functions .. 240

13.10.8.1 Defining axis-specific velocity monitoring .. 240

13.10.8.2 Defining Cartesian velocity monitoring .. 241

13.10.8.3 Direction-specific monitoring of Cartesian velocity .. 243

13.10.9 Monitoring spaces ... 248

13.10.9.1 Defining Cartesian workspaces ... 250

13.10.9.2 Defining Cartesian protected spaces ... 252

13.10.9.3 Defining axis-specific monitoring spaces ... 255
9 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.10.10 Monitoring the tool orientation .. 256

13.10.11 Standstill monitoring (safe operational stop) .. 259

13.10.12 Activation delay for safety function ... 259

13.10.13 Monitoring of forces and torques .. 260

13.10.13.1 Axis torque monitoring ... 260

13.10.13.2 Collision detection ... 261

13.10.13.3 TCP force monitoring .. 262

13.10.13.4 Direction-specific monitoring of the external force on the TCP 264

13.11 Example of a safety configuration ... 268

13.11.1 Task .. 268

13.11.2 Requirement ... 269

13.11.3 Suggested solution for the task .. 269

13.12 Position and torque referencing ... 271

13.12.1 Position referencing .. 271

13.12.2 Torque referencing ... 273

13.12.3 Creating an application for position and torque referencing 274

13.12.4 External position referencing .. 275

13.12.4.1 Configuring the input for external position referencing 275

13.13 Safety acceptance overview .. 275

13.13.1 Checklist – System safety functions ... 276

13.13.2 Checklist for tool selection table ... 280

13.13.3 Checklists for safety-oriented tools ... 281

13.13.3.1 Pickup frame for fixed tools ... 281

13.13.3.2 Pickup frame for activatable tools ... 282

13.13.3.3 Tool orientation .. 283

13.13.3.4 Tool-specific velocity component .. 283

13.13.3.5 Geometry data of the tool .. 284

13.13.3.6 Load data of the tool .. 285

13.13.4 Checklist for safety-oriented workpieces .. 286

13.13.5 Checklist for rows used in the PSM tables ... 288

13.13.6 Checklists for ESM states ... 288

13.13.6.1 Used ESM states ... 288

13.13.6.2 Non-used ESM states ... 290

13.13.7 Checklists for AMFs used ... 290

13.13.7.1 AMF smartPAD Emergency Stop ... 290

13.13.7.2 AMF smartPAD enabling switch inactive .. 290

13.13.7.3 AMF smartPAD enabling switch panic active ... 290

13.13.7.4 AMF Hand guiding device enabling inactive .. 290

13.13.7.5 AMF Hand guiding device enabling active .. 291

13.13.7.6 AMF Test mode .. 291

13.13.7.7 AMF Automatic mode .. 292

13.13.7.8 AMF Reduced-velocity mode ... 292

13.13.7.9 AMF High-velocity mode ... 292

13.13.7.10 AMF Motion enable .. 292

13.13.7.11 AMF Input signal .. 292

13.13.7.12 AMF Standstill monitoring of all axes ... 292

13.13.7.13 AMF Axis torque monitoring .. 293

13.13.7.14 AMF Axis velocity monitoring .. 293

13.13.7.15 AMF Position referencing ... 293

13.13.7.16 AMF Torque referencing ... 293
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Contents
13.13.7.17 AMF Axis range monitoring .. 294

13.13.7.18 AMF Cartesian velocity monitoring .. 294

13.13.7.19 AMF Cartesian workspace monitoring / Cartesian protected space monitoring
294

13.13.7.20 AMF Collision detection .. 295

13.13.7.21 AMF TCP force monitoring ... 295

13.13.7.22 Base-related TCP force component AMF .. 296

13.13.7.23 AMF Time delay .. 297

13.13.7.24 AMF Tool orientation ... 297

13.13.7.25 AMF Tool-related velocity component ... 298

13.13.8 Checklists – General safety settings ... 299

13.13.8.1 smartPAD unplugging allowed ... 299

13.13.8.2 Allow muting via input .. 299

13.13.8.3 Allow external position referencing ... 300

13.13.9 Creating a safety configuration report ... 300

14 Basic principles of motion programming ... 303

14.1 Overview of motion types ... 303

14.2 PTP motion type .. 303

14.3 LIN motion type ... 304

14.4 CIRC motion type ... 304

14.5 SPL motion type ... 305

14.6 Spline motion type ... 305

14.6.1 Velocity profile for spline motions ... 306

14.6.2 Modifications to spline blocks ... 308

14.6.3 LIN-SPL-LIN transition .. 310

14.7 Manual guidance motion type .. 311

14.8 Approximate positioning ... 312

14.9 Orientation control with LIN, CIRC, SPL .. 314

14.9.1 CIRC – reference system for the orientation control ... 316

14.9.2 CIRC – combinations of reference system and type for the orientation control 317

14.10 Redundancy information .. 319

14.10.1 Redundancy angle .. 320

14.10.2 Status .. 320

14.10.3 Turn .. 321

14.11 Singularities ... 321

14.11.1 Kinematic singularities .. 321

14.11.2 System-dependent singularities .. 323

15 Programming ... 325

15.1 Java Editor ... 325

15.1.1 Opening a robot application in the Java Editor ... 325

15.1.2 Structure of a robot application ... 325

15.1.3 Edit functions .. 326

15.1.3.1 Renaming a variable .. 326

15.1.3.2 Auto-complete .. 326

15.1.3.3 Templates – Fast entry of Java statements ... 327

15.1.3.4 Creating user-specific templates ... 328

15.1.3.5 Extracting methods .. 328

15.1.4 Displaying Javadoc information .. 329
11 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.1.4.1 Configuration of the Javadoc browser ... 330

15.2 Symbols and fonts ... 333

15.3 Data types ... 333

15.3.1 Declaration ... 334

15.3.2 Initialization ... 334

15.3.2.1 Primitive data types ... 335

15.3.2.2 Complex data types ... 335

15.3.3 Dependency Injection ... 336

15.3.3.1 Dependency injection for Sunrise types .. 336

15.3.3.2 Dependency injection for dedicated types ... 339

15.4 Polling individual values of a vector ... 341

15.5 Network communication via UDP and TCP/IP .. 342

15.6 Motion programming: PTP, LIN, CIRC .. 342

15.6.1 Synchronous and asynchronous motion execution .. 342

15.6.2 PTP .. 343

15.6.3 LIN .. 344

15.6.4 CIRC ... 344

15.6.5 LIN REL .. 345

15.6.6 MotionBatch ... 346

15.7 Motion programming: spline .. 347

15.7.1 Programming tips for spline motions .. 347

15.7.2 Creating a CP spline block ... 348

15.7.3 Creating a JP spline block .. 349

15.7.4 Using spline in a motion instruction .. 350

15.8 Motion parameters ... 350

15.8.1 Programming axis-specific motion parameters .. 352

15.9 Programming manual guidance ... 352

15.9.1 Axis-specific limits for manual guidance ... 354

15.10 Using tools and workpieces in the program ... 357

15.10.1 Integrating tools and workpieces .. 357

15.10.2 Attaching tools and workpieces to the robot ... 358

15.10.2.1 Attaching a tool to the robot flange .. 358

15.10.2.2 Attaching a workpiece to other objects .. 359

15.10.2.3 Detaching objects .. 361

15.10.3 Moving tools and workpieces ... 361

15.10.4 Integrating dedicated object classes with dependency injection 362

15.10.5 Commanding load changes to the safety controller ... 365

15.11 Using inputs/outputs in the program .. 367

15.11.1 Integrating an I/O group ... 369

15.11.2 Reading inputs/outputs ... 369

15.11.3 Setting outputs ... 370

15.12 Polling axis torques ... 371

15.13 Reading Cartesian forces and torques .. 372

15.13.1 Polling external Cartesian forces and torques .. 372

15.13.2 Polling forces and torques individually ... 373

15.13.3 Checking the reliability of the calculated values ... 374

15.14 Polling the robot position ... 375

15.14.1 Polling the axis-specific actual or setpoint position .. 376

15.14.2 Polling the Cartesian actual or setpoint position ... 377
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Contents
15.14.3 Polling the Cartesian setpoint/actual value difference .. 378

15.15 HOME position ... 379

15.15.1 Changing the HOME position ... 379

15.16 Polling system states ... 380

15.16.1 Polling the HOME position .. 380

15.16.2 Polling the mastering state ... 381

15.16.3 Polling “ready for motion” .. 381

15.16.3.1 Reacting to changes in the “ready for motion” signal 381

15.16.4 Polling the robot activity .. 382

15.16.5 Polling the state of safety signals ... 382

15.16.5.1 Polling the referencing state .. 384

15.16.5.2 Reacting to a change in state of safety signals ... 385

15.17 Changing and polling the program run mode ... 386

15.18 Changing and polling the override ... 387

15.18.1 Reacting to an override change .. 388

15.19 Conditions .. 389

15.19.1 Complex conditions .. 391

15.19.2 Axis torque condition .. 391

15.19.3 Force condition ... 392

15.19.3.1 Condition for Cartesian force from all directions .. 394

15.19.3.2 Condition for normal force ... 395

15.19.3.3 Condition for shear force ... 396

15.19.4 Force component condition .. 398

15.19.5 Condition for Cartesian torque .. 400

15.19.5.1 Condition for Cartesian torque from all directions .. 401

15.19.5.2 Condition for torque ... 402

15.19.5.3 Condition for tilting torque .. 403

15.19.6 Torque component condition .. 404

15.19.7 Path-related condition ... 405

15.19.8 Condition for Boolean signals ... 408

15.19.9 Condition for the range of values of a signal .. 408

15.20 Break conditions for motion commands ... 409

15.20.1 Defining break conditions ... 409

15.20.2 Evaluating the break conditions .. 410

15.20.2.1 Polling a break condition .. 411

15.20.2.2 Polling the robot position at the time of termination ... 412

15.20.2.3 Polling a terminated motion (spline block, MotionBatch) 412

15.21 Path-related switching actions (Trigger) .. 413

15.21.1 Programming triggers ... 413

15.21.2 Programming a path-related switching action ... 414

15.21.3 Evaluating trigger information ... 415

15.22 Monitoring processes (Monitoring) ... 417

15.22.1 Listener for monitoring conditions ... 417

15.22.2 Creating a listener object to monitor the condition .. 418

15.22.3 Registering a listener for notification of change in state 419

15.22.4 Activating or deactivating the notification service for listeners 420

15.22.5 Programming example for monitoring ... 421

15.23 Blocking wait for condition ... 421

15.24 Recording and evaluating data .. 423
13 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.24.1 Creating an object for data recording ... 423

15.24.2 Specifying data to be recorded ... 424

15.24.3 Starting data recording ... 426

15.24.4 Ending data recording .. 428

15.24.5 Polling states from the DataRecorder object .. 428

15.24.6 Example program for data recording .. 429

15.25 Defining user keys ... 430

15.25.1 Creating a user key bar .. 431

15.25.2 Adding user keys to the bar .. 432

15.25.3 Defining the function of a user key ... 433

15.25.4 Labeling and graphical assignment of the user key bar 435

15.25.4.1 Assigning a text element ... 436

15.25.4.2 Assigning an LED icon .. 437

15.25.5 Identifying safety-critical user keys ... 438

15.25.6 Publishing a user key bar ... 439

15.26 Message programming .. 439

15.26.1 Programming user messages ... 439

15.26.2 Programming user dialogs .. 441

15.27 Program execution control ... 442

15.27.1 Pausing an application ... 442

15.27.2 Pausing motion execution .. 442

15.27.3 FOR loop .. 443

15.27.4 WHILE loop .. 444

15.27.5 DO WHILE loop .. 445

15.27.6 IF ELSE branch .. 445

15.27.7 SWITCH branch ... 447

15.27.8 Examples of nested loops .. 449

15.28 Continuing a paused application in Automatic mode (recovery) 450

15.29 Error treatment .. 452

15.29.1 Handling of failed motion commands ... 452

15.29.2 Handling of failed synchronous motion commands .. 452

15.29.3 Handling of failed asynchronous motion commands .. 454

16 Background tasks .. 459

16.1 Using background tasks .. 459

16.2 Cyclic background task .. 461

16.3 Non-cyclic background task ... 463

16.4 Data exchange between tasks .. 464

16.4.1 Declaring task functions ... 465

16.4.2 Implementing task functions ... 466

16.4.3 Creating the providing task ... 467

16.4.4 Using task functions ... 469

17 Programming with a compliant robot .. 473

17.1 Sensors and control ... 473

17.2 Available controllers – overview .. 473

17.3 Using controllers in robot applications ... 473

17.3.1 Creating a controller object ... 474

17.3.2 Defining controller parameters ... 474
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Contents
17.3.3 Transferring the controller object as a motion parameter 474

17.4 Position controller .. 475

17.5 Cartesian impedance controller ... 475

17.5.1 Calculation of the forces on the basis of Hooke’s law .. 475

17.5.2 Parameterization of the Cartesian impedance controller 477

17.5.2.1 Representation of Cartesian degrees of freedom .. 478

17.5.2.2 Defining controller parameters for individual degrees of freedom 478

17.5.2.3 Controller parameters specific to the degrees of freedom 479

17.5.2.4 Controller parameters independent of the degrees of freedom 480

17.6 Cartesian impedance controller with overlaid force oscillation 483

17.6.1 Overlaying a simple force oscillation .. 483

17.6.2 Overlaying superposed force oscillations (Lissajous curves) 484

17.6.3 Parameterization of the impedance controller with overlaid force oscillation 485

17.6.3.1 Controller parameters specific to the degrees of freedom 486

17.6.3.2 Controller parameters independent of the degrees of freedom 488

17.7 Static methods for impedance controller with superposed force oscillation 490

17.7.1 Overlaying a constant force .. 490

17.7.2 Overlaying a simple force oscillation .. 491

17.7.3 Overlaying a Lissajous oscillation ... 492

17.7.4 Overlaying a spiral-shaped force oscillation ... 493

17.8 Axis-specific impedance controller ... 495

17.8.1 Parameterization of the axis-specific impedance controller 495

17.8.2 Methods of the axis-specific impedance controller ... 495

17.9 Holding the position under servo control .. 496

18 Diagnosis ... 499

18.1 Field bus diagnosis .. 499

18.1.1 Displaying general field bus errors ... 499

18.1.2 Displaying the error state of I/Os and I/O groups ... 499

18.2 Displaying the protocol ... 499

18.2.1 “Protocol” view ... 500

18.2.2 Filtering log entries ... 501

18.3 Display of error messages (Applications view) .. 502

18.4 Displaying messages of the virus scanner ... 505

18.5 Collecting diagnostic information for error analysis at KUKA 505

18.5.1 Creating a diagnosis package with the smartHMI .. 506

18.5.2 Creating a diagnosis package with the smartPAD .. 506

18.5.3 Creating a diagnosis package with Sunrise.Workbench 506

18.5.4 Loading existing diagnosis packages from the robot controller 507

19 Remote debugging .. 509

19.1 Debugging session sequence .. 509

19.1.1 Remote debugging of tasks .. 510

19.1.2 Starting the debugging session .. 511

19.1.3 Ending the debugging session .. 511

19.2 Debugging tasks .. 512

19.2.1 Remote debugging of a robot application ... 513

19.2.2 Remote debugging of a background task ... 514

19.3 Fundamentals of remote debugging .. 514
15 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
19.3.1 Overview of user interface – “Debugging” perspective ... 514

19.3.2 Break points ... 515

19.3.2.1 Creating and deleting break points .. 516

19.3.2.2 Deactivating and activating break points ... 517

19.3.2.3 Editing the properties of the break points .. 517

19.3.2.4 Overview of the “Break points” view .. 518

19.3.2.5 Conditional break point .. 519

19.3.2.6 Suspend thread property ... 521

19.3.3 Command pointer ... 521

19.3.4 Overview of the “Debugging” view .. 522

19.3.5 Overview of the toolbar in the “Debugging” view .. 523

19.3.5.1 Continuing execution (Resume) .. 524

19.3.5.2 Jump into the method (Step in) ... 525

19.3.5.3 Executing a method completely (Step over) .. 525

19.3.5.4 Terminating the executed method (Step back) ... 526

19.3.5.5 Executing code sections again (Back to frame) .. 527

19.3.5.6 Defining the code section to be executed (Execution to line) 528

19.3.5.7 Pausing debugging (Pause) .. 529

19.3.6 Variables view .. 529

19.3.6.1 Displaying and modifying variables ... 531

19.3.6.2 Expanded context help for variables ... 532

19.3.7 Monitoring processes ... 533

19.3.7.1 Adding new monitoring expressions .. 534

19.3.7.2 Deleting monitoring expressions ... 535

19.3.7.3 Evaluating monitoring expressions .. 535

19.3.8 Modifying source code .. 536

19.3.8.1 Impermissible modification of the source code ... 536

19.3.8.2 Permissible modification of the source code ... 537

20 Appendix .. 539

20.1 Compatibility and migration of projects .. 539

20.1.1 Modified task functions – adapting the programming ... 539

21 KUKA Service ... 541

21.1 Requesting support ... 541

21.2 KUKA Customer Support ... 541

Index ... 549
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

1 Introduction
1 Introduction

1.1 Target group

This documentation is aimed at users with the following knowledge and skills:

 Advanced knowledge of the robot controller system

 Advanced Java programming skills

1.2 Industrial robot documentation

The industrial robot documentation consists of the following parts:

 Documentation for the manipulator

 Documentation for the robot controller

 Operating and programming instructions for the System Software

 Instructions for options and accessories

 Parts catalog on storage medium

Each of these sets of instructions is a separate document.

1.3 Representation of warnings and notes

Safety These warnings are relevant to safety and must be observed.

This warning draws attention to procedures which serve to prevent or remedy
emergencies or malfunctions:

Notices These notices serve to make your work easier or contain references to further
information.

t

t

For optimal use of our products, we recommend that our customers
take part in a course of training at KUKA College. Information about
the training program can be found at www.kuka.com or can be ob-

tained directly from our subsidiaries.

These warnings mean that it is certain or highly probable
that death or severe injuries will occur, if no precautions

are taken.

These warnings mean that death or severe injuries may
occur, if no precautions are taken.

These warnings mean that minor injuries may occur, if
no precautions are taken.

These warnings mean that damage to property may oc-
cur, if no precautions are taken.

These warnings contain references to safety-relevant information or
general safety measures.
These warnings do not refer to individual hazards or individual pre-

cautionary measures.

Procedures marked with this warning must be followed
exactly.
17 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

18 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
1.4 Trademarks

Java is a trademark of Sun Microsystems (Oracle Corporation).

Windows is a trademark of Microsoft Corporation.

EtherCAT® is a registered trademark and patented technology,
licensed by Beckhoff Automation GmbH, Germany.

1.5 Terms used

Tip to make your work easier or reference to further information.

Term Description

AMF Atomic Monitoring Function

Smallest unit of a monitoring function

API Application Programming Interface

Interface for programming applications.

ESM Event-Driven Safety Monitoring

Safety monitoring functions which are activated using defined events

Exception Exception or exceptional situation

An exception describes a procedure for forwarding information about
certain program statuses, mainly error states, to other program levels for
further processing.

Frame A frame is a 3-dimensional coordinate system that is described by its
position and orientation relative to a reference system.

Points in space can be easily defined using frames. Frames are often
arranged hierarchically in a tree structure.

FSoE Fail Safe over EtherCAT

FSoE is a protocol for transferring safety-relevant data via EtherCAT in
conjunction with an FSoE master and an FSoE slave.

HRC Human-robot collaboration

Javadoc Javadoc is a documentation generated from specific Java comments.

JRE Java Runtime Environment

Runtime environment of the Java programming language

KLI KUKA Line Interface

Ethernet interface of the robot controller (not real-time-capable) for
external communication.

KMP KUKA Mobile Platform

Designation for mobile platforms from KUKA

KUKA RoboticsAPI Java programming interface for KUKA robots

The RoboticsAPI is an object-oriented Java interface for controlling
robots and peripheral devices.

KUKA smartHMI see “smartHMI”

KUKA smartPAD see “smartPAD”

KUKA Sunrise
Cabinet

Control hardware for operating industrial robots
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

1 Introduction
KUKA Sunrise.OS KUKA Sunrise.Operating System

System software for industrial robots which are operated with the robot
controller KUKA Sunrise Cabinet

HRC Human-robot collaboration

PROFINET PROFINET is an Ethernet-based field bus.

PROFIsafe PROFIsafe is a PROFINET-based safety interface for connecting a
safety PLC to the robot controller. (PLC = master, robot controller =
slave)

PSM Permanent Safety Monitoring

Safety monitoring functions which are permanently active

smartHMI Smart human-machine interface

The smartHMI is the user interface of the robot controller.

smartPAD The smartPAD is the hand-held control panel for the robot cell (station).
It has all the operator control and display functions required for opera-
tion of the station.

SPS (PLC) Programmable logic controller

TCP Tool Center Point

The TCP is the working point of a tool. Multiple working points can be
defined for a tool.

Term Description
19 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

20 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

2 Product description
2 Product description

2.1 Overview of the robot system

A robot system (>>> Fig. 2-1) comprises all the assemblies of an industrial
robot, including the manipulator (mechanical system and electrical installa-
tions), controller, connecting cables, end effector (tool) and other equipment.

The industrial robot consists of the following components:

 Manipulator

 KUKA Sunrise Cabinet robot controller

 KUKA smartPAD control panel

 Connecting cables

 Software

 Options, accessories

2.2 Overview of the software components

The following software components are used:

 KUKA Sunrise.OS 1.11

 KUKA Sunrise.Workbench 1.11

 WorkVisual 4.0

2

t

s

Fig. 2-1: Overview of robot system

1 Connecting cable to the smartPAD

2 KUKA smartPAD control panel

3 Manipulator

4 Connecting cable to KUKA Sunrise Cabinet robot controller

5 KUKA Sunrise Cabinet robot controller
21 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

22 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
2.3 Overview of KUKA Sunrise.OS

Description KUKA Sunrise.OS is a system software package for industrial robots in which
programming and operator control tasks are strictly separated from one anoth-
er.

 Robot applications are programmed with KUKA Sunrise.Workbench.

 A robot cell (station) is operated using the KUKA smartPAD control panel.

 A station consists of a robot controller, a manipulator and further devices.

 A station may carry out multiple applications (tasks).

Division of tasks KUKA Sunrise.Workbench is the tool for the start-up of a station and the de-
velopment of robot applications. WorkVisual is used for bus configuration and
bus mapping.

The smartPAD is only required in the start-up phase for tasks which for prac-
tical or safety reasons cannot be carried out using KUKA Sunrise.Workbench.
The smartPAD is used e.g. for mastering axes, calibrating tools and teaching
points.

After start-up and application development, the operator can carry out simple
servicing work and operating tasks using the smartPAD. The operator cannot
change the station and safety configuration or the programming.

Overview

Fig. 2-2: Separation of operator control and programming

1 Development computer with KUKA Sunrise.Workbench (connection
via the KLI of the robot controller)

2 KUKA Sunrise Cabinet robot controller

3 Manipulator

4 KUKA smartPAD control panel

The development computer is not included in the scope of supply of
the industrial robot.

Task WorkVisual Workbench smartPAD

Station configuration

Software installation

Bus configuration/diagnosis

Bus mapping
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

2 Product description
2.4 Overview of KUKA Sunrise.Workbench

KUKA Sunrise.Workbench is the development environment for the robot cell
(station). It offers the following functionalities for start-up and application de-
velopment:

Start-up Installing the system software

 Configuring the robot cell (station)

 Editing the safety configuration

 Creating the I/O configuration

 Transferring the project to the robot controller

Application

development

 Programming robot applications in Java

 Managing projects and programs

 Editing and managing runtime data

 Project synchronization

 Remote debugging (fault location and elimination)

 Setting break points

 Program execution in single-step operation (stop after each program
line)

 Displaying and modifying application variables during program execu-
tion

 Modifying a program during execution

Configuring safety settings

Activating the safety configuration

Programming

Remote debugging

Managing/editing runtime data

Creating frames

Teaching frames

Operating mode selection

Jogging

Mastering

Calibration

Load data determination

Setting/polling outputs

Polling inputs

Starting/stopping robot applications

Starting/stopping background applications

Creating a diagnosis package

Task WorkVisual Workbench smartPAD
23 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

24 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
2.5 Intended use of the system software

Use The system software is intended exclusively for the operation of KUKA axes
in an industrial setting in conjunction with KUKA Sunrise Cabinet. KUKA axes
include, for example, industrial robots and mobile platforms.

Each version of the system software may be operated exclusively in accor-
dance with the specified system requirements.

Misuse Any use or application deviating from the intended use is deemed to be misuse
and is not allowed. KUKA Roboter GmbH is not liable for any damage resulting
from such misuse. The risk lies entirely with the user.

Examples of such misuse include:

 Operating axes that are not KUKA axes

 Operation of the system software not in accordance with the specified sys-
tem requirements

 Use of any debugger other than that provided by Sunrise.Workbench

 Use for non-industrial applications for which specific product require-
ments/standards exist (e.g. medical applications)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
3 Safety

3.1 Legal framework

3.1.1 Liability

The device described in this document is either an industrial robot or a com-
ponent thereof.

Components of the industrial robot:

 Manipulator

 Robot controller

 Hand-held control panel

 Connecting cables

 Software

 Options, accessories

The industrial robot is built using state-of-the-art technology and in accor-
dance with the recognized safety rules. Nevertheless, misuse of the industrial
robot may constitute a risk to life and limb or cause damage to the industrial
robot and to other material property.

The industrial robot may only be used in perfect technical condition in accor-
dance with its designated use and only by safety-conscious persons who are
fully aware of the risks involved in its operation. Use of the industrial robot is
subject to compliance with this document and with the declaration of incorpo-
ration supplied together with the industrial robot. Any functional disorders af-
fecting safety must be rectified immediately.

Safety infor-

mation

Safety information cannot be held against KUKA Roboter GmbH. Even if all
safety instructions are followed, this is not a guarantee that the industrial robot
will not cause personal injuries or material damage.

No modifications may be carried out to the industrial robot without the autho-
rization of KUKA Roboter GmbH. Additional components (tools, software,
etc.), not supplied by KUKA Roboter GmbH, may be integrated into the indus-
trial robot. The user is liable for any damage these components may cause to
the industrial robot or to other material property.

In addition to the Safety chapter, this document contains further safety instruc-
tions. These must also be observed.

3.1.2 Intended use of the industrial robot

The industrial robot is intended exclusively for the use designated in the “Pur-
pose” chapter of the operating instructions or assembly instructions.

Any use or application deviating from the intended use is deemed to be misuse
and is not allowed. The manufacturer is not liable for any damage resulting
from such misuse. The risk lies entirely with the user.

Operation of the industrial robot in accordance with its intended use also re-
quires compliance with the operating and assembly instructions for the individ-
ual components, with particular reference to the maintenance specifications.

The user is responsible for the performance of a risk analysis. This indicates
the additional safety equipment that is required, the installation of which is also
the responsibility of the user.

Misuse Any use or application deviating from the intended use is deemed to be misuse
and is not allowed. This includes e.g.:

f

t

y

25 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

26 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Transportation of persons and animals

 Use as a climbing aid

 Operation outside the specified operating parameters

 Use in potentially explosive environments

 Operation without the required additional safety equipment

 Outdoor operation

 Underground operation

3.1.3 EC declaration of conformity and declaration of incorporation

The industrial robot constitutes partly completed machinery as defined by the
EC Machinery Directive. The industrial robot may only be put into operation if
the following preconditions are met:

 The industrial robot is integrated into a complete system.

or: The industrial robot, together with other machinery, constitutes a com-
plete system.

or: All safety functions and safeguards required for operation in the com-
plete machine as defined by the EC Machinery Directive have been added
to the industrial robot.

 The complete system complies with the EC Machinery Directive. This has
been confirmed by means of a conformity assessment procedure.

EC declaration of

conformity

The system integrator must issue an EC declaration of conformity for the com-
plete system in accordance with the Machinery Directive. The EC declaration
of conformity forms the basis for the CE mark for the system. The industrial
robot must always be operated in accordance with the applicable national
laws, regulations and standards.

The robot controller has a CE mark in accordance with the EMC Directive and
the Low Voltage Directive.

Declaration of

incorporation

The partly completed machinery is supplied with a declaration of incorporation
in accordance with Annex II B of the EC Machinery Directive 2006/42/EC. The
assembly instructions and a list of essential requirements complied with in ac-
cordance with Annex I are integral parts of this declaration of incorporation.

The declaration of incorporation declares that the start-up of the partly com-
pleted machinery is not allowed until the partly completed machinery has been
incorporated into machinery, or has been assembled with other parts to form
machinery, and this machinery complies with the terms of the EC Machinery
Directive, and the EC declaration of conformity is present in accordance with
Annex II A.

3.2 Safety functions

Safety functions are distinguished according to the safety requirements that
they fulfill:

 Safety-oriented functions for the protection of personnel

The safety-oriented functions of the industrial robot meet the following
safety requirements:

 Category 3 and Performance Level d in accordance with EN ISO
13849-1

 SIL 2 according to EN 62061

The requirements are only met on the following condition, however:

 All safety-relevant mechanical and electromechanical components of
the industrial robot are tested for correct functioning during start-up
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
and at least once every 12 months, unless otherwise determined in ac-
cordance with a workplace risk assessment. These include:

 EMERGENCY STOP device on the smartPAD

 Enabling device on the smartPAD

 Enabling device on the media flange Touch (if present)

 Keyswitch on the smartPAD

 Safe outputs of the discrete safety interface

 Non-safety-oriented functions for the protection of machines

The non-safety-oriented functions of the industrial robot do not meet spe-
cific safety requirements:

3.2.1 Terms used

In the absence of the required operational safety func-
tions and safeguards, the industrial robot can cause per-

sonal injury or material damage. If the required safety functions or
safeguards are dismantled or deactivated, the industrial robot may not be op-
erated.

During system planning, the safety functions of the overall system
must also be planned and designed. The industrial robot must be in-
tegrated into this safety system of the overall system.

Term Description

Axis range Range within which the axis may move The axis range must be defined
for each axis.

Stopping distance Stopping distance = reaction distance + braking distance

The stopping distance is part of the danger zone.

Workspace The manipulator is allowed to move within its workspace. The work-
space is derived from the individual axis ranges.

Automatic (AUT) Operating mode for program execution. The manipulator moves at the
programmed velocity.

Operator
(User)

The user of the industrial robot can be the management, employer or
delegated person responsible for use of the industrial robot.

Danger zone The danger zone consists of the workspace and the stopping distances.

Service life The service life of a safety-relevant component begins at the time of
delivery of the component to the customer.

The service life is not affected by whether the component is used in a
robot controller or elsewhere or not, as safety-relevant components are
also subject to aging during storage.

CRR Controlled Robot Retraction

CRR is an operating mode which can be selected when the industrial
robot is stopped by the safety controller for one of the following reasons:

 Industrial robot violates an axis-specific or Cartesian monitoring
space.

 Orientation of a safety-oriented tool is outside the monitored range.

 Industrial robot violates a force or torque monitoring function.

 A position sensor is not mastered or referenced.

 A joint torque sensor is not referenced.

After changing to CRR mode, the industrial robot may once again be
moved.
27 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

28 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3.2.2 Personnel

The following persons or groups of persons are defined for the industrial robot:

 User

 Personnel

KUKA smartPAD See “smartPAD”

Manipulator The robot arm and the associated electrical installations

Safety zone The manipulator is not allowed to move within the safety zone. The
safety zone is the area outside the danger zone.

Safety stop The safety stop is triggered by the safety controller, interrupts the work
procedure and causes all robot motions to come to a standstill. The pro-
gram data are retained in the case of a safety stop and the program can
be resumed from the point of interruption.

The safety stop can be executed as a Stop category 0, Stop category 1
or Stop category 1 (path-maintaining).

Note: In this document, a safety stop of Stop category 0 is referred to as
safety stop 0, a safety stop of Stop category 1 as safety stop 1 and a
safety stop of Stop category 1 (path-maintaining) as safety stop 1 (path-
maintaining).

smartPAD The smartPAD is the hand-held control panel for the robot cell (station).
It has all the operator control and display functions required for opera-
tion of the station.

Stop category 0 The drives are deactivated immediately and the brakes are applied.

Stop category 1 The manipulator is braked and does not stay on the programmed path.
The manipulator is brought to a standstill with the drives. As soon as an
axis is at a standstill, the drive is switched off and the brake is applied.

The internal electronic drive system of the robot performs safety-ori-
ented monitoring of the braking process. Stop category 0 is executed in
the event of a fault.

Note: Stop category 1 is currently only supported by the LBR iiwa. For
other manipulators, Stop category 0 is executed.

Stop category 1 (path-
maintaining)

The manipulator is braked and stays on the programmed path. At stand-
still, the drives are deactivated and the brakes are applied.

If Stop category 1 (path-maintaining) is triggered by the safety controller,
the safety controller monitors the braking process. The brakes are
applied and the drives are switched off after 1 s at the latest. Stop cate-
gory 1 is executed in the event of a fault.

System integrator
(plant integrator)

System integrators are people who safely integrate the industrial robot
into a complete system and commission it.

T1 Test mode, Manual Reduced Velocity (<= 250 mm/s)

Note: With manual guidance in T1, the velocity is not reduced, but
rather limited through a safety-oriented velocity monitoring in accor-
dance with the safety configuration.

Note: The maximum velocity of 250 mm/s does not apply to a mobile
platform.

T2 Test mode, Manual High Velocity (> 250 mm/s permissible)

Term Description

All persons working with the industrial robot must have read and un-
derstood the industrial robot documentation, including the safety
chapter.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
User The user must observe the labor laws and regulations. This includes e.g.:

 The user must comply with his monitoring obligations.

 The user must carry out briefing at defined intervals.

Personnel Personnel must be instructed, before any work is commenced, in the type of
work involved and what exactly it entails as well as any hazards which may ex-
ist. Instruction must be carried out regularly. Instruction is also required after
particular incidents or technical modifications.

Personnel includes:

 System integrator

 Operators, subdivided into:

 Start-up, maintenance and service personnel

 Operating personnel

 Cleaning personnel

System integrator The industrial robot is safely integrated into a complete system by the system
integrator.

The system integrator is responsible for the following tasks:

 Installing the industrial robot

 Connecting the industrial robot

 Performing risk assessment

 Implementing the required safety functions and safeguards

 Issuing the EC declaration of conformity

 Attaching the CE mark

 Creating the operating instructions for the system

Operator The operator must meet the following preconditions:

 The operator must be trained for the work to be carried out.

 Work on the industrial robot must only be carried out by qualified person-
nel. These are people who, due to their specialist training, knowledge and
experience, and their familiarization with the relevant standards, are able
to assess the work to be carried out and detect any potential hazards.

3.2.3 Workspace, safety zone and danger zone

Working zones are to be restricted to the necessary minimum size in order to
prevent danger to persons or the risk of material damage. Safe axis range lim-
itations required for personnel protection are configurable.

The danger zone consists of the workspace and the stopping distances of the
manipulator. In the event of a stop, the manipulator is braked and comes to a

Installation, exchange, adjustment, operation, maintenance and re-
pair must be performed only as specified in the operating or assembly
instructions for the relevant component of the industrial robot and only

by personnel specially trained for this purpose.

Work on the electrical and mechanical equipment of the manipulator
may only be carried out by KUKA Roboter GmbH.

Further information about configuring safe axis range limitations is
contained in the “Safety configuration” chapter of the operating and
programming instructions. (>>> 13 "Safety configuration" Page 203)
29 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

30 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
stop within the danger zone. The safety zone is the area outside the danger
zone.

The danger zone must be protected by means of physical safeguards, e.g. by
light barriers, light curtains or safety fences. If there are no physical safe-
guards present, the requirements for collaborative operation in accordance
with EN ISO 10218 must be met. There must be no shearing or crushing haz-
ards at the loading and transfer areas.

3.2.4 Safety-oriented functions

The following safety-oriented functions are present and permanently defined
in the industrial robot:

 EMERGENCY STOP device

 Enabling device

 Locking of the operating mode (by means of a keyswitch)

The following safety-oriented functions are preconfigured and can be integrat-
ed into the system via the safety interface of the robot controller:

 Operator safety (= connection for the monitoring of physical safeguards)

 External EMERGENCY STOP device

 External safety stop 1 (path-maintaining)

Other safety-oriented functions may be configured, e.g.:

 External enabling device

 External safe operational stop

 Axis-specific workspace monitoring

 Cartesian workspace monitoring

 Cartesian protected space monitoring

 Velocity monitoring

Fig. 3-1: Example: axis range A1

1 Workspace 3 Stopping distance

2 Manipulator 4 Safety zone
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
 Standstill monitoring

 Axis torque monitoring

 Collision detection

The preconfigured safety functions are described in the following sections on
safety.

3.2.4.1 EMERGENCY STOP device

The EMERGENCY STOP device for the industrial robot is the EMERGENCY
STOP device on the smartPAD. The device must be pressed in the event of a
hazardous situation or emergency.

Reaction of the industrial robot if the EMERGENCY STOP device is pressed:

 The manipulator stops with a safety stop 1 (path-maintaining).

Before operation can be resumed, the EMERGENCY STOP device must be
turned to release it.

If a holder is used for the smartPAD and conceals the EMERGENCY STOP
device on the smartPAD, an external EMERGENCY STOP device must be in-
stalled that is accessible at all times.

 (>>> 3.2.4.4 "External EMERGENCY STOP device" Page 32)

3.2.4.2 Enabling device

The enabling devices of the industrial robot are the enabling switches on the
smartPAD.

There are 3 enabling switches installed on the smartPAD. The enabling
switches have 3 positions:

 Not pressed

 Center position

 Fully pressed (panic position)

In the test modes and in CRR, the manipulator can only be moved if one of the
enabling switches is held in the central position.

 Releasing the enabling switch triggers a safety stop 1 (path-maintaining).

 Fully pressing the enabling switch triggers a safety stop 1 (path-maintain-
ing).

 It is possible to hold 2 enabling switches in the center position simultane-
ously for several seconds. This makes it possible to adjust grip from one
enabling switch to another one. If 2 enabling switches are held simultane-
ously in the center position for longer than 15 seconds, this triggers a safe-
ty stop 1.

Further information about configuring the safety functions is con-
tained in the “Safety configuration” chapter of the operating and pro-
gramming instructions for system integrators. (>>> 13 "Safety

configuration" Page 203)

Tools and other equipment connected to the manipulator
must be integrated into the EMERGENCY STOP circuit

on the system side if they could constitute a potential hazard.
Failure to observe this precaution may result in death, severe injuries or con-
siderable damage to property.
31 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

32 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
If an enabling switch malfunctions (e.g. jams in the central position), the indus-
trial robot can be stopped using the following methods:

 Press the enabling switch down fully.

 Actuate the EMERGENCY STOP device.

 Release the Start key.

3.2.4.3 “Operator safety” signal

The “operator safety” signal is used for monitoring physical safeguards, e.g.
safety gates. In the default configuration, T2 and automatic operation are not
possible without this signal. Alternatively, the requirements for collaborative
operation in accordance with EN ISO 10218 must be met.

Reaction of the industrial robot in the event of a loss of signal during T2 or au-
tomatic operation (default configuration):

 The manipulator stops with a safety stop 1 (path-maintaining).

By default, operator safety is not active in the modes T1 (Manual Reduced Ve-
locity) and CRR, i.e. the signal is not evaluated.

3.2.4.4 External EMERGENCY STOP device

Every operator station that can initiate a robot motion or other potentially haz-
ardous situation must be equipped with an EMERGENCY STOP device. The
system integrator is responsible for ensuring this.

Reaction of the industrial robot if the external EMERGENCY STOP device is
pressed (default configuration):

 The manipulator stops with a safety stop 1 (path-maintaining).

External EMERGENCY STOP devices are connected via the safety interface
of the robot controller. External EMERGENCY STOP devices are not included
in the scope of supply of the industrial robot.

3.2.4.5 External safety stop 1 (path-maintaining)

The external safety stop 1 (path-maintaining) can be triggered via an input on
the safety interface (default configuration). The state is maintained as long as

The enabling switches must not be held down by adhe-
sive tape or other means or tampered with in any other

way.
Death, injuries or damage to property may result.

Following a loss of signal, automatic operation must not
be resumed merely by closing the safeguard; the signal

for operator safety must first be set by an additional device, e.g. by an ac-
knowledge button. It is the responsibility of the system integrator to ensure
this. This is to prevent automatic operation from being resumed inadvertently
while there are still persons in the danger zone, e.g. due to the safety gate
closing accidentally.

 This additional device must be designed in such a way that an actual
check of the danger zone can be carried out first. Devices that do not al-
low this (e.g. because they are automatically triggered by closure of the
safeguard) are not permitted.

 Failure to observe this may result in death to persons, severe injuries or
considerable damage to property.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
the external signal is FALSE. If the external signal is TRUE, the manipulator
can be moved again. No acknowledgement is required.

3.2.4.6 External enabling device

External enabling devices are required if it is necessary for more than one per-
son to be in the danger zone of the industrial robot.

Multiple external enabling devices can be connected via the safety interface of
the robot controller. External enabling devices are not included in the scope of
supply of the industrial robot.

An external enabling device can be used for manual guidance of the robot.
When enabling is active, the robot may only be moved at reduced velocity.

For manual guidance, safety-oriented velocity monitoring with a maximum
permissible velocity of 250 mm/s is preconfigured. The maximum permissible
velocity can be adapted.

The value for the maximum permissible velocity must be determined as part
of a risk assessment.

3.2.4.7 External safe operational stop

The safe operational stop is a standstill monitoring function. It does not stop
the robot motion, but monitors whether the robot axes are stationary.

The safe operational stop can be triggered via an input on the safety interface.
The state is maintained as long as the external signal is FALSE. If the external
signal is TRUE, the manipulator can be moved again. No acknowledgement is
required.

3.2.5 Triggers for safety-oriented stop reactions

Stop reactions are triggered in response to operator actions or as a reaction
to monitoring functions and errors. The following tables show the different stop
reactions according to the operating mode that has been set.

Overview In KUKA Sunrise a distinction is made between the following triggers:

 Permanently defined triggers

Permanently defined triggers for stop reactions and the associated stop
category are preset by the system and cannot be changed. However, it is
possible for the implemented stop reaction to be stepped up in the user-
specific safety configuration.

 User-specific triggers

In addition to the permanently defined triggers, the user can also configure
other triggers for stop reactions including the associated stop category.

Permanently

defined triggers

The following triggers for stop reactions are permanently defined:

Further information about configuring the safety functions is con-
tained in the “Safety configuration” chapter of the operating and pro-
gramming instructions for system integrators. (>>> 13 "Safety

configuration" Page 203)

Trigger T1, T2, CRR AUT

Operating mode changed
during operation

Safety stop 1 (path-maintaining)

Enabling switch released Safety stop 1 (path-
maintaining)

-

33 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

34 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
User-specific

triggers

When creating a new Sunrise project, the system automatically generates a
project-specific safety configuration. This contains the following user-specific
stop reaction triggers preconfigured by KUKA (in addition to the permanently
defined triggers):

Triggers for

manual guidance

If an enabling device is configured for manual guidance, the following addition-
al triggers for stop reactions are permanently defined:

A maximum permissible velocity of 250 mm/s is preconfigured for manual
guidance. The maximum permissible velocity can be adapted.

The value for the maximum permissible velocity must be determined as part
of a risk assessment.

 (>>> 13.10.5.3 "Velocity monitoring during manual guidance" Page 238)

3.2.6 Non-safety-oriented functions

3.2.6.1 Mode selection

The industrial robot can be operated in the following modes:

 Manual Reduced Velocity (T1)

 Manual High Velocity (T2)

 Automatic (AUT)

 Controlled robot retraction (CRR)

Enabling switch pressed
fully down (panic position)

Safety stop 1 (path-
maintaining)

-

Local E-STOP pressed Safety stop 1 (path-maintaining)

Error in safety controller Safety stop 1

Trigger T1, T2, CRR AUT

Trigger T1, CRR T2, AUT

Safety gate opened (oper-
ator safety)

- Safety stop 1 (path-
maintaining)

External E-STOP pressed Safety stop 1 (path-maintaining)

External safety stop Safety stop 1 (path-maintaining)

This default safety configuration is valid for the system software with-
out additionally installed option packages or catalog elements. If ad-
ditional option packages or catalog elements have been installed, the

default safety configuration may be modified.

Trigger T1, CRR T2, AUT

Manual guidance
enabling switch released

Safety stop 1 (path-
maintaining)

-

Manual guidance
enabling switch pressed
fully down (panic position)

Safety stop 1 (path-
maintaining)

-

Maximum permissible
velocity exceeded while
manual guidance
enabling signal is set

Safety stop 1 (path-maintaining)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
3.2.6.2 Software limit switches

The axis ranges of all manipulator axes are limited by means of non-safety-
oriented software limit switches. These software limit switches only serve as
machine protection and are preset in such a way that the manipulator is
stopped under servo control if the axis limit is exceeded, thereby preventing
damage to the mechanical equipment.

Operating

mode
Use Velocities

T1 Programming, teaching and testing of
programs.

 Program verification:

Reduced programmed velocity,
maximum 250 mm/s

 Manual mode:

Jog velocity, maximum 250 mm/s

 Manual guidance:

No limitation of the velocity, but
safety-oriented velocity monitoring
in accordance with the safety con-
figuration

Note: The maximum velocity of
250 mm/s does not apply to a mobile
platform.

T2 Testing of programs Program verification:

Programmed velocity

 Manual mode: Not possible

AUT Automatic execution of programs

For industrial robots with and without
higher-level controllers

 Program mode:

Programmed velocity

 Manual mode: Not possible

CRR CRR is an operating mode which can
be selected when the industrial robot is
stopped by the safety controller for one
of the following reasons:

 Industrial robot violates an axis-spe-
cific or Cartesian monitoring space.

 Orientation of a safety-oriented tool
is outside the monitored range.

 Industrial robot violates a force or
torque monitoring function.

 A position sensor is not mastered or
referenced.

 A joint torque sensor is not refer-
enced.

After changing to CRR mode, the
industrial robot may once again be
moved.

 Program verification:

Reduced programmed velocity,
maximum 250 mm/s

 Manual mode:

Jog velocity, maximum 250 mm/s

 Manual guidance:

No limitation of the velocity, but
safety-oriented velocity monitoring
in accordance with the safety con-
figuration
35 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

36 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3.3 Additional protective equipment

3.3.1 Jog mode

In the operating modes T1 (Manual Reduced Velocity), T2 (Manual High Ve-
locity) and CRR, the robot controller can only execute programs in jog mode.
This means that it is necessary to hold down an enabling switch and the Start
key in order to execute a program.

 Releasing the enabling switch on the smartPAD triggers a safety stop 1
(path-maintaining).

 Pressing fully down on the enabling switch on the smartPAD triggers a
safety stop 1 (path-maintaining).

 Releasing the Start key triggers a stop of Stop category 1 (path-maintain-
ing).

3.3.2 Labeling on the industrial robot

All plates, labels, symbols and marks constitute safety-relevant parts of the in-
dustrial robot. They must not be modified or removed.

Labeling on the industrial robot consists of:

 Identification plates

 Warning signs

 Safety symbols

 Designation labels

 Cable markings

 Rating plates

3.3.3 External safeguards

The access of persons to the danger zone of the industrial robot must be pre-
vented by means of safeguards. Alternatively, the requirements for collabora-
tive operation in accordance with EN ISO 10218 must be met. It is the
responsibility of the system integrator to ensure this.

Physical safeguards must meet the following requirements:

 They meet the requirements of EN ISO 14120.

 They prevent access of persons to the danger zone and cannot be easily
circumvented.

 They are sufficiently fastened and can withstand all forces that are likely
to occur in the course of operation, whether from inside or outside the en-
closure.

 They do not, themselves, represent a hazard or potential hazard.

 The prescribed minimum clearance from the danger zone is maintained.

Safety gates (maintenance gates) must meet the following requirements:

 They are reduced to an absolute minimum.

 The interlocks (e.g. safety gate switches) are linked to the configured op-
erator safety inputs of the robot controller.

Further information is contained in the technical data of the operating
instructions or assembly instructions of the components of the indus-
trial robot.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
 Switching devices, switches and the type of switching conform to the re-
quirements of Performance Level d and category 3 according to EN ISO
13849-1.

 Depending on the risk situation: the safety gate is additionally safeguarded
by means of a locking mechanism that only allows the gate to be opened
if the manipulator is safely at a standstill.

 The device for setting the signal for operator safety, e.g. the button for ac-
knowledging the safety gate, is located outside the space limited by the
safeguards.

Other safety

equipment

Other safety equipment must be integrated into the system in accordance with
the corresponding standards and regulations.

3.4 Safety measures

3.4.1 General safety measures

The industrial robot may only be used in perfect technical condition in accor-
dance with its intended use and only by safety-conscious persons. Operator
errors can result in personal injury and damage to property.

It is important to be prepared for possible movements of the industrial robot
even after the robot controller has been switched off and locked out. Incorrect
installation (e.g. overload) or mechanical defects (e.g. brake defect) can cause
the manipulator to sag. If work is to be carried out on a switched-off industrial
robot, the manipulator must first be moved into a position in which it is unable
to move on its own, whether the payload is mounted or not. If this is not pos-
sible, the manipulator must be secured by appropriate means.

smartPAD The user must ensure that the industrial robot is only operated with the smart-
PAD by authorized persons.

If more than one smartPAD is used in the overall system, it must be ensured
that each smartPAD is unambiguously assigned to the corresponding indus-
trial robot. It must be ensured that 2 smartPADs are not interchanged.

The smartPAD can be configured as unpluggable.

Further information is contained in the corresponding standards and
regulations. These also include EN ISO 14120.

In the absence of operational safety functions and safe-
guards, the industrial robot can cause personal injury or

material damage. If safety functions or safeguards are dismantled or deacti-
vated, the industrial robot may not be operated.

Standing underneath the robot arm can cause death or
serious injuries. Especially if the industrial robot is mov-

ing objects that can become detached (e.g. from a gripper). For this reason,
standing underneath the robot arm is prohibited!

If the smartPAD is disconnected, the system can no lon-
ger be switched off by means of the EMERGENCY

STOP device on the smartPAD. If the smartPAD is configured as unplugga-
ble, at least one external EMERGENCY STOP device must be installed that
is accessible at all times.
Failure to observe this can lead to death, injury or property damage.
37 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

38 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Modifications After modifications to the industrial robot, checks must be carried out to ensure
the required safety level. The valid national or regional work safety regulations
must be observed for this check. The correct functioning of all safety functions
must also be tested.

New or modified programs must always be tested first in Manual Reduced Ve-
locity mode (T1).

After modifications to the industrial robot, existing programs must always be
tested first in Manual Reduced Velocity mode (T1). This applies to all compo-
nents of the industrial robot and includes modifications to the software and
configuration settings.

The robot may not be connected and disconnected when the robot controller
is running.

Faults The following tasks must be carried out in the case of faults in the industrial
robot:

 Switch off the robot controller and secure it (e.g. with a padlock) to prevent
unauthorized persons from switching it on again.

 Indicate the fault by means of a label with a corresponding warning (tag-
out).

 Keep a record of the faults.

 Eliminate the fault and carry out a function test.

3.4.2 Transportation

Manipulator The prescribed transport position of the manipulator must be observed. Trans-
portation must be carried out in accordance with the operating instructions or
assembly instructions of the robot.

Avoid vibrations and impacts during transportation in order to prevent damage
to the manipulator.

Robot controller The prescribed transport position of the robot controller must be observed.
Transportation must be carried out in accordance with the operating instruc-
tions or assembly instructions of the robot controller.

Avoid vibrations and impacts during transportation in order to prevent damage
to the robot controller.

3.4.3 Start-up and recommissioning

Before starting up systems and devices for the first time, a check must be car-
ried out to ensure that the systems and devices are complete and operational,
that they can be operated safely and that any damage is detected.

The valid national or regional work safety regulations must be observed for this
check. The correct functioning of all safety functions must also be tested.

The operator must ensure that disconnected smartPADs
are immediately removed from the system and stored out

of sight and reach of personnel working on the industrial robot. This prevents
operational and non-operational EMERGENCY STOP devices from becom-
ing interchanged.
Failure to observe this can lead to death, injury or property damage.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
Function test The following tests must be carried out before start-up and recommissioning:

General test:

It must be ensured that:

 The industrial robot is correctly installed and fastened in accordance with
the specifications in the documentation.

 There are no foreign bodies or loose parts on the industrial robot.

 All required safety equipment is correctly installed and operational.

 The power supply ratings of the industrial robot correspond to the local
supply voltage and mains type.

 The ground conductor and the equipotential bonding cable are sufficiently
rated and correctly connected.

 The connecting cables are correctly connected and the connectors are
locked.

Test of the safety functions:

A function test must be carried out for all the safety-oriented functions to en-
sure that they are working correctly:

 (>>> 13.13 "Safety acceptance overview" Page 275)

Test of the safety-relevant mechanical and electromechanical compo-
nents:

The following tests must be performed prior to start-up and at least once every
12 months unless otherwise determined in accordance with a workplace risk
assessment:

 Press the EMERGENCY STOP device on the smartPAD. A message must
be displayed on the smartPAD indicating that the EMERGENCY STOP
has been actuated. At the same time, no error message may be displayed
about the EMERGENCY STOP device.

 For all 3 enabling switches on the smartPAD and for the enabling switch
on the media flange Touch (if present)

Move the robot in Test mode and release the enabling switch. The robot
motion must be stopped. At the same time, no error message may be dis-

Prior to start-up, the passwords for the user groups must be modified
in the project settings and transferred to the robot controller in an in-
stallation procedure. The passwords must only be communicated to

authorized personnel.

The robot controller is preconfigured for the specific in-
dustrial robot. If cables are interchanged, the manipula-

tor may receive incorrect data and can thus cause personal injury or material
damage. If a system consists of more than one manipulator, always connect
the connecting cables to the manipulators and their corresponding robot con-
trollers.

If additional components (e.g. cables), which are not part of the scope
of supply of KUKA Roboter GmbH, are integrated into the industrial
robot, the user is responsible for ensuring that these components do

not adversely affect or disable safety functions.

If the internal cabinet temperature of the robot controller
differs greatly from the ambient temperature, condensa-

tion can form, which may cause damage to the electrical components. Do not
put the robot controller into operation until the internal temperature of the
cabinet has adjusted to the ambient temperature.
39 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

40 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
played about the enabling device. If the state of the enabling switch is con-
figured at an output, the test can also be performed via the output.

 For all 3 enabling switches on the smartPAD and for the enabling switch
on the media flange Touch (if present)

Move the robot in Test mode and press the enabling switch down fully. The
robot motion must be stopped. At the same time, no error message may
be displayed about the enabling device. If the state of the enabling switch
is configured at an output, the test can also be performed via the output.

 Turn the keyswitch on the smartPAD to the right and then back again.
There must be no error message displayed on the smartPAD.

 Test the switch-off capability of the safe inputs by switching the robot con-
troller off and then on again. After it is switched on, no error message for
a safe output may be displayed.

Test of the functional capability of the brakes:

For the KUKA LBR iiwa (all variants) a brake test is available which can be
used to check whether the brake of each axis applies sufficient braking torque.

The brake test ensures that any impairment of the braking function is detected,
e.g. due to wear, overheating, fouling or damage, thereby eliminating avoid-
able risks.

The brake test must be performed regularly, unless an application-specific risk
assessment has established that a malfunction of the mechanical brakes will
not result in inadmissibly high risks. Determination of the interval at which the
brake test is to be performed also constitutes part of the risk assessment.

In the absence of a corresponding risk assessment, the following applies:

 The brake test must be carried out for each axis during start-up and recom-
missioning of the industrial robot.

 The brake test must be performed daily during operation.

3.4.4 Manual mode

Manual mode is the mode for setup work. Setup work is all the tasks that have
to be carried out on the industrial robot to enable automatic operation. Setup
work includes:

 Jog mode

 Teaching

 Program verification

The following must be taken into consideration in manual mode:

 New or modified programs must always be tested first in Manual Reduced
Velocity mode (T1).

 The manipulator and its tooling must never touch or project beyond the
safety fence.

 Workpieces, tooling and other objects must not become jammed as a re-
sult of the industrial robot motion, nor must they lead to short-circuits or be
liable to fall off.

 All setup work must be carried out, where possible, from outside the safe-
guarded area.

In the case of incomplete start-up of the system, additional substitute
measures for minimizing risk must be taken and documented, e.g. in-
stallation of a safety fence, attachment of a warning sign, locking of

the main switch. Start-up is incomplete, for example, if not all safety functions
have yet been implemented, or if a function test of the safety functions has
not yet been carried out.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
If the setup work has to be carried out inside the safeguarded area, the follow-
ing must be taken into consideration:

In Manual Reduced Velocity mode (T1):

 If it can be avoided, there must be no other persons inside the safeguard-
ed area.

If it is necessary for there to be several persons inside the safeguarded ar-
ea, the following must be observed:

 Each person must have an enabling device.

 All persons must have an unimpeded view of the industrial robot.

 Eye-contact between all persons must be possible at all times.

 The operator must be so positioned that he can see into the danger area
and get out of harm’s way.

In Manual High Velocity mode (T2):

 This mode may only be used if the application requires a test at a velocity
higher than Manual Reduced Velocity.

 Teaching is not permissible in this operating mode.

 Before commencing the test, the operator must ensure that the enabling
devices are operational.

 There must be no-one present inside the safeguarded area. It is the re-
sponsibility of the operator to ensure this.

3.4.5 Automatic mode

Automatic mode is only permissible in compliance with the following safety
measures:

 All safety equipment and safeguards are present and operational.

 There are no persons in the system, or the requirements for collaborative
operation in accordance with EN ISO 10218 have been met.

 The defined working procedures are adhered to.

If the manipulator comes to a standstill for no apparent reason, the danger
zone must not be entered until an EMERGENCY STOP has been triggered.

3.4.6 Maintenance and repair

After maintenance and repair work, checks must be carried out to ensure the
required safety level. The valid national or regional work safety regulations
must be observed for this check. The correct functioning of all safety functions
must also be tested.

The purpose of maintenance and repair work is to ensure that the system is
kept operational or, in the event of a fault, to return the system to an operation-
al state. Repair work includes troubleshooting in addition to the actual repair
itself.

The following safety measures must be carried out when working on the indus-
trial robot:

 Carry out work outside the danger zone. If work inside the danger zone is
necessary, the user must define additional safety measures to ensure the
safe protection of personnel.

 Switch off the industrial robot and secure it (e.g. with a padlock) to prevent
it from being switched on again. If it is necessary to carry out work with the
robot controller switched on, the user must define additional safety mea-
sures to ensure the safe protection of personnel.
41 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

42 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 If it is necessary to carry out work with the robot controller switched on, this
may only be done in operating mode T1.

 Label the system with a sign indicating that work is in progress. This sign
must remain in place, even during temporary interruptions to the work.

 The EMERGENCY STOP devices must remain active. If safety functions
or safeguards are deactivated during maintenance or repair work, they
must be reactivated immediately after the work is completed.

Faulty components must be replaced using new components with the same
article numbers or equivalent components approved by KUKA Roboter GmbH
for this purpose.

Cleaning and preventive maintenance work is to be carried out in accordance
with the operating instructions.

Robot controller Even when the robot controller is switched off, parts connected to peripheral
devices may still carry voltage. The external power sources must therefore be
switched off if work is to be carried out on the robot controller.

The ESD regulations must be adhered to when working on components in the
robot controller.

Voltages in excess of 60 V can be present in various components for several
minutes after the robot controller has been switched off! To prevent life-threat-
ening injuries, no work may be carried out on the industrial robot in this time.

Water and dust must be prevented from entering the robot controller.

3.4.7 Decommissioning, storage and disposal

The industrial robot must be decommissioned, stored and disposed of in ac-
cordance with the applicable national laws, regulations and standards.

3.4.8 Safety measures for “single point of control”

Overview If certain components in the industrial robot are operated, safety measures
must be taken to ensure complete implementation of the principle of “single
point of control” (SPOC).

Components:

 Tools for configuration of bus systems with online functionality

Since only the system integrator knows the safe states of actuators in the pe-
riphery of the robot controller, it is his task to set these actuators to a safe
state.

T1, T2, CRR In modes T1, T2 and CRR, a robot motion can only be initiated if an enabling
switch is held down.

Before work is commenced on live parts of the robot sys-
tem, the main switch must be turned off and secured

against being switched on again. The system must then be checked to en-
sure that it is deenergized.
It is not sufficient, before commencing work on live parts, to execute an
EMERGENCY STOP or a safety stop, or to switch off the drives, as this does
not disconnect the robot system from the mains power supply. Parts remain
energized. Death or severe injuries may result.

The implementation of additional safety measures may be required.
This must be clarified for each specific application; this is the respon-
sibility of the user of the system.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

3 Safety
Tools for configu-

ration of bus

systems

If these components have an online functionality, they can be used with write
access to modify programs, outputs or other parameters of the robot control-
ler, without this being noticed by any persons located inside the system.

 KUKA Sunrise.Workbench

 WorkVisual from KUKA

 Tools from other manufacturers

Safety measure:

 In the test modes, programs, outputs or other parameters of the robot con-
troller must not be modified using these components.

3.5 Applied norms and directives

Name Definition Edition

2006/42/EC Machinery Directive:

Directive 2006/42/EC of the European Parliament and of the
Council of 17 May 2006 on machinery, and amending Direc-
tive 95/16/EC (recast)

2006

2014/30/EU EMC Directive:

Directive 2014/30/EC of the European Parliament and of the
Council of 26 February 2014 on the approximation of the laws
of the Member States concerning electromagnetic compatibil-
ity

2014

EN ISO 13850 Safety of machinery:

Emergency stop - Principles for design

2015

EN ISO 13849-1 Safety of machinery:

Safety-related parts of control systems - Part 1: General prin-
ciples of design

2015

EN ISO 13849-2 Safety of machinery:

Safety-related parts of control systems - Part 2: Validation

2012

EN ISO 12100 Safety of machinery:

General principles of design, risk assessment and risk reduc-
tion

2010

EN ISO 10218-1 Industrial robots – Safety requirements

Part 1: Robots

Note: Content equivalent to ANSI/RIA R.15.06-2012, Part 1

2011

EN 614-1 + A1 Safety of machinery:

Ergonomic design principles - Part 1: Terms and general prin-
ciples

2009

EN 61000-6-2 Electromagnetic compatibility (EMC):

Part 6-2: Generic standards; Immunity for industrial environ-
ments

2005
43 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

44 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
EN 61000-6-4 + A1 Electromagnetic compatibility (EMC):

Part 6-4: Generic standards; Emission standard for industrial
environments

2011

EN 60204-1 + A1 Safety of machinery:

Electrical equipment of machines - Part 1: General require-
ments

2009

EN 62061 + A1 Safety of machinery:

Functional safety of safety-related electrical, electronic and
programmable electronic control systems

2012
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

4 Installing KUKA Sunrise.Workbench
4 Installing KUKA Sunrise.Workbench

4.1 PC system requirements

Hardware Minimum requirements

 PC with Pentium IV processor, min. 1500 MHz

 1 GB RAM

 1 GB free hard disk space

 DirectX8-compatible graphics card with a resolution of 1024x768 pixels

Recommended specifications

 PC with Pentium IV processor 2500 MHz

 2 GB RAM

 DirectX8-compatible graphics card with a resolution of 1280x1024 pixels

Software Windows 7

The following software is required for bus configuration:

 WorkVisual 4.0

4.2 Installing Sunrise.Workbench

Preparation If an older version of Sunrise.Workbench is already installed:

 Uninstall the old version first.

Precondition Local administrator rights

Procedure 1. Start the program SunriseWorkbench-[…]-Setup.exe. A window opens.

2. Select the language for the installation operation and confirm with OK.

The language selection only applies to the installation and not to Sun-
rise.Workbench itself. The user interface language for Sunrise.Workbench
is German by default.

3. An installation wizard opens. Follow the instructions in the wizard.

4.3 Uninstalling Sunrise.Workbench

Description Uninstallation removes all program files from the computer. User-specific files
are retained, e.g. the workspace with the Sunrise projects.

Precondition Local administrator rights

Procedure 1. Call the list of installed programs in the Windows Control Panel.

2. In the list, select the program Sunrise Workbench and uninstall it.

Alternative

procedure

 In the Windows Start menu, open the installation directory of Sun-
rise.Workbench and click on Uninstall.

4

s

t

45 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

46 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
5 Operation of KUKA Sunrise.Workbench

5.1 Starting Sunrise.Workbench

Procedure 1. Double-click on the Sunrise.Workbench icon on the desktop.

Alternative:

In the Windows Start menu, open the installation directory and double-
click on Sunrise Workbench.

The Workspace Launcher window opens.

2. In the Workspace box, specify the directory for the workspace in which
projects are to be saved.

 A default directory is suggested. The directory can be changed by
clicking on the Browse… button.

 If the workspace should not be queried the next time Sunrise.Work-
bench is started, activate the option Use this as the default value[…]
(set check mark).

Confirm the settings with OK.

3. A welcome screen opens the first time Sunrise.Workbench is started.
There are different options here.

 Click on Workbench to open the user interface of Sunrise.Work-
bench.

 Click on New Sunrise project to create a new Sunrise project directly.
The project creation wizard opens.

 (>>> 5.3 "Creating a Sunrise project with a template" Page 51)

5.2 Overview of the user interface of Sunrise.Workbench

The user interface of KUKA Sunrise.Workbench consists of several views.
The combination of several views is called a perspective. KUKA Sun-
rise.Workbench offers various preconfigured perspectives.

The Programming perspective is opened by default. Additional perspectives
can be displayed.

t

f

47 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

48 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 5-1: Overview of user interface – “Programming” perspective

Item Description

1 Menu bar

2 Toolbar

 (>>> 5.2.4 "Toolbar – Programming perspective" Page 50)

3 Editor area

Opened files, e.g. robot applications, are displayed and edited
here.

4 Perspective selection

Here it is possible to switch between various previously-used per-
spectives by clicking on the name of the appropriate perspective
or on the Open Perspective icon.

 (>>> 5.2.3 "Displaying different perspectives on the user inter-
face" Page 49)

5 Package Explorer view

This view contains the projects created and their corresponding
files.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
5.2.1 Repositioning the views

Procedure 1. Grip the view by the title bar while holding down the left mouse button and
move it to the desired position on the user interface.

The possible positions for the view are indicated here by a gray frame.

2. Release the mouse button when the desired position for the view is select-
ed.

5.2.2 Closing views and files

Procedure Click on the “X” at the top right of the corresponding tab.

5.2.3 Displaying different perspectives on the user interface

Description The user interface can be displayed in different perspectives. These can be
selected via the menu sequence Window > Open Perspective or by clicking
on the Open Perspective icon.

The perspectives are tailored to different types of work:

Perspectives can be adapted to the needs of the user. Examples:

 Creating own perspectives

 Showing/hiding views

 Showing/hiding menus

 Showing/hiding menu items

It is possible to save the adapted perspective as a default setting for the per-
spective or under a separate name of its own.

6 The following views can be seen here:

 Application data

This view displays the frames created for a project in a tree
structure.

 Object templates

This view displays the geometrical objects, tools and workpiec-
es created for a project in a tree structure.

7 The following views can be seen here:

 Tasks

This view displays the tasks which a user has created.

 Javadoc

This view displays the Javadoc comments about the selected
elements of a Java application.

 Properties view

This view displays the properties of the selected object of a
view, e.g. the properties of a project, frame or tool.

Item Description

Perspective Type of work

Programming This perspective has views suitable for editing
Sunrise projects. For example, for station config-
uration, safety configuration and application
development.

Debug This perspective has views suitable for locating
faults and eliminating programming faults.
49 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

50 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Procedure To display views in the current perspective:

 Select the menu sequence Window > Show View and the desired view.

Further views can be selected by clicking the menu item Other….

To reset the current perspective to the default setting:

 Select the menu sequence Window > Reset Perspective… and answer
the request for confirmation with Yes.

To save user-defined perspectives:

1. Select the menu sequence Window > Save Perspective As....

2. In the Name box, enter a name for the perspective and confirm it with OK.

If an existing perspective is selected and overwritten, the perspective will be
opened with these settings in the future.

5.2.4 Toolbar – Programming perspective

The buttons available by default on the toolbar depend on the active perspec-
tive. The buttons of the Programming perspective are described here.

Icon Name / description

New

Opens the wizard for creating new documents.

The arrow can be used to open the menu with the available
wizards.

Save

Saves the currently opened and selected file.

Save All

Saves all files and projects that have been edited since the
last save.

Print

Opens the menu for printing a file.

Synchronize project

Synchronizes the selected project with the robot controller.

Debug project

Establishes a remote connection to the robot controller in
order to debug an application during ongoing operation.

Sunrise project

Opens the wizard for creating a new Sunrise project.

New Java package

Opens the wizard for creating a new Java package in the
selected project.

New Java class

Opens the wizard for creating a new Java class in the
selected project.

The arrow can be used to open the menu with the available
Java classes.

Search

Opens the wizard to search for words or text modules.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
5.3 Creating a Sunrise project with a template

Procedure 1. Select the menu sequence File > New > Sunrise project. The project cre-
ation wizard opens.

2. Enter the IP address of the robot controller to be created for the project in
the IP address of controller: box.

It is possible to change the address again during subsequent project con-
figuration.

3. Retain the Create new project (offline) setting.

Press Next > to switch to the next page.

4. Enter a name for the project in the Project name: box.

5. The default directory for projects is given in the Location: box.

A different directory can be selected: to do so, remove the check mark at
Use default location and select Browse…. Then use the Browse for
Folder dialog to select the desired file path and confirm with OK.

Press Next > to switch to the next page.

6. Select a template from the Topology template list.

The template determines which elements are subsequently preselected in
the station configuration on the Topology tab. Irrespective of the template
that is selected here, all elements are always available in Topology and
the preselection can be modified as required.

Press Next > to switch to the next page.

7. If the selected template is a robot with a media flange, select the corre-
sponding media flange.

8. By default, the mounting orientation of a floor-mounted robot is set (A=0°,
B=0°, C=0°).

In the case of a ceiling- or wall-mounted robot, enter the direction of instal-
lation relative to the floor-mounted robot:

a. Rotation about the Z axis in ° (A angle): Rotation of angle A about
the Z axis of the robot base coordinate system (-180° ≤ A ≤ 180°).

Last Edit Location

Switches to the last edit location in the currently opened and
selected file.

Back to ...

Switches back to the previous edit steps.

Forward to ...

Switches forward again to the subsequent edit steps.

Icon Name / description

The following IP address ranges are used by default by the robot con-
troller for internal purposes. IP addresses from these ranges cannot
therefore be assigned by the user.

 169.254.0.0 … 169.254.255.255

 172.16.0.0 … 172.16.255.255

 172.17.0.0 … 172.17.255.255

 192.168.0.0 … 192.168.0.255

The weight and height of the selected media flange are automatically
taken into consideration by the system software.
51 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

52 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
b. Rotation about the Y axis in ° (B angle): Rotation of angle B about
the Y axis (-90° ≤ B ≤ 90°). The rotation about the Y axis is relative to
the rotated coordinate system from step a.

c. Rotation about the X axis in ° (C angle): Rotation of angle C about
the X axis (-180° ≤ C ≤ 180°). The rotation about the X axis is relative
to the rotated coordinate system from step b.

 (>>> 6.10 "Coordinate systems" Page 80)

Press Next > to switch to the next page.

9. A summary of information on the project is displayed.

Remove the check mark at Create application (starts other wizard) and
click on Finish. The project is created and added to the Package Explor-
er.

If the check mark has been set at Create application (starts other wiz-
ard), the wizard for application creation opens. A first robot application can
be created directly for the newly-created project.

 (>>> 5.4.2 "Creating a robot application with a package" Page 54)

Description The figure shows the structure of a newly created Sunrise project, in which no
robot applications have yet been created or other changes have been made.
The robot configured for the Sunrise project has a media flange.

The mounting orientation of the robot must be entered correctly. An
incorrectly entered mounting orientation can have the following ef-
fects:

 Unexpected robot behavior under impedance control

 Changed position of previously taught frames

 Prevention of motion enable due to collision detection and TCP force
monitoring

 Unexpected behavior during jogging in the world or base coordinate sys-
tem

Fig. 5-2: Overview of the project structure
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
Element Description

src Source folder of the project

The created robot applications and Java classes are stored in
the source folder.

The Java package com.kuka.generated.ioAccess contains
the Java class MediaFlangeIOGroup.java. The class already
contains the methods required for programming in order to
access the inputs/outputs of the media flange.

 (>>> 15.11 "Using inputs/outputs in the program" Page 367)

The source folder also contains various XML files in which, in
addition to the configuration data, the runtime data are saved,
e.g. the frames and tools created by the user.

The XML files can be displayed but not edited.

JRE System Library System library for Java Runtime Environment

The system library contains the Java class libraries which can
be used for standard Java programming.

Referenced libraries Referenced libraries

The referenced libraries can be used in the project. By default,
the robot-specific Java class libraries are automatically added
when a Sunrise project is created. The user has the option of
adding further libraries.

generatedFiles Folder with subfolder IODescriptions

The data for the inputs/outputs configured for the media flange
are saved in an XML file.

The XML file can be displayed but not edited.

KUKAJavaLib Folder with special libraries required for robot programming.

IOConfiguration.wvs I/O configuration for the media flange

The I/O configuration contains the complete bus structure of the
media flange, including the I/O mapping.

The I/O configuration can be opened, edited and re-exported
into the Sunrise project in WorkVisual.

Note: The I/O configuration is only carried out automatically for
the inputs and outputs on the media flange. Further EtherCAT
devices connected to the media flange must be configured with
WorkVisual.

 (>>> 11 "Bus configuration" Page 179)

SafetyConfiguration.sconf The file contains the safety functions preconfigured by KUKA.
The configuration can be displayed and edited.

 (>>> 13 "Safety configuration" Page 203)

StationSetup.cat The file contains the station configuration for the station (con-
troller) selected when the project was created. The configura-
tion can be displayed and edited.

The system software can be installed on the robot controller via
the station configuration.

 (>>> 10 "Station configuration and installation" Page 167)

The generatedFiles folder is used by the system and must not be
used for saving files created by the user.
53 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

54 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5.4 Creating a new robot application

Robot applications are Java programs. They define tasks that are to be exe-
cuted in a station. They are transferred to the robot controller with the project
and can be selected and executed using the smartPAD.

Robot applications are grouped into packages. This makes programming
more transparent and makes it easier to use a package later in other projects.

5.4.1 Creating a new Java package

Procedure 1. Select the desired project in the Package Explorer view.

2. Select the menu sequence File > New > Package. The New Java pack-
age window opens.

3. Enter a name for the package in the Name box.

4. Click on Finish. The package is created and added to the “src” folder for
the project.

The package does not yet contain any files. An empty package is indicated
by a white package icon. As soon as a package contains files, the icon
turns brown.

5.4.2 Creating a robot application with a package

Procedure 1. Select the desired project in the Package Explorer view.

2. Select the menu sequence File > New > Robot application. The New ro-
bot application window opens.

Alternatively: Use the arrow next to the New Java class button in the tool-
bar to open the menu with the available Java classes and select Robot ap-
plication. (>>> 5.2.4 "Toolbar – Programming perspective" Page 50)

3. In the Package box, enter the name of the package in which the applica-
tion should be created.

4. Enter a name for the package in the Name box.

5. Click on Finish. The application and package are created and inserted
into the project.

The Name.java application is opened in the editor area.

5.4.3 Creating a robot application for an existing package

Procedure 1. Select the desired package in the Package Explorer view.

2. Select the menu sequence File > New > Robot application. The New ro-
bot application window opens.

Alternatively: Use the arrow next to the New Java class button in the tool-
bar to open the menu with the available Java classes and select Robot ap-
plication. (>>> 5.2.4 "Toolbar – Programming perspective" Page 50)

3. Enter a name for the package in the Name box.

4. Click on Finish. The application is created and inserted into the package.

The Name.java application is opened in the editor area.

5.5 Setting the robot application as the default application

Description A default application can be defined for every Sunrise project; it is automati-
cally selected after a reboot of the robot controller or synchronization of the
project.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
In the case of an externally controlled project, it is essential to define a default
application. This is automatically selected when the operating mode is
switched to Automatic.

Procedure Right-click on the desired robot application in the Package Explorer view
and select Sunrise > Set as default application from the context menu.

The robot application is indicated as the default application in the Package
Explorer view and automatically set as the default application in the proj-
ect settings.

Example

5.6 Creating a new background task

Background tasks are Java programs that are executed on the robot controller
parallel to the robot application. For example, they can perform control tasks
for peripheral devices.

The use and programming of background tasks are described here:
(>>> 16 "Background tasks" Page 459)

The following properties are defined when the task is created:

 Start type of the task

 Automatic

The task is automatically started after the robot controller has booted
(default).

 Manual

The task must be started manually via the smartPAD. (This function is
not yet supported.)

 Task template

 Cyclic background task

Template for tasks that are to be executed cyclically (default)

 Non-cyclic background task

Template for tasks that are to be executed once

5.6.1 Creating a background task with a package

Procedure 1. Select the project in the Package Explorer.

2. Select the menu sequence File > New > Background task. The New
background task window is opened.

3. In the Package box, enter the name of the package in which the task is to
be created.

4. Enter a name for the task in the Name box.

5. Click on Next > and select the start type of the task.

6. Click on Next > and select the task template.

7. Click on Finish. The task and package are created and inserted into the
project.

The Name.java task is opened in the editor area.

Fig. 5-3: Default application MainApp.java
55 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

56 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5.6.2 Creating a background task for an existing package

Procedure 1. Select the package in the Package Explorer.

2. Select the menu sequence File > New > Background task. The New
background task window is opened.

3. Enter a name for the task in the Name box.

4. Click on Next > and select the start type of the task.

5. Click on Next > and select the task template.

6. Click on Finish. The task is created and inserted into the package.

The Name.java task is opened in the editor area.

5.7 Workspace

The directory in which the created projects and user-defined settings for Sun-
rise.Workbench are saved is called the workspace. The directory for the work-
space must be defined by the user when Sunrise.Workbench is started for the
first time. It is possible to create additional workspaces in Sunrise.Workbench
and to switch between them.

5.7.1 Creating a new workspace

Procedure 1. Select the menu sequence File > Switch Workspace > Other.... The
Workspace Launcher window opens.

2. In the Workspace box, manually enter the path to the new project direc-
tory.

Alternative:

 Click on Browse... to navigate to the directory where the new work-
space should be created.

 Create the new project directory by clicking on Create new folder.
Click on OK to confirm.

The path to the new project directory is inserted in the Workspace
box.

3. Click on OK to confirm the new workspace. Sunrise.Workbench restarts
and the welcome screen opens.

5.7.2 Switching to an existing workspace

Precondition Other workspaces are available.

Procedure 1. Select the menu sequence File > Switch Workspace > Other.... The
Workspace Launcher window opens.

2. Navigate to the desired workspace using Browse… and select it.

3. Confirm with OK. The path to the new project directory is applied in the
Workspace Launcher window.

4. Confirm the selected workspace with OK. Sunrise.Workbench restarts
and opens the selected workspace.

5.7.3 Switching between the most recently opened workspaces

Precondition Other workspaces are available.

Procedure 1. Select the menu sequence File > Switch Workspace. The most recently
used workspaces are displayed in a list (max. 4).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
2. Select the desired workspace from the list. Sunrise.Workbench restarts
and opens the selected workspace.

5.7.4 Archiving projects

Procedure 1. Select the menu sequence File > Export.... The file export wizard opens.

2. In the General folder, select the Archive File option and click on Next >.

3. All the projects in the workspace are displayed in a list in the top left-hand
area of the screen. Select the projects to be archived (set check mark).

4. Click on Browse… to navigate to the desired file location, enter the file
name for the archive and click on Save.

5. Click on Finish. The archive file is created.

5.7.5 Loading projects from archive to the workspace

Precondition An archive file (e.g. a ZIP file) with the projects to be loaded is available.

 The workspace does not contain any project with the name of the project
to be loaded.

Procedure 1. Select the menu sequence File > Import…. The file import wizard opens.

2. In the General folder, select the Existing Projects into Workspace op-
tion and click on Next >.

3. Activate the Select archive file radio button, click on Browse… to navi-
gate to the desired archive file and select it.

4. Click on Open. All the projects in the archive are displayed in a list under
Projects.

5. Select projects to be loaded to the workspace (check mark must be set).

6. Click on Finish. The selected projects are loaded.

5.7.6 Loading projects from the directory to the workspace

Precondition One or more projects are available in any directory.

 The workspace does not contain any project with the name of the project
to be loaded.

Procedure 1. Select the menu sequence File > Import…. The file import wizard opens.

2. In the General folder, select the Existing Projects into Workspace op-
tion and click on Next >.

3. Activate the Select root directory radio button, click on Browse… to nav-
igate to the desired directory and select it.

4. Click on OK. All the projects in the selected directory are displayed in a list
under Projects.

5. Select projects to be loaded to the workspace (check mark must be set).

6. Click on Finish. The selected projects are loaded.

5.8 Sunrise projects with referenced Java projects

One or more Java projects can be referenced within a Sunrise project. The ref-
erencing of Java projects allows them to be used in any number of Sunrise
projects and thus on different robot controllers.

The referenced Java projects can in turn reference further Java projects. Only
one Sunrise project may exist among all the cross-referenced projects.
57 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

58 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5.8.1 Creating a new Java project

Procedure 1. Select the menu sequence File > New > Project.... The project creation
wizard opens.

2. In the Java folder, select the Java Project option and click on Next >.

3. Enter the name of the Java project in the Project name box.

4. In the JRE area, select the JRE version that corresponds to the JRE ver-
sion of the Sunrise project. This is generally JavaSE-1.6.

5. Click on Next > and then on Finish.

6. The first time a Java project is created in the workspace – or if the user’s
preference has not yet been specified in previous Java projects – a query
is displayed asking whether the Java perspective should be opened.

 Select Yes or No as appropriate.

 If the query should not be displayed when the next Java project is cre-
ated in the workspace, activate the Remember my decision option
(set check mark).

5.8.1.1 Inserting robot-specific class libraries in a Java project

Description If a Java project is used for robot programming, the specific KUKA libraries re-
quired for this purpose must be inserted into the project. By default, these li-
braries are not contained in a Java project.

The KUKA libraries must be copied from a compatible Sunrise project. Ideally,
this should be a Sunrise project in which the Java project is referenced or will
be referenced. The precondition for compatibility of referenced projects is that
the RoboticsAPI versions match.

Precondition At least one compatible Sunrise project is available in the workspace.

Procedure 1. Copy the KUKAJavaLib folder of a compatible Sunrise project: Right-click
on the folder in the Package Explorer and select Copy from the context
menu.

2. Insert the KUKAJavaLib folder into the Java project: Right-click on the de-
sired Java project in the Package Explorer and select Insert from the
context menu.

3. Right-click again on the Java project and select Build Path > Configure
Build Path… from the context menu. The Properties for Project window
opens.

4. Select the Libraries tab in the Java Build Path and click on the Add
JARs… button. The JAR Selection window opens.

5. All the projects in the workspace are displayed in a list. Expand the Java
project where the referenced libraries are to be inserted.

6. Expand the KUKAJavaLib folder and select the existing JAR files.

7. Confirm your selection with OK. The JAR files are inserted on the Librar-
ies tab of the build path.

When Sunrise projects are synchronized, referenced Java projects
are also transferred onto the robot controller. If a further Sunrise proj-
ect is referenced within a Sunrise project, synchronization is aborted

with an error message.

In the Java projects, all classes which should be referenced externally
must be stored in a defined Java package. If referenced classes are
created in the standard package, they cannot be found in the Sunrise

project.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
8. Close the window by clicking on OK. The referenced libraries are inserted
into the Java project.

5.8.2 Referencing Java projects

Precondition The referenced classes are saved in a defined Java package (not in the
standard package).

 For Java projects which use referenced KUKA libraries: In the referenced
projects, the RoboticsAPI versions must match.

Procedure 1. In the Package Explorer, right-click on the project which is to be refer-
enced for the Java project.

2. Select Build Path > Configure Build Path… from the context menu. The
Properties for Project window opens.

3. Select the Projects tab in the Java Build Path and click on the Add …
button. The Required Project Selection window opens.

4. All the projects in the workspace are displayed in a list. Select the Java
projects to be referenced (set check mark).

5. Confirm your selection with OK. The selected projects are inserted on the
Projects tab of the build path.

6. Close the window by clicking on OK.

5.8.3 Canceling the reference to Java projects

Description References to inadvertently added projects or projects that are not required
(any longer) can be removed.

Procedure 1. In the Package Explorer, right-click on the project from which referenced
projects should be removed.

2. Select Properties from the context menu. The Properties for Project
window opens.

3. Select the Projects tab in the Java Build Path.

4. Select the projects that are not required and click on Remove.

5. Close the window by clicking on OK.

5.9 Renaming an element in the Package Explorer

In the Package Explorer view, the names of inserted elements can be
changed, e.g. the names of projects, Java packages and Java files.

5.9.1 Renaming a project or Java package

Procedure 1. Right-click on the desired project or Java package. Select Refactoring >
Rename in the context menu. The Rename Java Project or Rename
Java Package window opens.

2. In the New name box, enter the desired name. Confirm with OK.

5.9.2 Renaming a Java file

Procedure 1. Right-click on the desired Java file. Select Refactoring > Rename in the
context menu. The Rename Compilation Unit window opens.

2. In the New name box, enter the desired name. Click on Finish.

3. Possible conflicts are indicated before the renaming is completed. After
acknowledging and checking these, click on Finish once more.
59 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

60 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5.10 Removing an element from Package Explorer

In the Package Explorer view, inserted elements can be removed again, e.g.
entire projects or individual Java packages and Java files of a project.

5.10.1 Deleting an element from a project

Description Elements created for a project can be deleted again. The elements are perma-
nently deleted from the workspace and cannot be restored.

It is also possible to remove some – but not all – of the default elements of a
project.

Procedure 1. Right-click on the element. Select Delete in the context menu.

2. Answer the request for confirmation with OK. The element is deleted.

5.10.2 Removing a project from Package Explorer

Description With this procedure, a project is only removed from the Package Explorer and
is retained in the directory for the workspace on the data storage medium.

If required, the project can be reloaded from the directory into the workspace.
The project is then available again in the Package Explorer.

 (>>> 5.7.6 "Loading projects from the directory to the workspace" Page 57)

Procedure 1. Right-click on the desired project. Select Delete in the context menu. A re-
quest for confirmation is displayed, asking if the project is really to be de-
leted.

2. The check box next to Delete project content on disk (cannot be un-
done) is activated by default. Leave it like this.

3. Confirm the request for confirmation with OK.

5.10.3 Deleting a project from the workspace

Description With this procedure, a project is removed from the Package Explorer and per-
manently deleted from the directory for the workspace on the data storage me-
dium. The project cannot be restored.

Procedure 1. Right-click on the desired project. Select Delete in the context menu. A re-
quest for confirmation is displayed, asking if the project is really to be de-
leted.

2. Activate the check box next to Delete project content on disk (cannot
be undone).

3. Confirm the request for confirmation with OK.

5.11 Activating the automatic change recognition

Description The automatic change recognition is activated by default in Sunrise.Work-
bench. If it has been deactivated, this could mean, for example, that the Java
classes and files required for use of the signals may not be created in when
exporting an I/O configuration from WorkVisual.

Procedure 1. Select the menu sequence Window > User definitions. The User defini-
tions window is opened.

2. Select General > Workspace in the directory in the left area of the win-
dow.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

5 Operation of KUKA Sunrise.Workbench
3. Activate the Update via native hooks or polling to activate the automatic
change recognition.

5.12 Displaying release notes

Description The release notes contain information about the versions of the system soft-
ware, e.g. new functions or system requirements. They can be displayed in the
editor.

Procedure Select the menu sequence Help > Sunrise.OS Release Notes.
61 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

62 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6 Operating the KUKA smartPAD

6.1 KUKA smartPAD control panel

6.1.1 Front view

Function The smartPAD is the hand-held control panel for the industrial robot. The
smartPAD has all the operator control and display functions required for oper-
ation.

The smartPAD has a touch screen: the smartHMI can be operated with a fin-
ger or stylus. An external mouse or external keyboard is not necessary.

Overview

t

t

Fig. 6-1: KUKA smartPAD, front view

Item Description

1 Button for disconnecting the smartPAD

 (>>> 6.1.3 "Disconnecting and connecting the smartPAD"
Page 66)

2 Keyswitch

The connection manager is called by means of the keyswitch. The
switch can only be turned if the key is inserted.

The connection manager is used to change the operating mode.

 (>>> 6.7 "Changing the operating mode" Page 78)
63 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

64 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3 EMERGENCY STOP device

The robot can be stopped in hazardous situations using the
EMERGENCY STOP device. The EMERGENCY STOP device
locks itself in place when it is pressed.

4 Space Mouse

No function

5 Jog keys

The jog keys are used to move the robot manually.

 (>>> 6.13 "Jogging the robot" Page 84)

6 Key for setting the override

7 Main menu key

The main menu key shows and hides the main menu on the
smartHMI.

 (>>> 6.3 "Calling the main menu" Page 75)

8 User keys

The function of the user keys is freely programmable. Uses of the
user keys include controlling peripheral devices or triggering
application-specific actions.

9 Start key

The Start key is used to start a program. The Start key is also
used to manually address frames and to move the robot back onto
the path.

10 Start backwards key

No function

11 STOP key

The STOP key is used to stop a program that is running.

12 Keyboard key

No function

The following applies to the jog keys, the user keys and the Start,
Start backwards and STOP keys:

The current function is displayed next to the key on the smartHMI.

 If there is no display, the key is currently without function.

Item Description
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.1.2 Rear view

Overview

Description

Fig. 6-2: KUKA smartPAD, rear view

1 Enabling switch 4 USB connection

2 Start key (green) 5 Enabling switch

3 Enabling switch 6 Identification plate

Element Description

Identification
plate

Identification plate

Start key
The Start key is used to start a program. The Start key
is also used to manually address frames and to move
the robot back onto the path.
65 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

66 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.1.3 Disconnecting and connecting the smartPAD

Description If disconnection of the smartPAD is configured as allowed in the station con-
figuration of the project that is active on the robot controller, the smartPAD can
be disconnected while the robot controller is running.

Precondition Disconnection of the smartPAD is allowed.

Procedure Disconnection:

1. Press the disconnect button on the smartPAD.

A message and a counter are displayed on the smartHMI. The counter
runs for 25 s. During this time, the smartPAD can be disconnected from
the robot controller.

Enabling
switch

The enabling switch has 3 positions:

 Not pressed

 Center position

 Fully pressed (panic position)

The enabling switch must be held in the center position
in operating modes T1, T2 and CRR in order to be able
to jog the manipulator.

By default, the enabling switch has no function in Auto-
matic mode.

USB connec-
tion

The USB connection is used e.g. for archiving data.

Only for FAT32-formatted USB sticks.

Element Description

If the smartPAD is disconnected, the system can no lon-
ger be switched off by means of the EMERGENCY

STOP device on the smartPAD. If the smartPAD is configured as unplugga-
ble, at least one external EMERGENCY STOP device must be installed that
is accessible at all times.
Failure to observe this can lead to death, injury or property damage.

The operator must ensure that disconnected smartPADs
are immediately removed from the system and stored out

of sight and reach of personnel working on the industrial robot. This prevents
operational and non-operational EMERGENCY STOP devices from becom-
ing interchanged.
Failure to observe this can lead to death, injury or property damage.

If the smartPAD is disconnected after the EMERGENCY
STOP has been pressed, this EMERGENCY STOP re-

mains active, but only until the robot controller is rebooted. For this reason,
disconnection of the smartPAD must not be used to prevent the EMERGEN-
CY STOP device on the smartPAD from being released.
If an EMERGENCY STOP is to be active with the smartPAD disconnected,
this EMERGENCY STOP must always be triggered via an external EMER-
GENCY STOP device.
Failure to observe this can lead to death, injury or property damage.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
2. Disconnect the smartPAD from the robot controller.

If the counter expires without the smartPAD having been disconnected,
this has no effect. The disconnect button can be pressed again at any time
to display the counter again.

Connection:

 Connect the smartPAD to the robot controller.

A smartPAD can be connected at any time. The connected smartPAD as-
sumes the current operating mode of the robot controller. The smartHMI is au-
tomatically displayed again.

If the smartPAD is disconnected without the counter running (e.g. if
disconnection of the smartPAD is not allowed), this triggers an
EMERGENCY STOP. The EMERGENCY STOP can be canceled by

reconnecting the smartPAD.

The user connecting a smartPAD to the robot controller
must subsequently check whether the smartPAD is oper-

ational once again.
The smartPAD is not operational in the following cases:

 smartHMI is not displayed again.

It may take more than 30 seconds before the smartHMI is displayed
again.

 An error message is displayed in the Safety tile, indicating that there is a
connection error to the smartPAD.

A non-operational smartPAD must be disconnected again and removed from
the system. This prevents another user from trying to activate a non-opera-
tional EMERGENCY STOP.
Failure to observe this can lead to death, injury or property damage.
67 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

68 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.2 KUKA smartHMI user interface

Fig. 6-3: KUKA smartHMI user interface

Item Description

1 Navigation bar: Main menu and status display

 (>>> 6.2.1 "Navigation bar" Page 69)

2 Display area

Display of the level selected in the navigation bar, here the Station
level

3 Jogging options button

Displays the current coordinate system for jogging with the jog
keys. Touching the button opens the Jogging options window, in
which the reference coordinate system and further parameters for
jogging can be set.

 (>>> 6.13.1 "“Jogging options” window" Page 84)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.2.1 Navigation bar

The navigation bar is the main menu of the user interface and is divided into 4
levels. It is used for navigating between the different levels.

Some of the levels are divided into two parts:

 Lower selection list: Opens a list for selecting an application, a robot or an
I/O group, depending on the level.

 Upper button: If a selection has been made in the list, this button shows
the selected application, robot or I/O group.

4 Jog keys display

If axis-specific jogging is selected, the axis numbers are displayed
here (A1, A2, etc.). If Cartesian jogging is selected, the coordinate
system axes are displayed here (X, Y, Z, A, B, C). In the case of
an LBR iiwa, the elbow angle (R) for executing a null space
motion is additionally displayed.

 (>>> 6.13 "Jogging the robot" Page 84)

5 Override button

Indicates the current override. Touching the button opens the
Override window, in which the override can be set.

 (>>> 6.11 "“Override” window" Page 82)

6 Life sign display

A steadily flashing life sign indicates that the smartHMI is active.

7 Language selection button

Indicates the currently set language. Touching the button opens
the Language selection menu, in which the language of the user
interface can be changed.

8 User group button

Indicates the currently logged-on user group. Touching the button
opens the Login window, in which the user group can be
changed.

 (>>> 6.5 "Changing user group" Page 77)

9 User key selection button

Touching the button opens the User key selection window, in
which the currently available user key bars can be selected.

 (>>> 6.8 "Activating the user keys" Page 79)

10 Clock button

The clock displays the system time. Touching the button displays
the system time in digital format, together with the current date.

11 Jogging type button

Displays the currently set mode of the Start key. Touching the but-
ton opens the Jogging type window, in which the mode can be
changed.

 (>>> 6.12 "“Jogging type” window" Page 82)

12 Back button

Return to the previous view by touching this button.

Item Description
69 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

70 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Alternatively, the main menu can be called using the main menu key on the
smartPAD. The main menu contains further menus which cannot be accessed
from the navigation bar.

 (>>> 6.3 "Calling the main menu" Page 75)

Overview

6.2.2 Status display

The status of the system components is indicated by colored circles on the sm-
artHMI.

The “collective status” is displayed in the lower part of the navigation bar
(>>> Fig. 6-4). The status of each of the selected components is displayed in
the upper part. For example, it is possible for one application to be executed
while another application is in the error state.

Fig. 6-4: KUKA smartHMI navigation bar

Item Description

1 Station level

Displays the controller name and the selected operating mode

 (>>> 6.2.4 "Station level" Page 71)

2 Applications level

Displays the selected robot application

 (>>> 6.16.1 "Selecting a robot application" Page 94)

All robot and background applications are listed under Applica-
tions.

3 Robot level

Displays the selected robot

 (>>> 6.2.5 "Robot level" Page 73)

4 I/O groups level

Displays the selected I/O group.

 (>>> 6.17.5 "Displaying an I/O group and changing the value of
an output" Page 103)

Status Description

Serious error

The system component cannot be used. The reason for this
may be an operator error or an error in the system component.

Warning

There is a warning for the system component. The operability of
the component may be restricted. It is therefore advisable to
remedy the problem.

For applications, the yellow status indicator means that the
application is paused.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.2.3 Keypad

There is a keypad on the smartHMI for entering letters and numbers. The sm-
artHMI detects when the entry of letters or numbers is required and automati-
cally displays the appropriate keypad.

6.2.4 Station level

The Station level provides access to information and functionalities which af-
fect the entire station.

Status OK

There are no warnings or faults for the system component.

Status unknown

The status of the system component cannot be determined.

Status Description

Fig. 6-5: Example of keypad

SYM must be pressed to activate the secondary characters assigned
to the keys, e.g. the “=” character on the “S” key. The key remains ac-
tivated for one keystroke. In other words, it does not need to be held

down.
71 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

72 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 6-6: Station level

Item Description

1 Process data tile

Opens the Process data view. The configuration of process data
is not yet possible.

2 Safety tile

Indicates the safety status of the station and opens the Safety
sublevel. The sublevel contains the following tiles:

 Activation

Opens the Activation view for activating and deactivating the
safety configuration. A precondition for activation/deactivation
is the user group “Safety maintenance”.

 State

Opens the State view and displays error messages relating to
the safety controller.

3 Frames tile

Opens the Frames view. The view contains the frames created for
the station.

 (>>> 6.15.1 "“Frames” view" Page 89)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.2.5 Robot level

The Robot level gives access to information and functionalities which affect
the selected robot.

4 KUKA_Sunrise_Cabinet_1 tile

Indicates the status of the robot controller and opens a sublevel.
The sublevel contains the following tiles:

 Boot state

Indicates the boot status of the robot controller.

 Field buses

Indicates the status of the field buses. The tile is only displayed
if I/O groups have been created and corresponding signals
have been mapped with WorkVisual.

 Backup Manager

Opens the Backup Manager view. The tile is only displayed if
the Backup Manager has been installed.

 (>>> 6.18 "Backup Manager" Page 106)

 Virus scanner

Opens the Virus scanner view. The tile is only displayed if the
virus scanner has been installed.

 (>>> 18.4 "Displaying messages of the virus scanner"
Page 505)

5 HMI state tile

Displays the connection status between the smartHMI and the
robot controller.

6 Information tile

Opens the Information view and displays system information,
e.g. the IP address of the robot controller.

 (>>> 6.17.6 "Displaying information about the robot and robot
controller" Page 105)

7 Protocol tile

Opens the Protocol view and displays the logged events and
changes in state of the system. The display can be filtered based
on various criteria.

 (>>> 18.2 "Displaying the protocol" Page 499)

Item Description
73 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

74 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 6-7: Robot level

Item Description

1 Axis position tile

Opens the Axis position view. The axis-specific actual position of
the robot is displayed.

 (>>> 6.17.2 "Displaying the axis-specific actual position"
Page 101)

2 Cartesian position tile

Opens the Cartesian position view. The Cartesian actual posi-
tion of the robot is displayed.

 (>>> 6.17.3 "Displaying the Cartesian actual position" Page 101)

3 Axis torques tile

Opens the Axis torques view. The axis torques of the robot are
displayed.

 (>>> 6.17.4 "Displaying axis-specific torques" Page 102)

4 Mastering tile

Opens the Mastering view. The mastering status of the robot
axes is displayed. The axes can be mastered or unmastered indi-
vidually.

 (>>> 7.4 "Position mastering" Page 112)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.3 Calling the main menu

Procedure Press the main menu key on the smartPAD. The Main menu view opens.

Description Properties of the Main menu view:

 The main menu is displayed in the left-hand column.

The first 4 buttons are identical to the levels in the navigation bar.

 Touching a button that contains an arrow opens the relevant areas for the
level, e.g. Station.

Further navigation options are described in the following table.

5 Load data tile

Opens the Load data view for automatic load data determination.

 (>>> 7.6 "Determining tool load data" Page 121)

6 Motion enable tile

Displays whether the robot has received the motion enable.

7 Protocol tile

Opens the Protocol view and displays the logged events and
changes in state of the system. The display can be filtered based
on various criteria. By default, the Source(s) filter is already set
on the robot in question.

 (>>> 18.2 "Displaying the protocol" Page 499)

8 Device state tile

The status of the robot drive system is displayed.

9 Calibration tile

Opens the Calibration sublevel which contains the Base calibra-
tion and Tool calibration tiles.

 (>>> 7.5 "Calibration" Page 113)

Item Description
75 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

76 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.4 Setting the user interface language

Procedure 1. Touch the Language selection button on the side panel of the smartHMI
(bottom left). The Language selection menu is opened.

Fig. 6-8: Example view of the main menu

Item Description

1 Back button

Touch this button to return to the view which was visible before the
main menu was opened.

2 Home button

Closes all opened areas.

3 Button for closing the level

Closes the lowest opened level.

4 The views most recently opened from the main menu are dis-
played here (maximum 3).

By touching the view in question, it is possible to switch to these
views again without having to navigate the main menu.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
2. Select the desired language.

Description The user interface on the smartHMI is available in the following languages:

6.5 Changing user group

Description Different functions can be executed on the robot controller, depending on the
user group.

The following user groups are available:

 Operator

The user group for the operator is the default user group.

 Safety maintenance technician

The safety maintenance technician is responsible for starting up the safety
equipment of the industrial robot and activating the safety configuration on
the robot controller.

The user group is protected by means of a password.

When the system is booted, the default user group is selected.

If no actions are carried out in the user interface within 300 s, the robot con-
troller switches to the default user group for safety reasons.

Procedure 1. Touch the User group button. The Login window opens.

2. Select the desired user group.

3. Enter the password and confirm with Login.

4. It is possible to switch back to the default user group by pressing the Log
off button.

6.6 CRR mode – controlled robot retraction

Description CRR is an operating mode to which the system can be switched when the ro-
bot is stopped by the safety controller for one of the following reasons:

 Robot violates an axis-specific or Cartesian monitoring space.

 Orientation of a safety-oriented tool is outside the monitored range.

 Robot violates a force or torque monitoring function.

 A position sensor is not mastered or referenced.

 A joint torque sensor is not referenced.

Chinese (simplified) Polish

Danish Portuguese

German Romanian

English Russian

Finnish Swedish

French Slovak

Greek Slovenian

Italian Spanish

Japanese Czech

Korean Turkish

Dutch Hungarian

If a functionality is called for which the currently logged-on user group
has insufficient rights, the Login window opens automatically. The re-
quired user group is then preset in the window.
77 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

78 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Once the operating mode has been switched to CRR, the robot can be moved
again.

Use CRR mode can be used, for example, to retract the robot in the case of a
space or force monitoring violation or to master the robot with a Cartesian ve-
locity monitoring function active.

If the cause of the stop is no longer present and if no further stop is requested
for 4 seconds by one of the specified causes, the operating mode automatical-
ly changes to T1.

Motion velocity The motion velocity of the set working point in CRR mode corresponds to the
jog velocity in T1 mode:

 Program mode: Reduced programmed velocity, maximum 250 mm/s

 Jog mode: Jog velocity, maximum 250 mm/s

 Manual guidance: No limitation of the velocity, but safety-oriented velocity
monitoring functions in accordance with the safety configuration

6.7 Changing the operating mode

Description The operating mode can be set with the smartPAD using the connection man-
ager.

Precondition The key is in the switch for calling the connection manager

Procedure 1. On the smartPAD, turn the switch for the connection manager to the right.
The connection manager is displayed.

2. Select the operating mode.

3. Turn the switch for the connection manager to the left.

The selected operating mode is now active and is displayed in the naviga-
tion bar of the smartHMI.

It is possible to change the operating mode while an application is
running on the robot controller. The industrial robot then stops with a
safety stop 1 and the application is paused. Once the new operating

mode has been set, the application can resume.

Operating

mode
Use Velocities

T1 Programming, teaching and testing of
programs.

 Program verification:

Reduced programmed velocity,
maximum 250 mm/s

 Manual mode:

Jog velocity, maximum 250 mm/s

 Manual guidance:

No limitation of the velocity, but
safety-oriented velocity monitoring
in accordance with the safety con-
figuration

Note: The maximum velocity of
250 mm/s does not apply to a mobile
platform.

T2 Testing of programs Program verification:

Programmed velocity

 Manual mode: Not possible
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.8 Activating the user keys

Description The user keys on the smartPAD can be assigned functions. All the user key
functions of a running application are available to the operator. In order to be
able to use the desired functions, the operator must activate the corresponding
user key bar.

Procedure 1. Touch the User key selection button.

The User key selection window opens. The user key bars currently avail-
able are displayed.

2. Select the desired user key bar by pressing the corresponding name.

The text or image on the smartHMI next to the user keys changes accord-
ing to the bar selected. The user keys now have the corresponding func-
tions.

3. Touch the User key selection button or an area outside the window.

The User key selection window closes.

AUT Automatic execution of programs

For industrial robots with and without
higher-level controllers

 Program mode:

Programmed velocity

 Manual mode: Not possible

CRR CRR is an operating mode which can
be selected when the industrial robot is
stopped by the safety controller for one
of the following reasons:

 Industrial robot violates an axis-spe-
cific or Cartesian monitoring space.

 Orientation of a safety-oriented tool
is outside the monitored range.

 Industrial robot violates a force or
torque monitoring function.

 A position sensor is not mastered or
referenced.

 A joint torque sensor is not refer-
enced.

After changing to CRR mode, the
industrial robot may once again be
moved.

 Program verification:

Reduced programmed velocity,
maximum 250 mm/s

 Manual mode:

Jog velocity, maximum 250 mm/s

 Manual guidance:

No limitation of the velocity, but
safety-oriented velocity monitoring
in accordance with the safety con-
figuration

Operating

mode
Use Velocities
79 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

80 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example

6.9 Resuming the safety controller

Description If there are connection or periphery errors, the safety controller is paused (af-
ter one or more occurrences depending on the error). Pausing the safety con-
troller causes the robot to stop and all safe outputs to be switched off. The
application can resume once the error has been eliminated.

Procedure 1. Select Safety > State at the Station level. The State view opens.

The cause of the error is displayed in the view. The Resume safety con-
troller button is not active.

2. Eliminate the error. The Resume safety controller button is now activat-
ed.

3. Press Resume safety controller. The safety controller is resumed.

6.10 Coordinate systems

Coordinate systems or frames determine the position and orientation of an ob-
ject in space.

Overview The following coordinate systems are relevant for the robot controller:

 World

 Robot base

 Base

 Flange

 Tool

Description World coordinate system

The world coordinate system is a permanently defined Cartesian coordinate
system. It is the original coordinate system for all other coordinate systems, in
particular for base coordinate systems and the robot base coordinate system.

By default, the world coordinate system is located at the robot base.

Fig. 6-9: “User key selection” window

1 User key selection button

2 Currently active user key bar

3 Names of the available user key bars
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Robot base coordinate system

The robot base coordinate system is a Cartesian coordinate system, which is
always located at the robot base. It defines the position of the robot relative to
the world coordinate system.

By default, the robot base coordinate system is identical to the world coordi-
nate system. It is possible to define a rotational offset of the robot relative to
the world coordinate system by changing the mounting orientation in Sun-
rise.Workbench. By default, the direction of installation of the floor-mounted
robot is set (A=0°, B=0°, C=0°).

Base coordinate system

In order to define motions in Cartesian space, a reference coordinate system
(base) must be specified.

By default, the world coordinate system is used as the base coordinate system
for a motion. Additional base coordinate systems relative to the world coordi-
nate system can be defined.

 (>>> 7.5.2 "Calibrating the base: 3-point method " Page 119)

Flange coordinate system

The flange coordinate system describes the current position and orientation of
the robot flange center point. It does not have a fixed location and is moved
with the robot.

The flange coordinate system is used as an origin for coordinate systems
which describe tools mounted on the flange.

Tool coordinate system

The tool coordinate system is a Cartesian coordinate system which is located
at the working point of the mounted tool. This is called the TCP (Tool Center
Point).

Any number of frames can be defined for a tool and can be selected as the
TCP. The origin of the tool coordinate system is generally identical to the
flange coordinate system.

 (>>> 9.3.1 "Geometric structure of tools" Page 148)

The tool coordinate system is offset to the tool center point by the user.

 (>>> 7.5.1 "Tool calibration" Page 113)

Position and orientation

In order to determine the position and orientation of an object, translation and
rotation relative to a reference coordinate system are specified. 6 coordinates
are used for this purpose.

Translation

Rotation

Coordinate Description

Distance X Translation along the X axis of the reference system

Distance Y Translation along the Y axis of the reference system

Distance Z Translation along the Z axis of the reference system

Coordinate Description

Angle A Rotation about the Z axis of the reference system

Angle B Rotation about the Y axis of the reference system

Angle C Rotation about the X axis of the reference system
81 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

82 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.11 “Override” window

Procedure To open the Override window:

 Touch the Override button.

To close the Override window:

 Touch the Override button or an area outside the window.

Description

The following buttons are available:

6.12 “Jogging type” window

Procedure Open the Jogging type window:

 Touch the Jogging type button next to the Start key.

Fig. 6-10: Override window

Item Description

1 Override button

The display on the button depends on the selected option.

2 Set the jog override.

 (>>> 6.13.2 "Setting the jog override" Page 86)

3 Display of application override

If an application override set by the application is programmed,
this is displayed during program execution.

4 Set the manual override.

 (>>> 6.16.3 "Setting the manual override" Page 97)

If no application override is active, the manual override that can
be set here corresponds to the effective program override.

5 Display of effective program override

Option Button Description

When the Set jog override option is selected, the Override
button displays the hand icon and the jog override currently set.

When the Set manual override option is selected, the Over-
ride button displays the program icon and the manual override
currently set.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Close the Jogging type window.

 Touch the Jogging type button or an area outside the window.

Description The functionality of the Start key can be configured in the Jogging type win-
dow.

Fig. 6-11: “Jogging type” window

Item Description

1 Jogging type button

The display on the button depends on the selected jogging type.

2 Application mode jogging type

In this jogging mode an application can be started by means of
the Start key.

Note: When switching to T2 or Automatic mode, Application
modemode is set automatically.

3 Changing program run mode

 (>>> 6.16.2 "Setting the program run mode" Page 96)

4 Frame name display

The name of the frame is displayed if a frame has been selected
in the Frames view.
83 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

84 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Icons The following icons are displayed on the Jogging type button depending on
the jogging type set:

6.13 Jogging the robot

Overview There are 2 ways of jogging the robot:

 Cartesian jogging

The set TCP is jogged in the positive or negative direction along the axes
of a coordinate system or rotated about these axes.

 Axis-specific jogging

Each axis can be moved individually in the positive or negative direction.

6.13.1 “Jogging options” window

Procedure Open the Jogging options window:

 Touch the Jogging options button.

Close the Jogging options window.

 Touch the Jogging options button or an area outside the window.

5 Move PTP jogging type

A taught frame can be addressed with a PTP motion by means of
the Start key.

 (>>> 6.15.4 "Manually addressing frames" Page 93)

The button for selecting the jogging type is only active if a frame
has been selected in the Frames view.

Note: In the Move PTP jogging type, the Status of the end frame
is taken into consideration. This can cause the axes to move,
even if the end point has already been reached in Cartesian form.

6 Move LIN jogging type

A taught frame can be addressed with a LIN motion by means of
the Start key.

 (>>> 6.15.4 "Manually addressing frames" Page 93)

The button for selecting the jogging type is only active if a frame
has been selected in the Frames view.

Note: In the Move LIN jogging type, the Status of the end frame is
not taken into consideration.

7 Open frames view button

Press the button to switch to the Frames view.

Item Description

Icon Description

Jogging type Application mode

Jogging type Move PTP

Jogging type Move LIN
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Description All parameters for jogging the robot can be set in the Jogging Options win-
dow.

Fig. 6-12: “Jogging options” window

Item Description

1 Jogging options button

The icon displayed depends on the programmed jogging type.

2 Select the jogging type.

Axis-specific jogging or Cartesian jogging of the robot in different
coordinate systems is possible. The selected jogging type is indi-
cated in green and displayed on the Jogging options button.

 Axes: The robot is moved by axis-specific jogging.

 World: The selected TCP is moved in the world coordinate
system by means of Cartesian jogging.

 Base: The selected TCP is moved in the selected base coordi-
nate system by means of Cartesian jogging.

 Tool: The selected TCP is moved in its own tool coordinate
system by means of Cartesian jogging.

3 Select the robot flange or mounted tool. Not possible while an
application is being executed.

The frames of the selected tool can be selected as the TCP for
Cartesian jogging. The set load data of the tool are taken into con-
sideration.

If a robot application is paused, the tool currently being used in
the application is available under the name Application tool.

 (>>> "Application tool" Page 86)
85 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

86 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Application tool The application tool consists of all the frames located below the robot flange
during the runtime. These can be the frames of a tool or workpiece, for exam-
ple, that are connected to the robot flange with the attachTo command. They
may also include frames generated in the application and linked directly or in-
directly to the flange during the runtime.

The application tool is then only available in the jogging options when a robot
application is paused, and if a motion command was sent to the robot control-
ler prior to pausing.

 If the application tool is set in the jogging options, all frames located hier-
archically under the flange coordinate system during the runtime can be
selected as the TCP for jogging. The origin frame of the application tool on
the robot flange is available under the name ApplicationTool(Root) for
selection as the TCP for jogging.

 If the application tool is set in the jogging options and the application re-
sumed, the following occurs: the frame with which the current motion com-
mand is executed in the application is automatically set as the TCP.

6.13.2 Setting the jog override

Description The jog override determines the velocity of the robot during jogging. The ve-
locity actually achieved by the robot with a jog override setting of 100% de-
pends on various factors, including the robot type. However, the velocity of the
set working point cannot exceed 250 mm/s.

Procedure 1. Touch the Override button. The Override window is opened.

 (>>> 6.11 "“Override” window" Page 82)

2. Activate the Set jog override option if it is not already active.

3. Set the desired jog override. It can be set using either the plus/minus keys
or by means of the slider.

 Plus/minus keys: The override can be set in steps to the following val-
ues: 100%, 75%, 50%, 30%, 10%, 5%, 3%, 1%, 0%.

 Slider: The override can be adjusted in 1% steps.

4. Touch the Override button or an area outside the window to close the win-
dow.

4 Select the TCP.

All the frames of the selected tool are available as the TCP. The
TCP set here is retained. This is also the case if a different TCP is
active in a paused application.

Exception: If a robot application is paused and the application
tool is set, the manually set TCP is not retained when the applica-
tion is resumed. The TCP changes according to the TCP currently
used in the application.

 (>>> "Application tool" Page 86)

5 Base selection. Only possible when the jogging type Base is
selected.

All frames which were designated in Sunrise.Workbench as a
base are available as a base.

Item Description

Option Description

Set jog override option activated
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Alternative

procedure

Alternatively, the override can be set using the plus/minus key on the right of
the smartPAD.

The value can be set in the following steps: 100%, 75%, 50%, 30%, 10%, 5%,
3%, 1%.

6.13.3 Axis-specific jogging with the jog keys

Precondition Operating mode T1

Procedure 1. Select the jogging type Axes from the jogging options.

Axes A1 to A7 are displayed next to the jog keys.

2. Set the jog override.

3. Hold down the enabling switch.

When motion is enabled, the display elements next to the jog keys are
highlighted in white.

4. Press the plus or minus jog key to move an axis in the positive or negative
direction.

Description

The positive direction of rotation of the robot axes can be determined using the
right-hand rule. Imagine the cable bundle which runs inside the robot from the
base to the flange. Mentally close the fingers of your right hand around the ca-
ble bundle at the axis in question. Keep your thumb exended while doing so.
Your thumb is now positioned on the cable bundle so that it points in the same
direction as the cable bundle runs inside the axis on its way to the flange. The
other fingers of your right hand point in the positive direction of rotation of the
robot axis.

6.13.4 Cartesian jogging with the jog keys

Precondition Operating mode T1

Fig. 6-13: Axis-specific jogging
87 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

88 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Procedure 1. Select the desired coordinate system from the jogging options as the jog-
ging type. World, Base and Tool are available.

The following designations are displayed next to the jog keys:

 X, Y, Z: for the linear motions along the axes of the selected coordinate
system

 A, B, C: for the rotational motions about the axes of the selected coor-
dinate system

 R: for the null space motion

2. Select the desired tool and TCP.

3. If the Base coordinate system is selected as the jogging type, select the
desired base.

4. Set the jog override.

5. Press and hold down the enabling switch.

When motion is enabled, the display elements next to the jog keys are
highlighted in white.

6. Press the plus or minus jog key to move the robot in the positive or nega-
tive direction.

6.13.4.1 Null space motion

Description The lightweight robot has 7 axes, making it kinematically redundant. This
means that theoretically, it can move to every point in the work envelope with
an infinite number of axis configurations.

Due to the kinematic redundancy, a so-called null space motion can be carried
out during Cartesian jogging. In the null space motion, the axes are rotated in
such a way that the position and orientation of the set TCP are retained during
the motion.

Properties The null space motion is carried out via the “elbow” of the robot arm.

 The position of the elbow is defined by the elbow angle (R).

 The position of the elbow angle (R) can be modified using the jog keys dur-
ing Cartesian jogging.

All frames which were designated in Sunrise.Workbench as a base
are available as a base.
 (>>> 9.2.2 "Designating a frame as a base" Page 144)

Fig. 6-14: Null space motion
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Areas of appli-

cation

 The optimal axis configuration can be set for a given position and orienta-
tion of the TCP. This is especially useful in a limited working space.

 When a software limit switch is reached, you can attempt to move the robot
out of the range of the limit switches by changing the elbow angle.

6.14 Manually guiding the robot

Description The robot can be guided using a hand guiding device.

Manual guidance is supported by default in all operating modes except CRR
mode. In the station configuration, it is possible to configure manual guidance
as not allowed in Test mode and/or Automatic mode.

Precondition Hand guiding device with safety-oriented enabling device (enabling
switch) is present and configured.

 No application is selected or the application has one of the following
states:

 Selected

 Motion paused

 Error

 Manual guidance is allowed in the set operating mode.

Procedure 1. Press and hold down the enabling switch on the hand guiding device.

2. Guide the TCP to the desired position.

3. Once the position has been reached, release the enabling switch.

6.15 Frame management

6.15.1 “Frames” view

Procedure To open the view:

 Select Frames at the Station level. The Frames view opens.

Description The view contains the frames created for the station. Additional frames can be
created and the frames taught here. The position and orientation of a frame in
space and the associated redundancy information are recorded during teach-
ing.

 Taught frames can be addressed manually.

 Taught frames can be used as end points of motions. If an application is
run and the end frame of a motion is addressed, this is selected in the
Frames view.

 (>>> 6.17.1 "Displaying the end frame of the motion currently being exe-
cuted" Page 100)

In manual guidance, incorrectly selected parameters
(e.g. incorrect load data, incorrect tool) or incorrect infor-

mation (e.g. from defective torque sensors) can be interpreted as external
forces. This can result in unpredictable motions of the robot.

If the robot is manually guided, an EMERGENCY STOP device must
be installed. It must always be within reach of the operator.
89 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

90 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 6-15: Frames view

Item Description

1 Frame path

Path to the frames of the currently displayed hierarchy level: Goes
from World to the direct parent frame (here Box)

2 Frames of the current hierarchy level

A frame can be selected by touching it. The frame selected here is
marked with a hand icon. The hand icon means that this frame
can be used as the base for jogging and can be calibrated.

3 Properties of the selected frame

 Name of the frame

 Comment

 Tool used while teaching the frame

 Date and time of the last modification

4 Create frame button

Creates a frame at the currently displayed hierarchy level.

5 Create child frame button

The button can be used to create a child frame for a selected
frame. If no frame is selected, the button is disabled.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.15.2 Teaching frames

Description The coordinates of a frame can be modified on the smartHMI. This is done by
moving to the new position of the frame with the desired TCP and teaching the
frame. In the process, the new position and orientation are applied.

Precondition The tool with the desired TCP is set in the jogging options.

 (>>> 6.13.1 "“Jogging options” window" Page 84)

 Operating mode T1

Procedure 1. Move the TCP to the desired position of the frame.

2. In the Frames view, select the frame whose position is to be taught.

3. Press Touchup to apply the current TCP coordinates to the selected
frame.

4. The coordinates and redundancy information of the taught point are dis-
played in the Apply touchup data dialog. Press Apply to save the new
values.

6 Set base for jogging button

The button sets the selected frame as the base for jogging in the
jogging options.

 (>>> 6.13.1 "“Jogging options” window" Page 84)

The button is only active if the Base jogging type is selected from
the jogging options and the selected frame is marked as the base
in Sunrise.Workbench.

7 Touchup button

A selected frame can be taught. If no frame is selected, the button
is disabled.

8 Display child frames button

The button displays the direct child elements of a frame.

The button is only active if a frame has child elements.

9 Frame coordinates with reference to the parent frame

10 Magnifying glass button

The magnifying glass button is only active if an application is run-
ning and the end frame of a motion is being addressed. Use the
button to switch to this end frame if it is not yet displayed.

Item Description

It is advisable to synchronize the project immediately after teaching
the frames so that the new frame data will also be updated in the cor-
responding project in Sunrise.Workbench.

The application tool is only available in the jogging options if the robot
application is paused. For this reason, use of the application tool for
teaching frames is not recommended.

The tool corresponding to the current application tool (object template of the
tool) is also available for selection in the jogging options. Teaching can be
carried out with this tool instead of the application tool.

If a frame is changed, the change affects all applications in which the
frame is used. Modified programs must always be tested first in Man-
ual Reduced Velocity mode (T1).
91 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

92 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 6-16: Apply touchup data

Item Description

1 Values saved up to now

2 New values

3 Changes between the values saved until now and new values

4 Base for jogging

All coordinate values of the frame which are displayed in the dia-
log refer to the jogging base set in the jogging options. These val-
ues generally differ from the coordinate values of the frame with
respect to its parent frame.

 (>>> 6.13.1 "“Jogging options” window" Page 84)

5 Information on the robot and tool used during teaching

These frame properties are adopted by Sunrise.Workbench when
the project is synchronized.

6 Redundancy informationon on the taught point

These frame properties are adopted by Sunrise.Workbench when
the project is synchronized.

7 Cartesian distance between the current and new position of the
frame
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.15.3 Teaching frames with the hand guiding device

Description Frames can be taught using a hand guiding device. Here, the TCP is moved
by hand to the desired position.

Manual guidance is supported by default in all operating modes except CRR
mode. In the station configuration, it is possible to configure manual guidance
as not allowed in Test mode and/or Automatic mode.

Precondition Hand guiding device with safety-oriented enabling device (enabling
switch) is present and configured.

 The tool with the desired TCP is set in the jogging options.

 No robot application is selected or the robot application has one of the fol-
lowing states:

 Selected

 Motion paused

 Error

 The Frames view is open.

 The frames to be taught have been created.

 Manual guidance is allowed in the set operating mode.

Procedure 1. Press and hold down the enabling switch on the hand guiding device.

2. Guide the TCP to the desired position.

3. Once the position has been reached, release the enabling switch.

4. In the Frames view, select the frame whose position is to be taught.

5. Press Touchup to apply the current TCP coordinates to the selected
frame.

The coordinates and redundancy information of the taught point are dis-
played in the Apply touchup data dialog.

6. Press Apply to save the new values.

6.15.4 Manually addressing frames

Description Taught frames can be manually addressed with a PTP or LIN motion. In a PTP
motion, the frame is approached by the quickest route, whereas in a LIN mo-
tion it is approached on a predictable path.

When a frame is being addressed, a warning message is displayed in the fol-
lowing cases:

 The selected tool does not correspond to the tool with which the frame was
taught.

 The selected TCP does not correspond to the TCP with which the frame
was taught.

 The transformation of the TCP frame has been modified.

If the frame can still be reached, it is possible to move to it.

Precondition The frame has been taught.

In manual guidance, incorrectly selected parameters
(e.g. incorrect load data, incorrect tool) or incorrect infor-

mation (e.g. from defective torque sensors) can be interpreted as external
forces. This can result in unpredictable motions of the robot.

If the robot is manually guided, an EMERGENCY STOP device must
be installed. It must always be within reach of the operator.
93 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

94 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 The frame can be addressed with the selected TCP.

 Operating mode T1

Procedure 1. Select the desired frame in the Frames view.

2. Select the jogging type in the Jogging type window.

3. Press and hold down the enabling switch.

4. Press the Start key and hold it down until the frame is reached.

6.16 Program execution

6.16.1 Selecting a robot application

Procedure Select the desired robot application in the navigation bar under Applica-
tions.

The Applications view opens and the robot application goes into the Se-
lected state.

Description

If the selected working point is already at the end position or if the
frame cannot be reached with the current settings, the robot will not
execute any motion.

Fig. 6-17: Applications view – robot application selected
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
The following buttons are available:

Status display The robot application can have the following states:

Item Description

1 Current status of the robot application

The status is displayed as text and as an icon.

 (>>> "Status display" Page 95)

2 Display of robot application

The name of the selected robot application is displayed, here
Motion.

3 Message window

Error messages and user messages programmed in the applica-
tion are displayed.

Button Description

Deselect button

Deselects the selected robot application and closes the
Applications view. A paused robot application is reset
before it is deselected.

The button is only active if the robot application is in the
Selected, Motion paused or Error state.

Reset button

Resets a paused robot application. “Reset” means that the
robot application is reset to the start of the program and
goes into the Selected state.

The button is only active when the robot application is
paused.

Icon State Description

Selected The application is selected.

Start The application is initialized.

Running The application is executed.

Motion paused The application is paused.

If the application is paused using the smart-
PAD, for example by pressing the STOP key,
only motion execution is stopped. Other com-
mands, e.g. switching of outputs, are executed
in the Motion paused state until a synchro-
nous motion command is reached.

Error An error occurred while the application was
running.
95 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

96 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Start key The following functions are available in application mode using the Start key:

STOP key The following function is available using the STOP key:

6.16.2 Setting the program run mode

Precondition No robot application is selected or the robot application has one of the fol-
lowing states:

 Selected

 Motion paused

 Error

 T1 or T2 mode

Procedure 1. Open the Jogging type window.

2. Set the desired program run mode using the button under Debug options.

 Check box not active: Program execution in standard mode

 Check box active: Program execution in Step mode

 (>>> 6.16.2.1 "Program run modes" Page 97)

Repositioning The robot is repositioned. The application is
paused because the robot has left the path.

Stopping The application is reset to the start of the pro-
gram and goes into the Selected state.

Icon State Description

Icon Description

Start application.

A selected application can be started or a paused applica-
tion can be continued.

Reposition robot.

If the robot has left the path, it must be repositioned in
order to continue the application.

Icon Description

Pause application.

A running application can be paused in Automatic mode.

If a robot application is paused, the robot can be jogged. The tool and
TCP currently used in the paused application are not automatically
set as the tool and TCP for Cartesian jogging.

 (>>> 6.13.1 "“Jogging options” window" Page 84)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.16.2.1 Program run modes

6.16.3 Setting the manual override

Description The manual override determines the velocity of the robot during program exe-
cution.

The manual override is specified as a percentage of the programmed velocity.
In T1 mode, the maximum velocity is 250 mm/s, irrespective of the override
that is set.

If no application override set by the application is active, the manual override
corresponds to the effective program override with which the robot actually
moves.

If an application override set by the application is active, the effective program
override is calculated as follows:

Effective program override = manual override · application override

Precondition Robot application has been selected.

Procedure 1. Touch the Override button. The Override window is opened.

 (>>> 6.11 "“Override” window" Page 82)

2. Activate the Set manual override option if it is not already active.

Button Description

Standard mode

The program is executed through to the end without stop-
ping.

Step mode

The program is executed with a stop after each motion
command. The Start key must be pressed again for each
motion command.

 The end point of an approximated motion is not approx-
imated but rather addressed with exact positioning.

Exception: Approximated motions which were sent to
the robot controller asynchronously before Step mode
was activated and which are waiting there to be execut-
ed will stop at the approximate positioning point. For
these motions, the approximate positioning arc will be
executed when the program is resumed.

 In a spline motion, the entire spline block is executed as
one motion and then stopped.

 In a MotionBatch, the entire batch is not executed but
rather exact positioning is carried out after each individ-
ual motion of the batch.

The program run mode can also be set and polled in the source code
of the application. (>>> 15.17 "Changing and polling the program run
mode" Page 386)

Option Description

Set manual override option activated
97 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

98 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3. Set the desired manual override. It can be set using either the plus/minus
keys or by means of the slider.

 Plus/minus keys: The override can be set in steps to the following val-
ues: 100%, 75%, 50%, 30%, 10%, 5%, 3%, 1%, 0%.

 Slider: The override can be adjusted in 1% steps.

4. Touch the Override button or an area outside the window to close the win-
dow.

Alternative

procedure

Alternatively, the override can be set using the plus/minus key on the right of
the smartPAD.

The value can be set in the following steps: 100%, 75%, 50%, 30%, 10%, 5%,
3%, 1%.

6.16.4 Starting a robot application forwards (manually)

Precondition Robot application has been selected.

 T1 or T2 mode

Procedure 1. Select the program run mode.

2. Press and hold down the enabling switch.

3. Press Start key and hold it down. The robot application is executed.

To pause a robot application that has been started manually, release the Start
key. If the robot application is paused, it can be reset.

6.16.5 Starting a robot application forwards (automatically)

Precondition Robot application has been selected.

 Automatic mode

 The project is not controlled externally.

Procedure Press the Start key. The robot application is executed.

To pause a robot application that has been started in Automatic mode, press
the STOP key. If the robot application is paused, it can be reset.

6.16.6 Resetting a robot application

Description In order to restart a paused robot application from the beginning, it must be re-
set. This returns the robot application to the initial state (Selected state).

Precondition Robot application is paused.

Procedure Select Reset in the Applications view.

Alternative

procedure

 Select the Reset button in the navigation bar under Applications.

6.16.7 Repositioning the robot after leaving the path

Description The following events can cause the robot to leave its planned path:

 Triggering of a non-path-maintaining stop

 Jogging during a paused application

The robot can be repositioned using the Start key. Repositioning means that
the robot is returned to the Cartesian position at which it left the path. The ap-
plication can then be resumed from there.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Characteristics of the motion which is used to return to the path:

 A PTP motion is executed.

The path used to return to the path is different than that taken when leaving
the path.

 The robot is moved at 20% of the maximum possible axis velocity and the
effective program override (effective program override = manual override
application override).

 The robot is moved with the load data which were set when the application
was interrupted.

 The robot is moved with the controller mode which was set when the ap-
plication was interrupted.

Additional forces or force oscillations overlaid by an impedance controller
are withdrawn during repositioning.

Procedure 1. In T1 or T2 mode: press and hold down the enabling switch.

2. Press Start key and hold it down. The robot returns to the path.

6.16.8 Stopping a background application manually

Precondition Background application is running.

 T1 or T2 mode

Procedure In the navigation bar under Applications touch the button with the back-
ground application to be stopped.

Description The button of a stoppable background application shows the Stop icon. The
status indicator is green.

6.16.9 Starting a background application manually

Precondition Background application has been stopped or has finished.

 T1 or T2 mode

The currently set jog override is irrelevant for repositioning.

Repositioning a robot under impedance control may re-
sult in unexpected robot motions. The robot is always re-

positioned to the command position; this means that, in the case of a robot
under impedance control, the actual position after repositioning does not
necessarily corresond to the actual position at which it left the path. This can
lead to unexpectedly high forces in contact situations.
Prior to repositioning, manually move a robot under impedance control to a
position as close as possible to the one at which it left the path. Failure to ob-
serve this precaution may result in damage to property.

Repositioning may only be carried out if there is no risk
of a collision while it is returning to the path. If this is not

assured, first move the robot into a suitable position from which it can be
safely repositioned.

Icon Status Description

Background application is running.
99 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

100 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Procedure In the navigation bar under Applications touch the button with the back-
ground application to be started.

Description The button of a startable background application shows the Start icon. The
status indicator can be gray or red.

6.17 Display functions

6.17.1 Displaying the end frame of the motion currently being executed

Description If a frame from the frame tree is addressed in an application, this is indicated
in the Frames view. If the end frame of the motion currently being executed is
located at the displayed hierarchy level, the frame name is marked with an ar-
row icon (3 arrowheads):

If the end frame is located hierarchically below a displayed frame, the Display
child frames button is marked with an additional arrow icon (3 arrowheads):

You can switch directly to the current end frame using the magnifying glass
button in the upper right-hand area of the Frames view:

The magnifying glass button is inactive if no frame is being addressed.

Precondition Robot application has been selected.

 Application status Running or Motion paused

 The motion uses an end frame created in the application data.

Procedure 1. Select Frames at the Station level. The Frames view opens.

2. Switch to the end frame using the Display child frames button or the
magnifying glass button.

Icon Status Description

Background application has been stopped
or has finished.

Background has terminated with an error.

Fig. 6-18: The arrow icon marks the current end frame

Fig. 6-19: The button switches to the current end frame

Fig. 6-20: The magnifying glass button switches directly to the current
end frame
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.17.2 Displaying the axis-specific actual position

Procedure Select Axis position at the Robot level.

Description The current position of axes A1 to A7 is displayed. In addition, the range within
which each axis can be moved (limitation by end stops) is indicated by a white
bar.

The actual position can also be displayed while the robot is moving.

6.17.3 Displaying the Cartesian actual position

Procedure 1. Select Cartesian position at the Robot level.

2. Set the TCP and base in the Jogging options window.

Description The Cartesian actual position of the selected TCP is displayed. The values re-
fer to the base set in the jogging options.

 The display contains the following data:

 Current position (X, Y, Z)

 Current orientation (A, B, C)

 Current redundancy information: Status, Turn, redundancy angle (E1)

 Current tool, TCP and base

The actual position can also be displayed while the robot is moving.

Fig. 6-21: Axis-specific actual position
101 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

102 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.17.4 Displaying axis-specific torques

Procedure Select Axis torques at the Robot level.

Description The current torque values for axes A1 to A7 are displayed. In addition, the sen-
sor measuring range for each axis is displayed (white bar).

If the maximum permissible torque on a joint is exceeded, the dark gray area
of the bar for the axis in question turns orange. Only the violated area is indi-
cated in color (either the negative or positive part).

The display contains the following data:

 Current absolute torques

 Current external torques

 Current tool

The axis-specific torques can also be displayed while the robot is moving.

Fig. 6-22: Cartesian actual position

The refresh rate of the displayed values is limited. Briefly occurring
peak values are therefore not displayed under certain circumstances.

The external torques are only displayed correctly if the correct tool
has been specified.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.17.5 Displaying an I/O group and changing the value of an output

Precondition To change an output: Operating mode T1, T2 or CRR

Procedure 1. In the navigation bar, select the desired I/O group from I/O groups. The
inputs/outputs of the selected group are displayed.

2. Select the output to be changed.

3. An input box is displayed for numeric outputs. Enter the desired value.

4. Press and hold down the enabling switch. Change the value of the input
with the appropriate button.

Fig. 6-23: Axis-specific torques

The outputs can be changed irrespective of the safety controller sta-
tus, for example even if an EMERGENCY STOP is pressed.
103 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

104 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Description

Fig. 6-24: Inputs/outputs of an I/O group

Item Description

1 Name of the input/output

2 Type of input/output

3 Value of the input/output

The value is displayed as a decimal number.

4 Buttons for changing outputs

If an output is selected, its value can be changed. Precondition:
The enabling switch is pressed.

The buttons available depend on the output type.

5 Signal properties

The properties and the current value of the selected input or out-
put are displayed.

6 Signal direction

The icons indicate whether the signal is an input or an output.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
The following buttons are available depending on the type of the selected out-
put:

Signal direction The following icons indicate the direction of a signal:

I/O types The following icons indicate the type of input/output:

6.17.6 Displaying information about the robot and robot controller

Procedure Select the Information tile at the Station level.

Description The information is required, for example, when requesting help from KUKA
Customer Support.

The following information is displayed under the individual nodes:

Button Description

True Buttons for changing Boolean outputs

Sets the selected Boolean outputs to the value True (1) or
False (0).

False

Set Button for changing numeric outputs

Sets the selected numeric output to the entered value.

Icon Description

Icon for an output

Icon for an input

Icon Description

Icon for an analog signal

Icon for a binary signal

Icon for a signed digital signal

Icon for an unsigned digital signal

Node Description

Station Station information

 Software version: Version of the installed
System Software

 Station server IP: IP address of the robot
controller

 Serial number of controller: Serial number
of the robot controller
105 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

106 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6.18 Backup Manager

6.18.1 Overview of Backup Manager

The Backup Manager makes it possible to back up and restore robot controller
data manually. Automatic backup of data at a predefined interval can also be
preconfigured in the station configuration.

The following data are backed up and restored:

 Project data

 Catalogs of the installed software

 User-specific files (directory: C:\KRC\UserData)

The target directory for backups and the source directory for restorations is
preconfigured. The target and source directory is either the local directory
D:\ProjectBackup on the robot controller or a shared network directory.

Precondition Backup Manager is installed.

Procedure Open the Backup Manager view:

 Select the KUKA_Sunrise_Cabinet_1 > Backup Manager tile at the Sta-
tion level.

User interface Information about the smartHMI

 Connection IP

 Connection state

<Robot name>/Type
plate

Robot information

 Serial number: Serial number of the con-
nected robot

 Connected robot: Type of the connected ro-
bot

 Installed robot: Robot type specified in the
station configuration of Sunrise.Workbench

 Operating time [h]

The operating hours meter is running as long
as the drives are switched on.

Node Description

If the target directory for backups is on a network drive, it is advisable
to perform a connection test during start-up.
Test by carrying out a manual backup. If this fails, e.g. because the

target directory in the network is not accessible due to a defective configura-
tion, this is indicated in an error message.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
Description

Fig. 6-25: Backup Manager view

Item Description

1 Status indicator of the backup

 Deactivated: Automatic backup is not configured.

 Ready: Automatic backup is activated.

 Running: A backup is in progress (started manually or auto-
matically).

2 Information about the next automatic backup (if activated)

 Date and time

 Target directory
107 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

108 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3 “Manual backup/restoration” area

When the view is opened for the first time, only this area and the
status indicator are displayed. This is the default view.

The area contains the following buttons:

 Backup now

 (>>> 6.18.2 "Backing up data manually" Page 109)

 Restore

The button cannot be activated until the backup copy that is to
be restored has been selected using the magnifying glass but-
ton.

 (>>> 6.18.3 "Restoring data manually" Page 109)

 Configure source path

Displays the “Configure source path” area. After this the button
is inactive.

 Cancel

Hides the “Configure source path” area again. The button is in-
active in the default view.

4 Information about the most recent successful backup

 Date and time

 Target directory

5 “Configure source path” area

The source directory from which restoration is to be carried out
can be defined here. By default, the source directory defined in
the station configuration is preset.

The following source directories are available for selection:

 Local from D:\ProjectBackup: The source directory is the di-
rectory D:\ProjectBackup on the robot controller.

 Network: The source directory is located on a network drive.

The network path to the source directory can be configured.

 (>>> 6.18.4 "Configuring the network path for restoration"
Page 109)

6 Information about the backup copy selected for restoration

 Project name

 Date and time of the backup

7 Magnifying glass button

Opens a dialog in which the backup copy to be restored can be
selected. The dialog displays all backup copies contained in the
configured source directory.

8 Load data set button

Opens a dialog in which the user can select and apply ready-
made restoration configurations.

The button is only active if the file for restoration configurations is
configured in the station configuration and the file is saved under
the configured path on the robot controller.

Item Description
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

6 Operating the KUKA smartPAD
6.18.2 Backing up data manually

Description The backup copies are saved in the target directory in the following folder
structure:

 IP address_Project name\BACKUP_No.

Precondition No data backup is in progress.

Procedure Press Backup now in the Backup Manager view. The backup is carried
out.

6.18.3 Restoring data manually

Precondition No application is selected.

 Robot is not being jogged or manually guided.

 No data backup is in progress.

Procedure 1. Press Configure source path in the Backup Manager view.

2. If not already preset, select the source from which restoration is to be car-
ried out. If required, configure the desired network path for restoration.

 (>>> 6.18.4 "Configuring the network path for restoration" Page 109)

3. Press the magnifying glass button. A dialog is opened. The backup copies
available in the specified source directory are listed.

4. Select the desired backup copy and press Select. The dialog is closed and
information about the selected backup copy is displayed.

5. Press Restore. Restoration commences.

A progress bar indicates how far the process is. Following an automatic re-
boot of the robot controller, restoration is completed.

6.18.4 Configuring the network path for restoration

Description The network parameters can be entered manually or loaded from a preconfig-
ured data set:

Element Description

IP address IP address of the robot controller

Project name Name of the project installed on the robot controller

No. Number of the backup copy

The BACKUP folder with the highest number always con-
tains the most recent backup copy.

Parameter Description

Network path Network path to source directory, e.g. \\192.168.40.171\Backup\Restore

Server user name User name for the network path

The parameter is only relevant if authentication is required for network
access.

Server password Password for the network path

The parameter is only relevant if authentication is required for network
access.

IP address IP address of the robot controller to be restored

Subnet Mask Subnet mask in which the IP address of the robot controller is located
109 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

110 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Precondition For loading from a data set:

 The file for restoration configurations is configured in the station configu-
ration.

 The file is saved under the configured path on the robot controller.

Procedure 1. Press Configure source path in the Backup Manager view.

2. Select Network as the source if this is not already preset.

3. Enter network parameters or load them from a data set.

To load from a data set, proceed as follows:

a. Press Load data set. The Available restoration configurations dia-
log opens. All available configurations are listed. Every entry contains
the name of the robot controller that is to be restored. The network
path is indicated below this.

b. The selection can be reduced by filtering the entries by the name of the
robot controller. To do so, enter the name or part of the name in the
dialog. e.g. *Controller.

c. Select the desired entry and press Import.

The IP addresses of the robot controller and the server must be locat-
ed in the same range. IP address and subnet mask of the robot con-
troller to be restored must be selected accordingly.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
7 Start-up and recommissioning

7.1 Switching the robot controller on/off

7.1.1 Switching on the robot controller and starting the System Software

Procedure Turn the main switch on the robot controller to the “I” position.

The system software starts automatically.

Description The robot controller is ready for operation when the status indicator for the
boot state of the robot controller lights up green:

 Boot state tile at the Station level under the KUKA_Sunrise_Cabinet_1
tile .

7.1.2 Switching off the robot controller

Procedure Turn the main switch on the robot controller to the “0” position.

7.2 smartPAD software update

When the robot controller is rebooted or the smartPAD is plugged into a run-
ning robot controller, the version of the smartPAD software is automatically
checked. If there are conflicts between the smartPAD software and the system
software on the robot controller, the smartPAD software must be updated.

Characteristics of the smartPAD software update:

 The update is carried out automatically in T1, T2 and CRR modes.

 No update is possible in Automatic mode.

If the smartPAD is connected in Automatic mode and a version conflict is
recognized, no user input may be entered on the smartPAD. The operating
mode must be switched to T1 or T2 to start the update automatically.

 No user input may be entered during the smartPAD update.

 Following a successful update, the smartPAD is automatically rebooted.

t

t

 The robot controller is supplied with an operational version of the Sys-
tem Software. Therefore, no installation is required during initial start-
up.

Installation becomes necessary, for example, if the station configuration
changes.
 (>>> 10 "Station configuration and installation" Page 167)

If an application is still running when the robot controller
is switched off, active motions are stopped. This can re-

sult in the robot being damaged. For this reason, the robot controller must
only be switched off when no more applications are running and the robot is
stationary.

Do not interrupt the update, as the smartPAD may other-
wise be damaged.

 Do not disconnect the smartPAD from the robot controller during the up-
date.

 Do not disconnect the robot controller from the power supply during the
update.
111 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

112 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
7.3 Performing a PDS firmware update

Description If the robot controller is rebooted or the drive bus connection restored, the sys-
tem checks for every connected PDS whether the current PDS firmware ver-
sion matches the firmware version on the robot controller. If the firmware
version of at least one of the PDSs is older than the version on the robot con-
troller, a PDS firmware update must be performed.

The following error message is displayed under the Device state tile:

Firmware update is required. Select "Diagnosis" > "PDS firmware update" in
the main menu in order to update the firmware.

Procedure In the main menu, select Diagnosis > PDS firmware update.

The update is started and a blocking dialog is displayed. No user input may be
entered during the smartPAD update.

Once the update has been successfully completed, the dialog is closed.

7.4 Position mastering

During position mastering, a defined mechanical robot axis position is as-
signed to a motor angle. Only with a mastered robot is it possible for taught
positions to be addressed with high repeatability. An unmastered robot can
only be moved manually (axis-specific jogging in T1 or CRR mode).

7.4.1 Mastering axes

Description The LBR iiwa has a Hall effect mastering sensor in every axis. The mastering
position of the axis (zero position) is located in the center of a defined series
of magnets. It is automatically detected by the mastering sensor when it pass-
es over the series of magnets during a rotation of the axis.

Before the actual mastering takes place, an automatic search run is performed
in order to find a defined premastering position.

If the search run is successful, the axis is moved into the premastering posi-
tion. The axis is then moved in such a way that the mastering sensor passes
over the series of magnets. The motor position at the moment when the mas-
tering position of the axis is detected is saved as the zero position of the motor.

Following the update of the smartPAD software, the robot controller
must be rebooted in order to fully display the smartHMI and be able
to use the system.

The update may take up to 5 hours and must not be in-
terrupted:

 Do not disconnect the robot from the robot controller during the update.

 Do not disconnect the robot controller from the power supply during the
update.

If the update is interrupted, it is possible that the robot controller may enter
the error state with the result that the robot can no longer be moved. This fault
can only be rectified by KUKA Service.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
Precondition Operating mode T1 or CRR

Procedure 1. Select Mastering at the Robot level. The Mastering view opens.

2. Press and hold down the enabling switch.

3. Press the Master button for the unmastered axis.

First of all, the premastering position is located by means of a search run.
The mastering run is then performed. Once mastering has been carried
out successfully, the axis moves to the calculated mastering position (zero
position).

7.4.2 Manually unmastering axes

Description The saved mastering position of an axis can be deleted. This unmasters the
axis. No motion is executed during unmastering.

Precondition Operating mode T1

Procedure 1. Select Mastering at the Robot level. The Mastering view opens.

2. Press the Unmaster button for the mastered axis. The axis is unmastered.

7.5 Calibration

7.5.1 Tool calibration

Description During tool calibration, the user assigns a Cartesian coordinate system (tool
coordinate system) to a tool mounted on the mounting flange.

The tool coordinate system has its origin at a user-defined point. This is called
the TCP (Tool Center Point). The TCP is generally situated at the working
point of the tool. A tool can have several TCPs.

Advantages of tool calibration:

 The tool can be moved in a straight line in the tool direction.

 The tool can be rotated about the TCP without changing the position of the
TCP.

 In program mode: The programmed velocity is maintained at the TCP
along the path.

The repeatability and reproducibility of mastering are only guaranteed
if the procedure is always identical. The following rules must be ob-
served during mastering:

 When one axis is being mastered, all axes should be in the vertical
stretch position. If this is not possible, mastering must always be carried
out in the same axis position.

 Always master the individual axes in the same order.

 Always carry out mastering without a load. Mastering with a load is not
currently supported.

The mastering velocity is independent of the set jog override.

If the search run or the mastering fails, the process is aborted and the
robot stops.
113 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

114 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Overview Tool calibration consists of 2 steps:

7.5.1.1 TCP calibration: XYZ 4-point method

Description The TCP of the tool to be calibrated is moved to a reference point from 4 dif-
ferent directions. The reference point can be freely selected. The robot con-
troller calculates the TCP from the different flange positions.

The 4 flange positions with which the reference point is addressed must main-
tain a certain minimum distance between one another. If the points are too
close to one another, the position data cannot be saved. A corresponding error
message is generated.

The quality of the calibration can be assessed by means of the translational
calculation error which is determined during calibration. If this error exceeds a
defined limit value, it is advisable to calibrate the TCP once more.

Fig. 7-1: TCP calibration principle

Step Description

1 Define the origin of the tool coordinate system

The following methods are available:

 XYZ 4-point

 (>>> 7.5.1.1 "TCP calibration: XYZ 4-point method"
Page 114)

2 Definition of the orientation of the tool coordinate system

The following methods are available:

 ABC 2-point

 (>>> 7.5.1.2 "Defining the orientation: ABC 2-point meth-
od" Page 116)

 ABC World

 (>>> 7.5.1.3 "Defining the orientation: ABC world method"
Page 118)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
The minimum distance and the maximum calculation error can be modified in
Sunrise.Workbench. (>>> 10.3.4 "Configuration parameters for calibration"
Page 170)

Precondition The tool to be calibrated is mounted on the mounting flange.

 The tool to be calibrated and the frame used as the TCP have been creat-
ed in the object templates of the project and transferred to the robot con-
troller by means of synchronization.

 T1 mode

Procedure 1. Select Calibration > Tool calibration at the Robot level. The Tool cali-
bration view opens.

2. Select the tool to be calibrated and the corresponding TCP.

3. Select the TCP calibration(XYZ 4-point) method. The measuring points
of the method are displayed as buttons:

 Measurement point 1 ... Measurement point 4

In order to be able to record a measuring point, it must be selected (button
is orange).

4. Move the TCP to any reference point. Press Record calibration point.
The position data are applied and displayed for the selected measuring
point.

5. Move the TCP to the reference point from a different direction. Press Re-
cord calibration point. The position data are applied and displayed for
the selected measuring point.

6. Repeat step 5 two more times.

7. Press Determine tool data. The calibration data and the calculation error
are displayed in the Apply tool data dialog.

8. If the calculation error exceeds the maximum permissible value, a warning
is displayed. Press Cancel and recalibrate the TCP.

Fig. 7-2: XYZ 4-point method
115 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

116 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
9. If the calculation error is below the configured limit, press Apply to save
the calibration data.

10. Either close the Calibration view or define the orientation of the tool coor-
dinate system with the ABC 2-point or ABC World method.

 (>>> 7.5.1.2 "Defining the orientation: ABC 2-point method" Page 116)

 (>>> 7.5.1.3 "Defining the orientation: ABC world method" Page 118)

11. Synchronize the project in order to save the calibration data including the
calculation error in Sunrise.Workbench.

7.5.1.2 Defining the orientation: ABC 2-point method

Description The robot controller is notified of the axes of the tool coordinate system by ad-
dressing a point on the X axis and a point in the XY plane.

The points must maintain a defined minimum distance from one another. If the
points are too close to one another, the position data cannot be saved. A cor-
responding error message is generated.

The minimum distance can be modified in Sunrise.Workbench.
(>>> 10.3.4 "Configuration parameters for calibration" Page 170)

This method is used for tools with edges and corners which the user can em-
ploy for orientation. Furthermore, it is used if it is necessary to define the axis
directions with particular precision.

This method is not available for safety-oriented tools.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
Precondition The tool to be calibrated is mounted on the mounting flange.

 The TCP of the tool has already been measured.

 Operating mode T1

Procedure 1. Only if the Calibration view was closed following TCP calibration:

Select Calibration > Tool calibration at the Robot level. The Tool cali-
bration view opens.

2. Only if the Calibration view was closed following TCP calibration:

Select the mounted tool and the corresponding TCP of the tool.

3. Select the Defining the orientation(ABC 2-point) method. The measur-
ing points of the method are displayed as buttons:

 TCP

 Negative X axis

 Positive Y value on XY plane

In order to be able to record a measuring point, it must be selected (button
is orange).

4. Move the TCP to any reference point. Press Record calibration point.
The position data are applied and displayed for the selected measuring
point.

Fig. 7-3: ABC 2-point method
117 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

118 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5. Move the tool so that the reference point on the X axis has a negative X
value (i.e. move against the tool direction). Press Record calibration
point. The position data are applied and displayed for the selected mea-
suring point.

6. Move the tool so that the reference point in the XY plane has a positive Y
value. Press Record calibration point. The position data are applied and
displayed for the selected measuring point.

7. Press Determine tool data. The calibration data are displayed in the Ap-
ply tool data dialog.

8. Press Apply to save the calibration data.

9. Synchronize the project in order to save the calibration data in Sun-
rise.Workbench.

7.5.1.3 Defining the orientation: ABC world method

Description The user aligns the axes of the tool coordinate system parallel to the axes of
the world coordinate system. This communicates the orientation of the tool co-
ordinate system to the robot controller.

There are 2 variants of this method:

 5D: The user communicates the tool direction to the robot controller. By
default, the tool direction is the X axis. The orientation of the other axes is
defined by the system and cannot be influenced by the user.

The system always defines the orientation of the other axes in the same
way. If the tool subsequently has to be calibrated again, e.g. after a crash,
it is therefore sufficient to define the tool direction again. Rotation about
the tool direction need not be taken into consideration.

 6D: The user communicates the direction of all 3 axes to the robot control-
ler.

This method is used for tools that do not have corners which the user can em-
ploy for orientation, e.g rounded tools such as adhesive or welding nozzles.

Precondition The tool to be calibrated is mounted on the mounting flange.

 The TCP of the tool has already been measured.

 Operating mode T1

Procedure 1. Only if the Calibration view was closed following TCP calibration:

Select Calibration > Tool calibration at the Robot level. The Tool cali-
bration view opens.

2. Only if the Calibration view was closed following TCP calibration:

Select the mounted tool and the corresponding TCP of the tool.

3. Select the Defining the orientation(ABC world) method.

4. Select the ABC World 5D or ABC world 6D option.

5. If ABC World 5D is selected:

Align +XTOOL parallel to -ZWORLD. (+XTOOL = tool direction)

If ABC world 6D is selected:

Align the axes of the tool coordinate system as follows.

 +XTOOL parallel to -ZWORLD. (+XTOOL = tool direction)

 +YTOOL parallel to +YWORLD

 +ZTOOL parallel to +XWORLD

6. Press Determine tool data. The calibration data are displayed in the Ap-
ply tool data dialog.

7. Press Apply to save the calibration data.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
8. Synchronize the project in order to save the calibration data in Sun-
rise.Workbench.

7.5.2 Calibrating the base: 3-point method

Description During base calibration, the user assigns a Cartesian coordinate system (base
coordinate system) to a frame selected as the base. The base coordinate sys-
tem has its origin at a user-defined point.

Advantages of base calibration:

 The TCP can be jogged along the edges of the work surface or workpiece.

 Points can be taught relative to the base. If it is necessary to offset the
base, e.g. because the work surface has been offset, the points move with
it and do not need to be retaught.

The origin and 2 further points of a base are addressed with the 3-point meth-
od. These 3 points define the base.

The points must maintain a defined minimum distance from the origin and min-
imum angles between the straight lines (origin – X axis and origin – XY plane).
If the points are too close to one another or if the angle between the straight
lines is too small, the position data cannot be saved. A corresponding error
message is generated.

The minimum distance and angles can be modified in Sunrise.Workbench.
(>>> 10.3.4 "Configuration parameters for calibration" Page 170)
119 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

120 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Precondition A previously calibrated tool is mounted on the mounting flange.

 The frame to be calibrated has been selected as the base in the applica-
tion data of the project and transferred to the robot controller by means of
synchronization.

 T1 mode

Procedure 1. Select Calibration > Base calibration at the Robot level. The Base cali-
bration view opens.

2. Select the base to be calibrated.

3. Select the mounted tool and the TCP of the tool with which the measuring
points of the base are addressed.

The measuring points of the 3-point method are displayed as buttons:

 Origin

 Positive X axis

 Positive Y value on XY plane

In order to be able to record a measuring point, it must be selected (button
is orange).

4. Move the TCP to the origin of the base. Press Record calibration point.
The position data are applied and displayed for the selected measuring
point.

Fig. 7-4: 3-point method
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
5. Move the TCP to a point on the positive X axis of the base. Press Record
calibration point. The position data are applied and displayed for the se-
lected measuring point.

6. Move the TCP to a point in the XY plane with a positive Y value. Press Re-
cord calibration point. The position data are applied and displayed for
the selected measuring point.

7. Press Determine base data. The calibration data are displayed in the Ap-
ply base data dialog.

8. Press Apply to save the calibration data.

9. Synchronize the project in order to save the calibration data in Sun-
rise.Workbench.

7.6 Determining tool load data

Description During load data determination, the robot performs multiple measurement
runs with different orientations of wrist axes A5, A6 and A7. The load data are
calculated from the data recorded during the measurement runs.

The mass and the position of the center of mass of the tool mounted on the
robot flange can currently be determined. It is also possible to specify the
mass and to determine the position of the center of mass on the basis of the
mass that is already known.

At the start of load data determination, axis A7 is moved to the zero position
and axis A5 is positioned in such a way that axis A6 is aligned perpendicular
to the weight. During the measurement runs, axis A6 has to be able to move
between -95° and +95°, while axis A7 has to be able to move from 0° to -90°.

The remaining robot axes (A1 to A4) are not moved during load data determi-
nation. They remain in the starting position during measurement.

The quality of the load data determination may be influenced by the following
constraints:

 Mass of the tool

Load data determination becomes more reliable as the mass of the tool in-
creases. This is because measurement uncertainties have a greater influ-
ence on a smaller mass.

 Supplementary loads

Supplementary loads mounted on the robot, e.g. dress packages, lead to
incorrect load data.

 Start position from which load data determination is started

A suitable start position should be determined first and meet the following
criteria:

 Axes A1 to A5 are as far away as possible from singularity positions.

The criterion is relevant if the mass is to be determined during load
data determination. If load data determination is only possible in poses
for which axes A1 to A5 are close to singularity positions, the mass can
be specified. If only the center of mass is to be determined on the basis
of the specified mass, the criterion of axis position is irrelevant.

 The suitability of the start position for load data determination in the
case of a robot for which automatic load data determination is to be
carried out must be checked before the load that is to be determined
is mounted on the robot.

Load data determination cannot yet be used reliably for masses of
less than one kilogram.
121 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

122 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
A robot pose is suitable as a start position for load data determination
if there are only slight external torques acting on the load-free robot in
this position. This can be checked via the display of the external axis
torques.

 (>>> 6.17.4 "Displaying axis-specific torques" Page 102)

If the mass is to be determined during load data determination, all ex-
ternal axis torques are relevant and should be checked where possible
in advance for the load-free robot. If only the center of mass is to be
determined on the basis of a specified mass, only the external axis
torque of axis A6 is relevant.

 Interference torques during the measurement runs

 During the measurement runs, no interference torques may be ap-
plied, e.g. by pulling or pushing the robot.

 Moving parts, e.g. dress packages, generate interference torques that
shift the center of mass during the measurement run.

For the load data determination for safety-oriented tools, it must be ensured
that the modified load data are not automatically transferred to the safety con-
figuration located on the robot controller. (>>> 9.3.9 "Safety-oriented tools"
Page 154)

The load data determined for a safety-oriented tool must first be updated in
Sunrise.Workbench by means of project synchronization. This changes the
safety configuration of the project in Sunrise.Workbench; the project must then
be re-transferred to the robot controller by synchronizing the project again.

Preparation Determine the start position from which load data determination is to be
started.

Precondition The tool is mounted on the mounting flange.

 The tool has been created in the object templates of the project and trans-
ferred to the robot controller by means of synchronization.

 The robot is in the desired start position.

 There is a sufficiently large workspace available in the wrist axis range.

 T1, T2 or AUT mode

Procedure 1. Select Load data at the Robot level. The Load data view opens.

2. Select the mounted tool from the selection list.

The application of interference torques during load data determina-
tion results in falsified load data. (>>> 9.3.8 "Load data" Page 153)

If a changed safety configuration is activated on the robot controller,
the safety maintenance technician must carry out safety acceptance.
(>>> 13.13 "Safety acceptance overview" Page 275)

To avoid spending unnecessary time performing verifications, it is advisable
to mark a tool as safety-oriented only when the load data have been correctly
entered or determined and have been transferred to Sunrise.Workbench.

If parts of the mounted tool project behind the flange
plane (in the negative Z direction relative to the flange

coordinate system), there is a risk of the tool colliding with the manipulator
during the measurement runs.
If the motion of the axes during load data determination is unknown to the op-
erator, or if a collision between the tool and manipulator cannot be ruled out
(e.g. for the initial load data determination for a tool), it is advisable to deter-
mine the load data in T1 mode. This does not affect the quality of the mea-
surement results.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

7 Start-up and recommissioning
3. If T1 or T2 mode is set, press and hold down the enabling switch until load
data determination has been completed.

4. Press Determining the load data.

5. If the tool already has a mass, the operator will be asked if the mass is to
be redetermined.

 Select Use existing mass if the currently saved mass is to be re-
tained.

 Select Redetermine mass if the mass is to be determined again.

6. The robot starts the measurement runs and the load data are determined.
A progress bar is displayed.

Once load data determination has been completed, the determined load
data are displayed in the Apply load data dialog.

Press Apply to save the determined load data.

7. Synchronize the project so that the load data are saved in Sunrise.Work-
bench.

When the load data for a safety-oriented tool have been determined, the
safety configuration changes as a result of the project synchronization.

8. If necessary, synchronize the project in order to transfer the changed safe-
ty configuration to the robot controller.

Overview

If the currently saved mass is to be retained in the load determination,
it must be ensured that the specified mass value is correct. Other-
wise, the center of mass cannot be determined accurately.

If the motion enable signal is withdrawn during load data determina-
tion, e.g. by an EMERGENCY STOP or by releasing the enabling
switch (T1, T2), the load data determination is aborted and must be

restarted.

Fig. 7-5: Determining the load data
123 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

124 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Item Description

1 Tool selection list

The tools created in the object templates are available for selec-
tion here.

2 Load data display

Displays the current load data of the selected tool.

3 Display of axes used

Displays the axes that are moved for load data determination.

4 Determining the load data button

Starts load data determination. The button is only active if a tool
has been selected and the motion enable signal has been issued.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
8 Brake test

8.1 Overview of the brake test

Description Each robot axis has a holding brake integrated into the drive train. The brakes
have 2 functions:

 Stopping the robot when the servo control is deactivated or the robot is de-
energized.

 Switching the robot to the safe state “Standstill” in the event of a fault.

The brake test checks whether the brake holding torque applied by each brake
is high enough, i.e. whether it exceeds a specific reference torque. This refer-
ence torque can be specified by the programmer or read from the motor data.

Execution A precondition for execution of the brake test is that the robot is at operating
temperature.

The brake test is manually executed by means of an application. A prepared
brake test application for the LBR iiwa is available from Sunrise.Workbench.

If the prepared brake test application is used, the robot is moved prior to the
actual brake test and the resulting maximum absolute torque is determined for
each axis. In the brake test application, the torque determined is communicat-
ed to the brake test as the reference holding torque.

The determination of the maximum absolute torques is referred to in the fol-
lowing as torque value determination.

Procedure When a brake is tested, the following steps are carried out by default:

1. The axis moves at constant velocity over a small axis angle of max. 5° (on
the output side). The gravitation and friction are determined during this
motion.

2. When the axis has returned to its starting position and the axis drive is sta-
tionary, the brake is closed.

3. One of the following values is used as the holding torque to be tested: the
reference holding torque determined, the minimum brake holding torque
or the motor holding torque.

The holding torque to be tested is defined internally by the system accord-
ing to the following rules:

a. If the reference holding torque is greater than the lowest value of the
minimum brake and motor holding torques, then the lowest value of
the minimum brake and motor holding torques is used as the holding
torque to be tested.

t

s

t

Unless otherwise determined by a risk assessment, the brake test
must be performed regularly:

The brake test must be carried out for each axis during start-up and
recommissioning of the industrial robot.

 The brake test must be performed daily during operation.

The user can carry out a risk assessment to determine whether the brake test
is required for the specific application and, if so, how often it is to be per-
formed.

It is advisable to remove the torque value determination from the ap-
plication and to test the brakes against the minimum brake holding
torque. If a torque specified by the programmer is tested, a risk anal-

ysis must first be carried out to determine whether there is any danger if the
brakes show a lower torque than the minimum brake holding torque.
125 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

126 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
b. If the reference holding torque is lower than 20% of the lowest value of
the minimum brake and motor holding torques, then 20% of the lowest
value of the minimum brake and motor holding torques is used as the
holding torque to be tested.

c. In all other cases, the reference holding torque is used.

At the start of the brake test, with the brake closed, the setpoint torque of
the drive is set to 80% of the holding torque to be tested.

4. The drive torque is gradually increased until a change in position is detect-
ed or the maximum brake holding torque (derived from the motor data) is
reached. The brake test ends when the maximum brake holding torque is
reached.

5. The torque applied against the brake when a change in position is detect-
ed is measured. This is the measured holding torque.

6. The measured holding torque is evaluated relative to the holding torque to
be tested.

The brake test is successful if the measured holding torque lies within the
following range:

 ≥ 105% of the holding torque to be tested … ≤ maximum brake holding
torque

If the measured holding torque lies below the holding torque to be tested,
the brake test has failed, i.e. the brake is identified as being defective.

The test result is displayed on the smartHMI.

 (>>> 8.4.2 "Results of the brake test (display) " Page 141)

7. When the brake test has ended and the robot is stationary, the brake is
briefly opened and closed again. This releases any remaining tension in
the brake and prevents undesired robot motions.

Overview The following describes the steps for executing the brake test with the tem-
plate available in Sunrise.Workbench.

The brake test application can be adapted and expanded. The comments con-
tained in the template must be observed.

The minimum and maximum brake holding torques are saved in the
motor data. The motor holding torque is derived from the motor data.

If the application is paused during the brake test or if a safety stop is
triggered, e.g. by an EMERGENCY STOP, the brake test is aborted.
The brake test for the axis is repeated when the application is re-

sumed.

The brake test does not depend on the loads mounted on the robot,
as gravitation and friction are taken into consideration when the test
is carried out.

If a brake is defective, the corresponding axis may slip
during the brake test and the robot may sag. The brake

test must be executed in a position in which no damage could result from po-
tential sagging. The starting position for the brake test must be selected ac-
cordingly.

If the brake test fails for an axis (brake is defective), the
application must ensure that the robot is automatically

moved to a safe position. A position is safe if the robot is supported in such
a way that it either cannot sag or cannot cause damage in the event of sag-
ging.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
8.2 Creating the brake test application from the template

Procedure 1. Select the Sunrise project in the Package Explorer.

2. Select the menu sequence File > New > Other....

3. In the Sunrise folder, select the Application for the brake test of LBR
iiwa option and click on Finish.

The BrakeTestApplication.java application is created in the source fold-
er of the project and opened in the editor area of Sunrise.Workbench.

Step Description

1 Create the brake test application from the template.

 (>>> 8.2 "Creating the brake test application from the tem-
plate" Page 127)

2 In the brake test application, remove or adapt the application-
specific maximum absolute torques determined.

At the start of the brake test application, 2 predefined axis
positions are addressed by default. The maximum absolute
torque for each axis is thus determined and communicated to
the brake test as the reference holding torque.

It is advisable to test the brakes against the minimum brake
holding torque, which is stored in the motor data. To do so,
the prepared brake test application must be adapted.

 (>>> 8.2.1 "Adapting the brake test application for testing
against the minimum brake holding torque" Page 130)

If the brake test requires the maximum absolute torques
which occur when a user-specific robot application is exe-
cuted, the user-specific robot application can be added to the
brake test application. Since the brakes are not tested against
the minimum brake holding torque in this case, a risk analysis
must first be carried out.

 (>>> 8.2.2 "Changing the motion sequence for torque value
determination" Page 130)

3 Change the starting position for the brake test.

The starting position is the vertical stretch position by default.
If required, a different starting position can be selected.

 (>>> 8.2.3 "Changing the starting position for the brake test"
Page 131)

4 If necessary, make further user-specific adaptations in the
brake test application.

Examples:

 Setting the output for a failed brake test.

 Saving the test results in a file.

 (>>> 8.3 "Programming interface for the brake test"
Page 131)

5 Synchronize the project in order to transfer the brake test
application to the robot controller.

6 Execute the brake test application.

 (>>> 8.4 "Performing a brake test" Page 140)
127 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

128 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Description In the run() method of the BrakeTestApplication.java application (limited
here to the relevant command lines), the execution of the brake test is imple-
mented for all axes of the LBR iiwa.

An optional data evaluation preceding the actual brake test is also implement-
ed. 2 predefined axis positions are addressed in order to determine the maxi-
mum absolute torque for each axis.

1 public void run() {
2 ...

3 lbr_iiwa.move(ptpHome());

4 ...

5 TorqueEvaluator evaluator = new TorqueEvaluator(lbr_iiwa);
6 ...

7 evaluator.setTorqueMeasured(false);
8

9 evaluator.startEvaluation();

10 ...

11 lbr_iiwa.move(new PTP(new JointPosition(
12 0.5, 0.8, 0.2, 1.0, -0.5, -0.5, -1.5)).

13 setJointVelocityRel(relVelocity));

14 lbr_iiwa.move(new PTP(new JointPosition(
15 -0.5, -0.8, -0.2, -1.0, 0.5, 0.5, 1.5)).

16 setJointVelocityRel(relVelocity));

17 ...

18 TorqueStatistic maxTorqueData = evaluator.stopEvaluation();

19

20 boolean allAxesOk = true;
21

22 for (int axis : axes) {

23 try {
24 BrakeTest brakeTest = new BrakeTest(axis,
25 maxTorqueData.getMaxAbsTorqueValues()[axis]);

26 IMotionContainer motionContainer = lbr_iiwa.move(brakeTes
t);

27 BrakeTestResult brakeTestResult =

28 BrakeTest.evaluateResult(motionContainer);

29 switch(brakeTestResult.getState().getLogLevel())
30 {

31 case Info:

32 getLogger().info(brakeTestResult.toString());

33 break;
34 case Warning:

35 getLogger().warn(brakeTestResult.toString());

36 break;
37 case Error:

38 getLogger().error(brakeTestResult.toString());

39 allAxesOk = false;
40 break;
41 default:
42 break;
43 }

44 catch (CommandInvalidException ex) {
45 ...

46 allAxesOk = false;
47 }

48 }

49

50 if (allAxesOk){
51 getLogger().info("Brake test was successful for all axes.");

52 }

53 else{
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
54 getLogger().error("Brake test failed for at least one
axis.");

55 }

56 }

Line Description

3 Address the starting position from which the robot is moved to
determine the maximum absolute torque for each axis.

The starting position is the vertical stretch position by default.

5 Prepare the data evaluation.

In order to perform an axis-specific evaluation of the torques
determined during a motion sequence, an instance of the
TorqueEvaluator class must be created.

7 Select the torques to be used for the data evaluation.

The measured torques are not used, but instead the torques
that are calculated using the robot model during the motion se-
quence. Measurements are susceptible to malfunctions. The
calculation of the torque values ensures that no interference
torques resulting from dynamic effects (e.g. robot accelera-
tion) are incorporated into the data evaluation.

9 Start the data evaluation.

The data evaluation is started with the startEvaluation() com-
mand of the TorqueEvaluator class.

11 … 16 Carry out the motion sequence to determine the maximum ab-
solute torques

2 predefined axis positions are each addressed with a PTP
motion.

18 End the data evaluation and poll the data.

The stopEvaluation() command of the TorqueEvaluator class
ends the data evaluation and returns the result as a value of
type TorqueStatistic. The result is saved in the variable max-
TorqueData.

20 Variable for the evaluation of the brake test

The result of the brake test is saved for later evaluation via the
variable allAxesOk. It is set to “false” if the brake test of an axis
fails or is aborted due to an error. Otherwise it retains the value
“true”.

22 … 54 Execute the brake test

The brakes are tested one after the other, starting with the
brake of axis A1.

1. Lines 24, 25: An object of type BrakeTest is created. In the
process, the corresponding axis and the previously deter-
mined maximum absolute torque are transferred as the
reference holding torque.

2. Line 26: The brake test is executed as a motion command.

3. Lines 27 ... 54: The result of the brake test is evaluated and
displayed on the smartHMI.
129 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

130 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
8.2.1 Adapting the brake test application for testing against the minimum brake holding

torque

Description The brake test checks whether the brakes apply the minimum brake holding
torque. It is therefore advisable to adapt the prepared brake test application in
accordance with the following description.

If the brake test is to be executed without reference holding torques being de-
termined and made available to the brake test, all the command lines relevant
for torque value determination must be removed from the brake test applica-
tion. As a consequence, the brake test application then starts with the motion
to the starting position for the brake test.

In addition, when creating the BrakeTest instance, the parameter with which
the reference torque is transferred must be removed.

Procedure 1. Open the brake test application in Sunrise.Workbench.

2. Make the following changes to the run() method of the application:

 Delete all command lines which are relevant for torque value determi-
nation.

 When calling the constructor of the BrakeTest class, delete the follow-
ing parameters:

maxTorqueData.getMaxAbsTorqueValues()[axis]

The following code remains in the line:

3. Save changes.

8.2.2 Changing the motion sequence for torque value determination

Description The brake test application created from the template contains a prepared mo-
tion sequence for determining the maximum absolute torques generated in
each axis.

The robot is moved from the vertical stretch position by default. A different
starting position can be selected.

2 pre-defined axis positions are each addressed from the starting position with
a PTP motion. In order to determine the maximum absolute torques that arise
in a specific robot application, and to use these as reference holding torques
for the brake test, application-specific motion sequences must be inserted into
the brake test application.

Fig. 8-1: Transferring the reference torque for the brake test

1 Constructor of the class BrakeTest with transfer of reference torque

BrakeTest brakeTest = new brakeTest(axis);
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
Procedure 1. Open the brake test application in Sunrise.Workbench.

2. If necessary, make the following changes to the run() method of the appli-
cation:

 Replace the ptpHome() motion that brings the robot to the starting po-
sition with a motion to the desired starting position.

 Replace the predefined motion sequence with the appropriate applica-
tion code.

3. Save changes.

8.2.3 Changing the starting position for the brake test

Description By default, the brake test application created from the template executes the
brake test to the end position of the motion sequence in order to determine the
maximum absolute torque. If this position is not suitable for the brake test, a
motion to the desired starting position must be programmed before the brake
test is executed.

8.3 Programming interface for the brake test

With the BrakeTest class, the RoboticsAPI offers a programming interface for
the execution of the brake test. The brake test is executed as a motion com-
mand.

In addition, using the TorqueEvaluator class, the torques measured during a
motion sequence can be evaluated and the maximum absolute torque for each
axis can be determined. This torque can be used as the reference holding
torque for the brake test.

8.3.1 Evaluating the torques generated and determining the maximum absolute value

Description In order to perform an axis-specific evaluation of the torques determined dur-
ing a motion sequence, an object of the TorqueEvaluator class must first be
created. The LBR instance for whose axes the maximum absolute torque val-
ues are to be determined is transferred to the constructor of the TorqueEvalu-
ator class.

Fig. 8-2: Motion sequence for torque value determination

1 ptpHome() motion to starting position

2 Predefined motion sequence for torque value determination

To determine the gravitation and friction, the axes of an LBR iiwa are
moved towards the mechanical zero position. The maximum travel is
5° on the output side.
131 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

132 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The evaluation can be started and then ended with the following methods of
the TorqueEvaluator class:

 startEvaluation(): Starts the evaluation.

Once the method has been called, the motion sequence to be evaluated
must be commanded.

 stopEvaluation(): Ends the evaluation.

The method returns an object of type TorqueStatistic. The results of the
evaluation can be polled via this object.

The torques generated during the motion sequence can be determined in dif-
ferent ways:

 Measured torques: The torques measured by the joint torque sensors are
used.

 Static torques (model-based): The torques calculated using the static ro-
bot model are used.

The setTorqueMeasured(…) method of the TorqueEvaluator class can be
used to define whether the measured or static (model-based) torques are to
be used for the evaluation.

Syntax TorqueEvaluator evaluator = new TorqueEvaluator(lbr_iiwa);

evaluator.setTorqueMeasured(isTorqueMeasured);

evaluator.startEvaluation();

//Motion sequence

TorqueStatistic maxTorqueData = evaluator.stopEvaluation();

Explanation of

the syntax
Element Description

evaluator Type: TorqueEvaluator

Variable to which the created TorqueEvaluator instance is
assigned. The evaluation of the torques during a motion
sequence is started and ended via the variable.

isTorque
Measured

Type: Boolean

Input parameter of the setTorqueMeasured(…) method:
Defines whether the measured torque values or the values
calculated using the static robot model are to be used for
the evaluation.

 true: measured torques are used

 false: static torques (model-based) are used

Note: When using the static (model-based) torques,
dynamic effects, which can for example be generated by
robot acceleration, have no influence on the determined
values.

lbr_iiwa Type: LBR

LBR instance of the application. Represents the robot for
which the maximum absolute torque values are to be
determined.

maxTorque
Data

Type: TorqueStatistic

Variable for the return value of stopEvaluation(). The return
value contains the determined maximum absolute torque
values and further information for the evaluation.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
8.3.2 Polling the evaluation results of the maximum absolute torques

When the evaluation of the maximum absolute torque values has ended, the
results of the evaluation can be polled.

Overview The following methods of the TorqueStatistic class are available:

Example The maximum torques which occur during a joining task are to be used as ref-
erence torques in a brake test. For this purpose, the torques which are mea-
sured during the execution of the joining task are evaluated, and the maximum
absolute torque for each axis is determined.

Once the evaluation has been started, the motion commands of the joining
process are executed. When the joining process is completed, the evaluation
is ended and the results of the evaluation for axes A2 and A4 are saved in the
process data. If the determined data are invalid, an output is set.

testEvaluator.setTorqueMeasured(true);

Method Description

getMaxAbs
TorqueValues()

Return value type: double[]; unit: Nm

Returns a double array containing the determined maximum absolute
torque values (output side) for all axes.

getSingleMaxAbs
TorqueValue(...)

Return value type: double; unit: Nm

Returns the maximum absolute torque value (output side) for the axis
which is transferred as the parameter (type: JointEnum).

areDataValid() Return value type: Boolean

The system polls whether the determined data are valid (= true).

The data are valid if no errors occur during command processing.

getStartTimestamp() Return value type: java.util.Date

Returns the time at which the evaluation was started.

getStopTimestamp() Return value type: java.util.Date

Returns the time at which the evaluation was ended.

isTorqueMeasured() Return value type: Boolean

Polls whether the measured torques or the torques calculated using the
static robot model were used for evaluating the maximum absolute
torque.

 true: measured torques are used

 false: statisc torques (model-based) are used

private LBR testLBR;
private BrakeTestIOGroup brakeTestIOs;
private Tool testGripper;
private Workpiece testWorkpiece;
...

public void run() {

testGripper.attachTo(testLBR.getFlange());

testWorkpiece.attachTo(testGripper.getFrame("/GripPoint"));

// create TorqueEvaluator

TorqueEvaluator testEvaluator = new TorqueEvaluator(testLBR);

// select measured torque values

testEvaluator.setTorqueMeasured(true);
133 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

134 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
8.3.3 Creating an object for the brake test

Description In order to be able to execute the brake test, an object of the BrakeTest class
must first be created. The index of the axis for which the brake test is to be
executed is transferred to the constructor of the BrakeTest class.

// start evaluation

testEvaluator.startEvaluation();

// performs assembly task

testAssemblyTask();

// finish evaluation and store result in variable testMaxTrqData

TorqueStatistic testMaxTrqData = testEvaluator.stopEvaluation();

// get maximum absolute measured torque value for joint 2

double maxTrqA2 = testMaxTrqData
 .getSingleMaxAbsTorqueValue(JointEnum.J2);

// save result

getApplicationData().getProcessData("maxTrqA2").setValue(maxTrqA2);

// get maximum absolute measured torque value for joint 4

double maxTrqA4 = testMaxTrqData
 .getSingleMaxAbsTorqueValue(JointEnum.J4);

// save result

getApplicationData().getProcessData("maxTrqA4").setValue(maxTrqA4);

// check if evaluated data is valid

boolean areDataValid = testMaxTrqData.areDataValid();
if(areDataValid == false){
 // if data is not valid, set output signal

 brakeTestIOs.setEvaluatedTorqueInvalid(true);
}

...

}

public void exampleAssemblyTask(){

testLBR.move(ptp(getFrame("/StartAssembly")));

ForceCondition testForceCondition =

 ForceCondition.createNormalForceCondition

 (testWorkpiece.getDefaultMotionFrame(), CoordinateAxis.Z, 15.0);

testWorkpiece.move(linRel(0.0, 0.0, 100.0)

 .breakWhen(testForceCondition));

CartesianSineImpedanceControlMode testAssemblyMode =

 CartesianSineImpedanceControlMode.createLissajousPattern(

 CartPlane.XY, 5.0, 10.0, 500.0);

testWorkpiece.move(positionHold(

 testAssemblyMode, 3.0, TimeUnit.SECONDS));

openGripper();

testWorkpiece.detach();

testGripper.move(linRel(0.0, 0.0, -100.0));

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
Optionally, the torque parameter can be used to transfer a reference holding
torque, e.g. the maximum absolute axis torque which occurs in a specific ap-
plication.

As a general rule, the brake test must check whether the brakes apply the min-
imum brake holding torque. It is therefore advisable not to specify the torque
parameter.

Syntax BrakeTest brakeTest = new BrakeTest(axis, <torque>);

Explanation of

the syntax

8.3.4 Starting the execution of the brake test

Description The brake test is executed by a motion command which is made available via
the BrakeTest class. In order to execute the brake test, the move(…) or move-
Async(…) method is called with the robot instance used in the application, and
the object created for the brake test is transferred.

Element Description

brakeTest Type: BrakeTest

Variable to which the created BrakeTest instance is
assigned. The execution of the brake test is commanded
via the variable as a motion command.

axis Type: int

Index of the axis whose brake is to be tested.

 0 … 6: Axes A1 … A7

torque Type: double; unit: Nm

Reference holding torque (output side) specified by the
user, e.g. the maximum absolute torque that has been
determined beforehand for an axis-specific motion
sequence.

If no reference holidng torque is specified, the brake test
uses the lowest of the following values as the holding
torque: minimum brake holding torque or motor holding
torque.

If a reference holding torque is specified, one of the follow-
ing values is used as the holding torque to be tested: the
specified reference holding torque (torque), the minimum
brake holding torque or the motor torque.

The holding torque to be tested is defined internally by the
system according to the following rules:

1. If the reference holding torque is greater than the lowest
value of the minimum brake and motor holding torques,
then the lowest value of the minimum brake and motor
holding torques is used as the holding torque to be test-
ed.

2. If the reference holding torque is lower than 20% of the
lowest value of the minimum brake and motor holding
torques, then 20% of the lowest value of the minimum
brake and motor holding torques is used as the holding
torque to be tested.

3. In all other cases, the reference holding torque is used.

Note: The minimum and maximum brake holding torques
are saved in the motor data. The motor holding torque is
derived from the motor data.
135 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

136 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
In order to evaluate the result of the brake test, the return value of the motion
command must be saved in a variable of type Typ IMotionContainer.

If an error is detected while the brake test is being executed, the brake test is
aborted. In order to be able to react to errors in the program, it is advisable to
command the execution and evaluation of the brake test within a try block and
to deal with the CommandInvalidException arising from the error.

Syntax try{

BrakeTest brakeTest = ...;

IMotionContainer brakeTestMotionContainer =
robot.moveΙmoveAsync(brakeTest);

...

} catch(CommandInvalidException ex{

...

}

Explanation of

the syntax

8.3.5 Evaluating the brake test

Description When the brake test has ended, the result can be evaluated. For this purpose,
the return value of the motion command used to carry out the brake test must
be assigned to a variable of type IMotionContainer.

In order to evaluate the brake test, the IMotionContainer instance of the corre-
sponding motion command is transferred to the static method evaluateRe-
sult(…). The method belongs to the BrakeTest class and returns an object of
type BrakeTestResult. Various information concerning the executed brake test
can be polled from this object.

Syntax IMotionContainer brakeTestMotionContainer =
robot.moveΙmoveAsync(brakeTest);

BrakeTestResult result =
BrakeTest.evaluateResult(brakeTestMotionContainer);

Element Description

brakeTest Type: BrakeTest

Variable to which the created BrakeTest instance is
assigned. The instance defines the axis for which the brake
test is to be executed and can optionally define a reference
holding torque specified by the programmer.

brakeTest
Motion
Container

Type: IMotionContainer

Variable for the return value of the move(…) or move-
Async(…) motion command used to carry out the brake
test. When the brake test has ended, the result can be
evaluated using the variable.

robot Type: Robot

Instance of the robot used in the application. The brake test
is to be performed on the axes of this robot.

ex Type: CommandInvalidException

Exception which occurs when the brake test is aborted due
to an error. It is advisable to treat the exception within the
catch block in such a way that an aborted brake test for a
single brake does not cancel the entire brake test applica-
tion.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
Explanation of

the syntax

Overview The following methods of the BrakeTestResult class are available for evaluat-
ing the brake test:

Element Description

brakeTest
Motion
Container

Type: IMotionContainer

Variable for the return value of the move(…) or move-
Async(…) motion command used to carry out the brake
test.

result Type: BrakeTestResult

Variable for the return value of evaluateResult(…). The
return value contains the results of the brake test and fur-
ther information concerning the brake test which can be
polled via the variable.

Method Description

getAxis() Return value type: int

Returns the index of the axis whose brake has been tested. The index
starts with 0 (= axis A1).

getBrakeIndex() Return value type: int

Returns the index of the tested brake of the motor (starting with 0). In a
brake test for the LBR iiwa, the value 0 is always returned.

getFriction() Return value type: double; unit: Nm

Returns the frictional torque (output side) determined during the test
motion.

getGravity() Return value type: double; unit: Nm

Returns the gravitational torque (output side) determined during the test
motion.

getMaxBrake
HoldingTorque()

Return value type: double; unit: Nm

Returns the torque (output side) determined from the motor data which
the brake must not exceed. (= maximum brake holding torque)

getMeasuredBrake
HoldingTorque()

Return value type: double; unit: Nm

Returns the holding torque (output side) measured during the brake test.
This value is compared with the holding torque to be tested.

getMinBrake
HoldingTorque()

Return value type: double; unit: Nm

Returns the minimum brake torque (output side) that can be reached, as
determined from the motor data. (= minimum brake holding torque)

getMotor
HoldingTorque()

Return value type: double; unit: Nm

Returns the motor holding torque (output side) determined from the
motor data.

getMotorIndex() Return value type: int

Returns the index of the tested motor of the drive (starting with 0). In a
brake test for the LBR iiwa, the value 0 is always returned.

getMotor
MaximalTorque()

Return value type: double; unit: Nm

Returns the maximum motor torque (output side) determined from the
motor data.

getState() Return value type: Enum of type BrakeState

Returns the results of the brake test.

 (>>> 8.3.5.1 "Polling the results of the brake test" Page 138)
137 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

138 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
8.3.5.1 Polling the results of the brake test

Description The test results are polled via the BrakeTestResult method getState(). An
enum of type BrakeState is returned; its values describe the possible test re-
sults.

The possible test results are assigned to specific log levels. The log level cor-
responding to the test result can be polled with getLogLevel().

Syntax BrakeTestResult result = ...;

BrakeState state = result.getState();

LogLevel logLevel = state.getLogLevel();

Explanation of

the syntax

BrakeState The enum of type BrakeState has the following values (with specification of the
corresponding log level):

getTestedTorque() Return value type: double; unit: Nm

Returns the test holding torque with which the holding torque (output
side) applied and measured during the brake test is compared.

getTimestamp() Return value type: java.util.Date

Returns the time at which the brake test was started.

Method Description

Element Description

result Type: BrakeTestResult

Variable for the return value of the static method evalua-
teResult(...) which provides the BrakeTest class for evalua-
tion of the brake test. The return value contains the results
of the brake test and further information concerning the
brake test which can be polled via the variable.

state Type: Enum of type BrakeState

Variable for the return value of getState(). The return value
contains the test results.

 (>>> "BrakeState" Page 138)

logLevel Type: Enum of type LogLevel

Variable for the return value of getLogLevel(). The return
value contains the log level of the test results.

 LogLevel.Error: The brake test could not be executed
or has failed.

 LogLevel.Info: The brake test has been executed suc-
cessfully.

 LogLevel.Warning: The holding torque to be tested
has been reached, but problems occurred while the
brake test was being carried out.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
Example A brake test is executed for axis A2. If the brake test is aborted, this is indicat-
ed by a corresponding output signal. If the brake test is fully executed, a mes-
sage containing the measured holding torque is generated and the test results
are polled. Depending on whether the measured holding torque is too low,
within the tolerance range or in the ideal range, a corresponding output is also
set in each case.

Value Description

BrakeUntested The brake test could not be executed or was aborted
during execution due to faults.

Log level: LogLevel.Error

BrakeUnknown The brake test could not be executed because not
enough torque could be generated (e.g. due to exces-
sive friction).

Log level: LogLevel.Error

BrakeError The brake test has failed. The measured holding
torque falls below the holding torque to be tested. The
brake is defective.

Log level: LogLevel.Error

BrakeWarning The measured holding torque is less than 5% above
the holding torque to be tested. The brake has reached
the wear limit and will soon be identified as defective.

Log level: LogLevel.Warning

BrakeMax
Unknown

The holding torque to be tested has been reached, but
the brake could not be tested against the maximum
brake holding torque.

Log level: LogLevel.Warning

BrakeExcessive The measured holding torque is greater than the maxi-
mum brake holding torque. Stopping using the brake
can cause damage to the machine.

Log level: LogLevel.Warning

BrakeReady The measured holding torque exceeds the holding
torque to be tested by more than 5 %. The brake is fully
operational.

Log level: LogLevel.Info

private LBR exampleLBR_iiwa;
private BrakeTestIOGroup brakeTestIOs;
...

 public void run() {
 ...

 try {
 int indexA2 = 1;
 BrakeTest exampleBrakeTest = new BrakeTest(indexA2);

 IMotionContainer exampleBrakeTestMotionContainer =

 exampleLBR_iiwa.move(exampleBrakeTest);

 BrakeTestResult resultA2 = BrakeTest.evaluateResult(

 exampleBrakeTestMotionContainer);

 double measuredTorque =
 resultA2.getMeasuredBrakeHoldingTorque();
139 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

140 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
8.4 Performing a brake test

Description If the brake test application is paused while a brake is being tested (e.g. by
pressing the Start button on the smartPAD or due to a stop request), the brake
test is aborted.

If the brake test application is resumed, the aborted brake test will be repeated
for the axis in question. If the axis is no longer in the position in which the abort-
ed brake test was started, it must be repositioned by pressing the Start key.
Only then can the application be resumed.

Precondition The brake test application has been configured and is available on the ro-
bot controller.

 No persons or objects are present within the motion range of the robot.

 Program run mode Continuous (standard mode)

 The robot is at operating temperature.

Procedure Select and start the brake test application.

a. If configured (optional LBR iiwa): the torques measured during a mo-
tion sequence are evaluated for each axis, and the maximum absolute
torque for each axis is determined.

The result of the evaluation is displayed on the smartHMI.

b. The brakes are tested one after the other, starting with axis A1.

The brake test results are displayed individually for each axis on the
smartHMI.

 getLogger().info("Measured torque for A2: " + measuredTorque);

 BrakeState state = resultA2.getState();

 if(state == BrakeState.BrakeError)

 brakeTestIOs.setA2_BrakeError(true);
 else if(state == BrakeState.BrakeWarning)

 brakeTestIOs.setA2_BrakeWarning(true);
 else if(state == BrakeState.BrakeReady)

 brakeTestIOs.setA2_BrakeOK(true);

 } catch (CommandInvalidException ex) {
 brakeTestIOs.setBrakeTest_Aborted(true);
 ex.printStackTrace();

 }

}

If the functional capability of a brake is not guaranteed
and the drives are switched off, the robot can sag. If, dur-

ing the brake test, a brake is identified as being defective (test result =
"Failed"), the robot must be taken out of operation immediately.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

8 Brake test
8.4.1 Evaluation results of the maximum absolute torques (display)

8.4.2 Results of the brake test (display)

Fig. 8-3: Results of an evaluation of the maximum absolute torques

Item Description

1 Validity

Indicates whether the determined data are valid. The data are
valid if no errors occur during command processing.

2 Time indications

Start time, end time and overall duration of the evaluation.

3 Determined data

The maximum absolute torque determined from the evaluation is
displayed for each axis.

Fig. 8-4: Results of a brake test for axis A2

Item Description

1 Log level

Depending on the results of the brake test, the message is gener-
ated with a specific log level.

 Info: The brake test has been executed successfully.

 Warning: The holding torque to be tested has been reached,
but problems occurred while the brake test was being carried
out (see item 6 for descriptions of the possible test results).

 Error: The brake test could not be executed or has failed.

2 Tested axis

3 Time stamp

Time stamp at which the brake test was started for the axis.

4 Holding torque to be tested
141 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

142 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5 Measured holding torque

6 Result of the brake test

 Untested: The brake test could not be executed or was abort-
ed during execution due to faults.

 Unknown: The brake test could not be executed because not
enough torque could be generated (e.g. due to excessive fric-
tion).

 Failed: The brake test has failed. The measured holding
torque falls below the holding torque to be tested. The brake is
defective.

 Warning: The measured holding torque is less than 5% above
the holding torque to be tested. The brake has reached the
wear limit and will soon be identified as defective.

 Maximum unknown: The holding torque to be tested has
been reached, but the brake could not be tested against the
maximum brake holding torque.

 Excessive: The measured holding torque is greater than the
maximum brake holding torque. Stopping using the brake can
cause damage to the machine.

 Successful: The measured holding torque exceeds the hold-
ing torque to be tested by more than 5 %. The brake is fully op-
erational.

Item Description
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
9 Project management

9.1 Sunrise projects – overview

A Sunrise project contains all the data which are required for the operation of
a station. A Sunrise project comprises:

 Station configuration

The station configuration describes the static properties of the station. Ex-
amples include hardware and software components.

 Applications

Applications contain the source code for executing a task for the station.
They are programmed in Java with KUKA Sunrise.Workbench and are ex-
ecuted on the robot controller. A Sunrise project can have any number of
applications.

 Runtime data

Runtime data are all the data which are used by the applications during the
runtime. These include, for example, end points for motions, tool data and
process parameters.

 Safety configuration

The safety configuration contains the configured safety functions.

 I/O configuration (optional)

The I/O configuration contains the inputs/outputs of the used field buses
mapped in WorkVisual. The inputs/outputs can be used in the application.

Sunrise projects are created and managed with KUKA Sunrise.Workbench.

 (>>> 5.3 "Creating a Sunrise project with a template" Page 51)

There may only be 1 Sunrise project on the robot controller at any one time.
This is transferred from Sunrise.Workbench to the robot controller by means
of project synchronization.

 (>>> 9.5 "Project synchronization, overview" Page 161)

9.2 Frame management

Overview Frames are coordinate transformations which describe the position of points
in space or objects in a station. The coordinate transformations are arranged
hierarchically in a tree structure. In this hierarchy, each frame has a higher-lev-
el parent frame with which it is linked through the transformation.

The root element or origin of the transformation is the world coordinate system
which by default is located at the robot base. This means that all frames are
directly or indirectly related to the world coordinate system.

A transformation describes the relative position of 2 coordinate systems to
each other, i.e. how a frame is offset and oriented with respect to its parent
frame.

The position of a frame with respect to its parent frame is defined by the fol-
lowing transformation data:

 X, Y, Z: offset of the origin along the axes of the parent frame

 A, B, C: rotational offset of the axis angles of the parent frame

Rotational angle of the frames:

 Angle A: rotation about the Z axis

 Angle B: rotation about the Y axis

 Angle C: rotation about the X axis

j

t

143 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

144 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
9.2.1 Creating a new frame

Description In Sunrise.Workbench, created frames are project-specific and can be used in
every robot application of the project.

Once the project has been synchronized, the frames are available on the sm-
artHMI. There, additional frames can be created and the frames taught in or-
der to determine the position of the frames in space. Taught frames can be
addressed manually.

 (>>> 6.15.1 "“Frames” view" Page 89)

Procedure 1. Select the desired project in the Package Explorer view.

2. Right-click on the desired parent frame in the Application data view and
select Insert new frame from the context menu. The new frame is created
and inserted in the frame tree as a child element of the parent frame.

3. The system automatically generates a frame name. It is advisable to
change the name (Properties view, Generaltab).

A descriptive frame name makes both programming and orientation within
the program easier. The frame names must be unique within the hierarchy
level and may not be assigned more than once.

Example

Frame1, 2 and 3 are child elements of World and are located on the same hi-
erarchical level. P1 and P2 are child elements of Frame1 and are located one
level below it.

9.2.2 Designating a frame as a base

Description Frames can be marked as a base in the Application data view.

Only frames marked in this way can be selected and calibrated on the smartH-
MI as a base for jogging after synchronization of the project.

 (>>> 6.13.1 "“Jogging options” window" Page 84)

 (>>> 7.5.2 "Calibrating the base: 3-point method " Page 119)

Fig. 9-1: Application data – frames

It is advisable to assign clear names to these frames to make it easier
for the operator to select the jogging base on the smartPAD.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
Procedure Right-click on the desired frame and select Base from the context menu.

Alternative:

Select the frame and click on the Base hand icon.

The frame is marked with a hand icon.

Example

9.2.3 Moving a frame

Description A frame can be moved in the Application data view and assigned to a new
parent frame. The following points must be taken into consideration:

 The subordinate frames are automatically moved at the same time.

 The absolute position of the moved frames in space is retained. The rela-
tive transformation of the frames to the new parent frame is adapted.

 Frames cannot be inserted under one of their child elements.

 The names of the direct child elements of a frame must be unique.

Procedure 1. Click on the desired frame and hold down the left mouse button.

2. Drag the frame to the new parent frame with the mouse.

3. When the desired new parent frame is selected, release the mouse button.

9.2.4 Deleting a frame

Description Frames can be removed from the frame tree in the Application data view. If
a frame has child elements, the following options are available:

 Move children to parent: Only the selected frame is deleted. The subor-
dinate frames are retained, are moved up a level and assigned to a new
parent frame.

The absolute position of the moved frames in space is retained. The rela-
tive transformation of the frames to the new parent frame is adapted.

Fig. 9-2: Designating a frame as a base

1 Base hand icon

2 Base1 and Base2 are designated as the base

If a frame is moved, its path changes. Since frames are used via this
path in the source code of applications, the path specification must be
corrected accordingly in the applications.

If a frame is moved, its path changes. Since frames are used via this
path in the source code of applications, the path specification must be
corrected accordingly in the applications.
145 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

146 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Delete parent and child frames: Deletes the selected frame and all sub-
ordinate frames.

Procedure 1. Right-click on the frame to be deleted and select Delete from the context
menu. A frame without child elements is deleted immediately.

2. If the frame has child elements, the system asks whether these should
also be deleted. Select the desired option.

3. Only with the Move children to parent option: if a name conflict occurs
when moving the child elements, a notification message appears and the
delete operation is canceled.

Remedy: Rename one of the frames in question and repeat the delete op-
eration.

9.2.5 Displaying/editing frame properties

Procedure 1. Select the frame in the Application data view. The properties of the frame
are displayed in the Properties view, distributed over various tabs. Some
of the properties can be edited, others are for display only.

2. Select the desired tab and enter the new value.

9.2.6 Properties view for frames in application data

9.2.6.1 “General” tab

The General tab contains general information relating to the frame.

The position and orientation of a frame is generally defined during
teaching with the robot. However, it is also possible to enter the posi-
tion values of a frame manually or to change them at a later stage.

The following points must be taken into consideration:

 Modifying the transformation data not only moves the current frame but
also all of its subordinate child elements, and it applies to all applications
in which these frames are used.

 The taught values of Status, Turn and redundancy angle are retained.
Under certain circumstances, it may no longer be possible to address the
frame or its child elements.

 After a modification to the transformation data, all programs in which the
frame is used must be tested in Manual Reduced Velocity mode (T1).

For physical variables, the value can be entered with the unit. If this
is compatible with the preset unit, the value is converted accordingly,
e.g. cm into mm or ° into rad. If no unit is entered, the preset unit is

used.

Parameter Description

Name Name of the frame

Comment A comment on the frame can be entered here
(optional).

Project Project in which the frame was created (display
only)

Last modification Date and time of the last modification (display
only)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
9.2.6.2 “Transformation” tab

The Transformation tab contains the transformation data of the frame.

9.2.6.3 “Redundancy” tab

The Redundancy tab contains the redundancy information relating to the
frame.

9.2.6.4 “Teach information” tab

The Teach information tab contains information about a taught frame (dis-
play only).

9.2.6.5 “Measurement” tab

The Measurement tab contains information about base calibration (for frames
marked as a base; display only).

Parameter Description

X, Y, Z Translational offset of the frame relative to its
parent frame

A, B, C Rotational offset of the frame relative to its par-
ent frame

If the transformation data of a frame that has been calibrated as a
base are edited, the calibration information is deleted.

Parameter Description

E1 Value of the redundancy angle

 (>>> 9.2.6.3 "“Redundancy” tab" Page 147)

Status (>>> 14.10.2 "Status" Page 320)

Turn (>>> 14.10.3 "Turn" Page 321)

Parameter Description

Device Robot that was used for teaching

Tool Tool that was used for teaching

TCP Frame path for the TCP that was used for teach-
ing

X, Y, Z Translational offset of the TCP relative to the ori-
gin frame of the tool

A, B, C Rotational offset of the TCP relative to the origin
frame of the tool

If a frame that has been calibrated as a base is retaught, the calibra-
tion information is deleted.

Parameter Description

Measurement
method

Method used

Last modification Date and time of the last modification
147 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

148 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
9.2.7 Inserting a frame in a motion instruction

Description A frame created in the application data can be inserted as the end point in a
motion instruction.

Procedure 1. Program the motion instruction, e.g. robot.move(ptp()… .

2. In the Application data view, click on the frame which is to be used as the
end point and hold down the left mouse button.

3. Drag the frame to the editor area with the mouse and position it so that the
mouse pointer is between the brackets of the motion.

4. Release the mouse button. The frame is inserted as the end point of the
motion.

Example

The getApplicationData().getFrame() method indicates that a frame created
in the application data has been inserted. The end point of the motion is the
Target frame.

As the transfer parameter, the method receives the path of the frame in the
frame tree. The Target frame is a child element of P2.

9.3 Object management

Tools and workpieces are created and managed in Sunrise.Workbench. They
belong to the runtime data of a project.

Tools Properties:

 Tools are mounted on the robot flange.

 Tools can be used as movable objects in the robot application.

 The tool load data affect the robot motions.

 Tools can have any number of working points (TCPs) which are defined
as frames.

Workpieces Properties:

 Workpieces can be a wide range of objects which are used, processed or
moved in the course of a robot application.

 Workpieces can be coupled to tools or other workpieces.

 Workpieces can be used as movable objects in the robot application.

 The workpiece load data affect the robot motions, e.g. when a gripper
grips the workpiece.

 Workpieces can have any number of frames which mark relevant points,
e.g. points on which a gripper grips a workpiece.

9.3.1 Geometric structure of tools

Every tool has an origin frame (root). By default, the origin of the tool is defined
to match the flange center point in position and orientation when the tool is

If the data of a calibrated base are saved in Sunrise.Workbench by
means of synchronization, the transformation data of the frame
change in accordance with the calibration. The transformation data of

the child elements of the frame are not changed by the calibration, i.e. only
the position of the frame relative to the world coordinate system changes.
The redundancy information also remains unchanged.

robot.move(ptp(getApplicationData().getFrame("/P2/Target")));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
mounted on the robot flange. The origin frame is always present and does not
have to be created separately.

A tool can have any number of working points (TCPs), which are defined rel-
ative to the origin frame of the workpiece (root) or to one of its child elements.

9.3.2 Geometric structure of workpieces

Every workpiece has an origin frame (root). The origin frame is always present
and does not have to be created separately.

A workpiece can have any number of frames, which are defined relative to the
origin frame of the workpiece (root) or to one of its child elements.

Fig. 9-3: Examples of TCPs of tools

1 Guiding tool with 1 TCP 2 Gripper with 2 TCPs

The transformation of the frames is static. For active tools, e.g. grip-
pers, this means that the TCP does not adapt to the current position
of jaws or fingers.

Fig. 9-4: Static TCP on a gripper

1 Gripper closed 2 Gripper open
149 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

150 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
9.3.3 Creating a tool or workpiece

Description Tools and workpieces created in Sunrise.Workbench are project-specific and
can be used in every robot application of the project.

The created tools can be selected in the jogging options on the smartHMI after
the project is synchronized.

 (>>> 6.13.1 "“Jogging options” window" Page 84)

Procedure 1. Select the project in the Package Explorer.

2. In the Object templates view, open the list of object templates.

3. To create a tool, right-click on the object type Template Group for Tools
and select Insert new tool from the context menu. The object template for
the tool is created.

4. To create a workpiece, right-click on the object type Template Group for
Workpieces and select Insert new workpiece from the context menu.
The object template for the workpiece is created.

5. The system automatically generates an object name. It is advisable to
change the name in the Properties view.

The object names must be unique. A descriptive name makes both pro-
gramming and orientation within the program easier.

6. Enter the load data in the Properties view.

 (>>> 9.3.8 "Load data" Page 153)

9.3.4 Creating a frame for a tool or workpiece

Description Each frame created for a tool or workpiece can be programmed in the robot
application as the reference point for motions.

After the project is synchronized, the frames of a tool can be selected as the
TCP for Cartesian jogging on the smartHMI.

 (>>> 6.13.1 "“Jogging options” window" Page 84)

The frames of a tool (TCPs) can be calibrated with robot relative to the flange
coordinate system.

 (>>> 7.5.1 "Tool calibration" Page 113)

Fig. 9-5: Examples of frames of workpieces
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
If the data of a calibrated tool are saved in Sunrise.Workbench by means of
synchronization, the transformation data of the frame change in accordance
with the calibration.

Procedure 1. Select the desired project in the Package Explorer view.

2. In the Object templates view, open the list of object templates.

3. Right-click on the object template and select Insert new frame from the
context menu. The frame is created.

At the top hierarchy level, the parent frame of the created frame is the or-
igin frame of the object.

4. To insert a new frame under an existing frame of the object, right-click on
this parent frame and select Insert new frame from the context menu. The
frame is created.

5. The system automatically generates a frame name. It is advisable to
change the name (Properties view, Generaltab).

A descriptive frame name makes both programming and orientation within
the program easier. The frame names must be unique within the hierarchy
level and may not be assigned more than once.

6. Enter the transformation data of the frame with respect to its parent frame
(Properties view, Transformationtab).

 Boxes X, Y, Z: Offset of the frame along the axes of the parent frame

 Boxes A, B, C: Orientation of the frame relative to the parent frame

9.3.5 Displaying/editing frame properties

Procedure 1. Select the frame in the Object templates view. The properties of the
frame are displayed in the Properties view, distributed over various tabs.

2. Select the desired tab and enter the new value.

9.3.6 Properties view for frames in object templates

9.3.6.1 “General” tab

The General tab contains general information relating to the frame.

9.3.6.2 “Transformation” tab

The Transformation tab contains the transformation data of the frame.

The tool data of the TCP used to execute a Cartesian motion influ-
ence the robot velocity. Incorrectly entered tool data can cause unex-
pectedly high Cartesian velocities at the installed tool. The velocity of

250 mm/s may be exceeded in T1 mode.

For physical variables, the value can be entered with the unit. If this
is compatible with the preset unit, the value is converted accordingly,
e.g. cm into mm or ° into rad. If no unit is entered, the preset unit is

used.

Parameter Description

Name Name of the frame

Comment A comment on the frame can be entered here
(optional).
151 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

152 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The value ranges apply to safety-oriented frames of tools. Frames with trans-
formation data outside this range of values cannot be used as safety-oriented
frames.

9.3.6.3 “Safety” tab

Safety-oriented tool frames can be configured on the Safety tab. The tab is not
available for frames of workpieces.

9.3.6.4 “Measurement” tab

The Measurement tab contains information about tool calibration (display on-
ly).

9.3.7 Defining a default motion frame

Description If a tool or workpiece has a frame with which a large part of the motions must
be executed, this frame can be defined as the default frame for motions.

Parameter Description

X, Y, Z Translational offset of the frame relative to its
parent frame

 -10,000 mm … +10,000 mm

A, B, C Rotational offset of the frame relative to its par-
ent frame

 Any

Parameter Description

Radius Radius of the sphere on the safety-oriented
frame

 25 … 10000 mm

Safety-oriented Check box active: Frame is safety-oriented
frame

 Check box not active: Frame is not a safety-
oriented frame

The check box can only be edited under the fol-
lowing conditions:

 The frame belongs to a safety-oriented tool.

 A permissible value has been entered for the
radius.

 (>>> 9.3.9 "Safety-oriented tools" Page 154)

Parameter Description

Measurement
method

Method used

Calculation error Translational or rotational calculation error which
specifies the quality of the calibration (unit: mm
or °)

Last modification Date and time of the last modification

If the transformation data of a calibrated tool are edited, the calibra-
tion information is deleted.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
Defining an appropriate default frame for a tool or workpiece simplifies the mo-
tion programming.

 (>>> 15.10.3 "Moving tools and workpieces" Page 361)

If no default frame is defined, the origin frame of the tool or workpiece is auto-
matically used as the default frame for motions.

Procedure 1. Select the project in the Package Explorer.

2. In the Object templates view, select the object type Tools or Workpiec-
es.

3. Select the desired tool or workpiece.

4. Right-click on the desired frame and select Default frame for motions
from the context menu.

Alternative:

Select the frame and click on the Default frame for motions icon.

The frame is marked as the default motion frame.

Example

9.3.8 Load data

Load data are all loads mounted on or connected to the robot flange. They
form an additional mass mounted on the robot which must also be moved to-
gether with the robot.

The load data of tools and workpieces must be specified when the correspond-
ing object templates are created. If several tools and workpieces are connect-
ed to the robot, the resulting total load is automatically calculated from the
individual load data.

The load data are integrated into the calculation of the paths and accelera-
tions. Correct load data are an important preconditon for the optimal function-
ing of the servo control and help to optimize the cycle times.

Fig. 9-6: Default frame for motions

1 Default frame for motions icon

2 Default frame of the Gripper tool: TCP_1

3 Default frame of the WeldGun tool: origin frame

The robot must not be operated with incorrect load data
or unsuitable loads. Failure to observe this precaution

may result in severe injuries or considerable damage to property, e.g. be-
cause braking the robot takes too long due to incorrect load data.
153 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

154 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Sources Load data can be obtained from the following sources:

 Manufacturer information

 Manual calculation

 CAD programs

 The load data of tools can be determined automatically.

 (>>> 7.6 "Determining tool load data" Page 121)

9.3.8.1 Entering load data

Procedure 1. Select the desired project in the Package Explorer view.

2. In the Object templates view, open the list of object templates.

3. Select the desired tool or workpiece.

4. In the Properties view, select the Load data tab and enter the load data:

 Mass: Mass of the object

 Boxes MS X, MS Y, MS Z: Position of the center of mass relative to the
origin frame of the object

 Boxes MS A, MS B, MS C: Orientation of the principal inertia axes rel-
ative to the origin frame of the object The principal inertia axes run
through the center of mass.

 Boxes jX, jY, jZ: Principal moments of inertia

Example Principal moment of inertia jX:

jX is the inertia about the X axis of the principal inertia axes. This is rotated
through MS A, MS B and MS C relative to the origin frame of the object and
shifted in the center of mass.

jY and jZ are the analogous principal moments of inertia about the Y and Z
axes.

9.3.9 Safety-oriented tools

Description Up to 50 safety-oriented tools can be defined in a Sunrise project. Safety-ori-
ented tools can each be modeled using up to 6 configurable spheres.

The properties of safety-oriented tools are relevant for the following configu-
rable safety functions:

 Monitoring of Cartesian spaces

The spheres can be monitored against the limits of activated Cartesian
monitoring spaces.

 (>>> 13.10.9 "Monitoring spaces" Page 248)

 Monitoring of the translational Cartesian velocity

The velocity of the sphere center points is monitored.

 (>>> 13.10.8 "Velocity monitoring functions" Page 240)

 Collision detection and TCP force monitoring functions

Only correctly specified load data ensure the accuracy of these monitoring
functions. The load data of safety-oriented tools, in particular the mass and
center of mass of the tools, must be configured. In the case of tools with

comparatively high moments of inertia (> 0.1 kg m2), these data must also
be specified in order to ensure the accuracy of these monitoring functions.

 (>>> 13.10.13.2 "Collision detection" Page 261)

 (>>> 13.10.13.3 "TCP force monitoring" Page 262)

 (>>> 13.10.13.4 "Direction-specific monitoring of the external force on the
TCP" Page 264)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
Safety-oriented

frames

Just like any other tool, a safety-oriented tool can have any number of frames.
In order to configure the monitoring spheres, suitable frames must be defined
as safety-oriented frames. The center of the sphere is situated, by definition,
at the origin of the safety-oriented frame. The radius of the sphere is defined
in the frame properties.

If workpieces are used that are to be taken into consideration for safety-orient-
ed Cartesian space or velocity monitoring, e.g. due to the dimensions of the
workpieces, the spheres of the safety-oriented tool must be configured ac-
cordingly.

Safety-oriented frames are also relevant for the following configurable, tool-
specific safety monitoring functions:

 Monitoring of the tool orientation (only available for robots)

One of the safety-oriented frames can be defined as the tool orientation
frame. Safety-oriented monitoring of the orientation of this frame can be
carried out.

 (>>> 13.10.10 "Monitoring the tool orientation" Page 256)

 Direction-specific monitoring of the Cartesian velocity (available for robots
and mobile platforms)

One of the safety-oriented frames can be defined as the monitoring point
for the tool-specific velocity monitoring. A second frame can additionally
be defined as the orientation for the monitoring. This orientation frame de-
fines the orientation of the coordinate system in which the velocity of the
monitoring point is described. In tool-specific velocity monitoring, a com-
ponent of this velocity can be monitored.

 (>>> 13.10.8.3 "Direction-specific monitoring of Cartesian velocity"
Page 243)

Example For a safety-oriented gripper, 3 monitoring spheres are configured.

9.3.9.1 Configuring a safety-oriented tool

Precondition Tool and corresponding frames have been created.

 When using the AMFs Collision detection, TCP force monitoring and
Base-related TCP force component: The correct load data of the tool, in
particular the mass and center of mass of the tool, are known.

Procedure 1. Select the desired project in the Package Explorer view.

2. In the Object templates view, select the tool that is to be safety-oriented.

3. In the Properties view, select the Safety tab and activate the Safety-ori-
ented check box.

Fig. 9-7: Safety-oriented gripper
155 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

156 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The tool icon in the Object templates view is highlighted in yellow and
marked with a sphere symbol.

4. Select the Load data tab and enter any missing tool load data.

Tools with load data outside the specified range of values cannot be used
as safety-oriented tools.

 (>>> 9.3.9.2 "Tool properties – Load data tab" Page 156)

Further information on the load data can be found here: (>>> 9.3.8 "Load
data" Page 153)

5. In the Object templates view, select the tool frame that is to be safety-ori-
ented.

6. In the Properties view, select the Safety tab.

7. Enter the radius of the monitoring sphere on the safety-oriented frame.

8. Set the check mark at Safety-oriented.

The frame icon in the Object templates view is highlighted in yellow.

9. Select the Transformationtab and enter any missing transformation data
of the frame with respect to its parent frame.

Frames with transformation data outside the specified range of values
cannot be used as safety-oriented frames.

 (>>> 9.3.6.2 "“Transformation” tab" Page 151)

10. Repeat steps 5 to 9 to define further safety-oriented tool frames.

11. If required, set the safety-oriented frames that are necessary for tool-spe-
cific safety monitoring functions:

a. Select the safety-oriented tool in the Object templates view.

b. In the Properties view, select the Safety tab.

c. Under Safety properties assign the desired safety-oriented frames to
the tool-specific safety monitoring functions.

 (>>> 9.3.9.3 "Tool properties – Safety tab" Page 157)

The icons of the assigned frames are marked with a sphere symbol in
the Object templates view.

9.3.9.2 Tool properties – Load data tab

The Load data tab contains the load data of the tool.

The value ranges apply to safety-oriented tools. Tools with load data outside
these ranges of values cannot be used as safety-oriented tools.

To avoid spending unnecessary time performing verifications, mark a
tool as safety-oriented only when the load data have been correctly
entered or determined and have been transferred to Sunrise.Work-

bench.

Alternative procedure for marking a tool or frame as safety-oriented:

Right-click on the tool or frame in the Object templates view and
select Safety-oriented from the context menu.

Alternative procedure for assigning a safety-oriented frame to a tool-
specific safety monitoring function:

Right-click on the safety-oriented frame in the Object templates
view and select the desired tool-specific safety monitoring function from
the context menu.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
9.3.9.3 Tool properties – Safety tab

The safety-oriented tool can be configured on the Safety tab.

Pickup frame The pickup frame of a tool is dependent on the kinematic system on which it
is mounted and on the tool configuration:

 The tool is mounted on the robot flange: the pickup frame is the flange co-
ordinate system of the robot.

 The tool is mounted on a mobile platform: the pickup frame is the coordi-
nate system at the center point of the platform.

 The tool is mounted on a fixed tool: the pickup frame is the standard frame
for motions of the fixed tool.

Parameter Description

Mass Mass of the tool

 ≤2,000 kg

MS X, MS Y, MS Z Position of the center of mass relative to the ori-
gin frame of the tool

 -10,000 mm … +10,000 mm

MS A, MS B, MS C Orientation of the principal inertia axes relative to
the origin frame of the tool

 Any

jX, jY, jZ Mass moments of inertia of the tool

 0 kg·m2… 1,000 kg·m2

Parameter Description

Safety-oriented Check box active: The tool is a safety-oriented tool

 Check box not active: The tool is not a safety-oriented tool

Tool orientation frame Safety-oriented frame, the orientation of which can be moni-
tored using the AMF Tool orientation.

If no tool orientation frame is defined, the pickup frame of the
tool is used as the tool orientation frame.

 (>>> "Pickup frame" Page 157)

Point for tool-related veloc-
ity

Safety-oriented frame defining a point on the tool at which the
Cartesian velocity in a specific direction can be monitored using
the AMF Tool-related velocity component.

If no point is defined for the tool-related velocity, the pickup
frame of the tool is used. The velocity is monitored at the origin
of the pickup frame.

 (>>> "Pickup frame" Page 157)

Orientation for tool-related
velocity

Safety-oriented frame, the orientation of which determines the
directions in which the Cartesian velocity can be monitored
using the AMF Tool-related velocity component.

If no orientation is defined for the tool-related velocity, the
pickup frame of the tool is used. The orientation of the pickup
frame determines the monitoring direction.

 (>>> "Pickup frame" Page 157)
157 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

158 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
9.3.10 Safety-oriented workpieces

Description Loads picked up by the robot, e.g. a gripped workpiece, exert an additional
force on the robot and influence the torques measured by the joint torque sen-
sors. The safety controller requires the load data of a workpiece for calculation
of the external torques.

The safety controller can only process the load data of safety-oriented work-
pieces. Up to 8 safety-oriented workpieces can be configured for a Sunrise
project.

The properties of safety-oriented workpieces are relevant for the following
configurable safety functions:

 Collision detection

The load data of the active safety-oriented workpiece are taken into con-
sideration when the external torque is calculated.

 (>>> 13.10.13.2 "Collision detection" Page 261)

 TCP force monitoring functions

The load data of the heaviest safety-oriented workpiece are taken into
consideration when the external Cartesian force exerted on the TCP of a
safety-oriented tool or on the flange of a kinematic system is determined.
The same applies to determination of the external Cartesian force exerted
in a specific direction on the TCP of a safety-oriented tool or on the flange
of a kinematic system.

 (>>> 13.10.13.3 "TCP force monitoring" Page 262)

 (>>> 13.10.13.4 "Direction-specific monitoring of the external force on the
TCP" Page 264)

During a process, picking up and setting down different workpieces can result
in load changes. The workpiece load data are integrated into the monitoring
functions in various ways:

 In the case of TCP force monitoring functions, the safety controller auto-
matically considers all load situations when estimating the force. These
possible load situations are:

 The heaviest safety-oriented workpiece has been picked up.

 No workpiece has been picked up.

 During collision detection, the user must explicitly inform the safety con-
troller which safety-oriented workpiece is currently activated.

 (>>> 15.10.5 "Commanding load changes to the safety controller"
Page 365)

If a safety-oriented workpiece is activated, the safety controller perma-
nently takes its load data into consideration. If this workpiece is to be de-
activated or if a different safety-oriented workpiece is to be activated, an
explicit command is required. No safety-oriented workpiece is activated af-
ter the robot controller is rebooted.

Safety-oriented workpieces are not activated in the source code of robot
applications and background tasks in a safety-oriented way. This is why,
in the event of an error, collision detection may use load data which devi-
ate from the actual workpiece load. These deviations are misinterpreted as
external axis torques. At low velocities and accelerations, the maximum
deviation corresponds to the weight of the heaviest workpiece which can
be picked up in the application.

When using the AMFs Collision detection, TCP force monitoring and
Base-related TCP force component, it is advisable to configure as
safety-oriented workpieces all those workpieces picked up by the ro-

bot while one of the monitoring functions is active.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
The way in which the load data of a workpiece influence collision monitoring
depends on how the workpiece is picked up. For a safety-oriented workpiece,
the safety controller requires the origin frame of the safety-oriented workpiece
to be identical to the standard frame for motions of the safety-oriented tool.

9.3.10.1 Configuring a safety-oriented workpiece

Precondition Workpiece has been created.

 When using the AMFs Collision detection, TCP force monitoring and
Base-related TCP force component: The correct load data of the work-
piece, in particular the mass and center of mass of the workpiece, are
known.

Procedure 1. Select the desired project in the Package Explorer view.

2. In the Object templates view, select the workpiece that is to be safety-ori-
ented.

3. In the Properties view, select the Safety tab and activate the Safety-ori-
ented check box.

The workpiece icon in the Object templates view is highlighted in yellow.

4. Select the Load data tab and enter any missing workpiece load data.

When using the AMFs TCP force monitoring and Base-related TCP
force component, the heaviest workpiece picked up by the robot while
the monitoring function is active must be configured as a safety-ori-

ented workpiece. Incorrect configuration of the heaviest workpiece can
cause the safety integrity of the AMFs to be lost.

Fig. 9-8: Configuring a safety-oriented workpiece

Item Description

1 Safety-oriented tool

2 Standard frame for motions of the safety-oriented tool:

Frame of the safety-oriented tool on which the safety-oriented
workpiece must be picked up. It is not necessary for this frame to
be a safety-oriented frame.

3 Origin frame of the safety-oriented workpiece

Frame of the safety-oriented workpiece on which the safety-ori-
ented tool must pick up the workpiece.

4 Safety-oriented workpiece

5 State after activation of the safety-oriented workpiece

The origin frame of the safety-oriented workpiece is identical to the
standard frame for motions of the safety-oriented tool.
159 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

160 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Workpieces with load data outside the specified range of values cannot be
used as safety-oriented workpieces.

 (>>> 9.3.10.2 "Workpiece properties – Load data tab" Page 160)

Once the project is synchronized, the safety-oriented workpiece can be acti-
vated in the application.

9.3.10.2 Workpiece properties – Load data tab

The Load data tab contains the load data of the workpiece.

The value ranges apply to safety-oriented workpieces. Workpieces with load
data outside these ranges of values cannot be used as safety-oriented work-
pieces.

Further information on the load data can be found here: (>>> 9.3.8 "Load da-
ta" Page 153)

9.3.11 Copying object templates

Description When an object template is copied, a copy of the object templates including all
frames is created. The properties of the object and its frames, with the excep-
tion of the safety properties, are included in the copy. The Safety-oriented
property is not set in a copy.

Procedure Right-click on the object template and select Create copy from the context
menu.

9.4 User administration

Different functions can be executed on the robot controller, depending on the
user group. The passwords of the user groups are managed in the project set-
tings.

The following user groups are available:

 Administrator

The Administrator manages the passwords of the user groups. The user
group is protected by means of a password.

The default password is “kuka”.

Alternative procedure for marking a workpiece as safety-oriented:

Right-click on the workpiece in the Object templates view and se-
lect Safety-oriented from the context menu.

Parameter Description

Mass Mass of the workpiece

 0.001 kg + 2,000 kg

MS X, MS Y, MS Z Position of the center of mass relative to the ori-
gin frame of the workpiece

 -10,000 mm … +10,000 mm

MS A, MS B, MS C Orientation of the principal inertia axes relative to
the origin frame of the workpiece

 Any

jX, jY, jZ Mass moments of inertia of the workpiece

 Any
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
 Operator

The user group for the operator is the default user group.

 Safety maintenance technician

The safety maintenance technician is responsible for starting up the safety
equipment of the industrial robot and activating the safety configuration on
the robot controller. The user group is protected by means of a password.

The default password is “argus”.

9.4.1 Changing the password

Description The passwords for the user groups on the robot controller are defined in the
project settings. If these passwords are changed, they can only be activated
by an installation of the system software on the robot controller.

Precondition User group “Administrator”

Procedure 1. Right-click on the desired project in the Package Explorer view and select
Sunrise > Change project settings from the context menu.

The Properties for [Sunrise Project] window opens.

2. Select Sunrise > Passwords in the directory in the left area of the win-
dow.

3. Click on Login and enter the Administrator password. Confirm the pass-
word with OK.

4. Select the user group for which the password is to be changed.

5. Enter the new password twice.

For security reasons, the entries are displayed encrypted. Upper and low-
er case are distinguished.

6. Click on Save and close the window.

9.5 Project synchronization, overview

In project synchronization, project data are transferred between Sun-
rise.Workbench and the robot controller. In the process, the projects are com-
pared with one another. If there are different projects or version conflicts, the
user can choose the direction in which to transfer the project data.

The following cases are distinguished:

Prior to start-up, the passwords for the user groups must be modified
in the project settings and transferred to the robot controller in an in-
stallation procedure. The passwords must only be communicated to

authorized personnel.

If the administrator password is forgotten, KUKA Service must be no-
tified and restore the default passwords. Using the default password
for the user group “Administrator”, the passwords for the user groups

on the robot controller must then be changed again.

If only the Administrator password is modified, no installation is re-
quired. The Administrator merely manages the passwords in Sun-
rise.Workbench. The modified Administrator password immediately

takes effect locally and is saved on the robot controller during project syn-
chronization.

The password must consist of at least one character. Only characters
that can be entered via the smartHMI are permissible.
161 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

162 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 There is no project on the robot controller yet or there is a different project
from the one to be transferred

 (>>> 9.5.1 "Transferring the project to the robot controller" Page 162)

 The same project exists on the robot controller and in Sunrise.Workbench
but in different versions

There are different versions of the project:

 When the project data are modified in Sunrise.Workbench only

 When the project data are modified on the robot controller only

 When the project data are modified on both sides

 (>>> 9.5.2 "Synchronizing a project" Page 163)

9.5.1 Transferring the project to the robot controller

Description The procedure described here applies if no project is on the robot controller
yet or if there is a different project from the one to be transferred.

Precondition Network connection to the robot controller

 The system software is installed.

 (>>> 10.4.1 "Installing system software on the robot controller" Page 172)

 The installed system software is compatible with the station configuration
of the project to be transferred.

Procedure 1. Select the desired project in the Package Explorer view.

2. Click on the Synchronize project button.

The system scans the robot controller for existing project data. If the scan
fails, the cause of the error is displayed in a message.

3. If the scan is successful, the Project synchronization window opens.

4. Click on Execute.

5. If the safety configuration or I/O configuration is modified, a dialog indi-
cates that the robot controller must be rebooted in order to complete the
synchronization.

 Click on OK to transfer the project to the robot controller. Once the
transfer is completed, the robot controller automatically reboots.

 Transfer of the project can be stopped with Cancel.

6. The progress of the project transfer is displayed in a dialog both in Sun-
rise.Workbench and on the smartPAD. Once the transfer is completed, the
dialog is automatically closed and the robot controller automatically re-
boots.

If the transfer fails, a corresponding dialog is displayed both in Sun-
rise.Workbench and on the smartPAD. In addition, the cause of the error
is displayed in Sunrise.Workbench.

Fig. 9-9: Transferring the project to the controller
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
Confirm the dialog in Sunrise.Workbench and on the smartPAD with OK.

7. If the safety configuration is modified, activate this on the robot controller.

 (>>> 13.9 "Activating the safety configuration" Page 233)

9.5.2 Synchronizing a project

Description The procedure described here applies if the same project exists on both sides
but in different versions.

Precondition Network connection to the robot controller

 If a project is transferred to the robot controller: No application is running
on the robot controller.

Procedure 1. Select the desired project in the Package Explorer view.

2. Click on the Synchronize project button.

The system scans the robot controller for existing project data. If the scan
fails, the cause of the error is displayed in a message.

3. If the project in Sunrise.Workbench is identical to the project on the robot
controller, a dialog indicates that no synchronization is necessary. Confirm
the dialog with OK. Synchronization is aborted.

4. If the scan is successful, the Project synchronization window opens.

Information is displayed for both projects. The direction of synchronization
is set by default to transfer the more current project version.

If modifications have been made to the project data on both sides, the sys-
tem recognizes this as a conflict and displays a warning. The direction of
synchronization can be set:

 Check mark activated by Deploy to controller: The project is trans-
ferred from Sunrise.Workbench to the robot controller.

 Check mark activated by Load to local project: The project is trans-
ferred from the robot controller to Sunrise.Workbench.

5. If required, change the direction of synchronization.

6. Click on Execute.

7. Only in the case of transfer to the robot controller: If the safety configura-
tion or I/O configuration is modified, a dialog indicates that the robot con-
troller must be rebooted in order to complete the synchronization.

 Click on OK to transfer the project to the robot controller. Once the
transfer is completed, the robot controller automatically reboots.

 Transfer of the project can be stopped with Cancel.

8. The progress of the project transfer is displayed in a dialog both in Sun-
rise.Workbench and on the smartPAD. When the transfer is completed,

Fig. 9-10: Updating a project
163 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

164 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
the dialog is automatically closed. If the safety configuration or I/O config-
uration is modified, the robot controller is automatically rebooted.

If the transfer fails, a corresponding dialog is displayed both in Sun-
rise.Workbench and on the smartPAD. In addition, the cause of the error
is displayed in Sunrise.Workbench.

Confirm the dialog in Sunrise.Workbench and on the smartPAD with OK.

9. If the safety configuration is modified, activate this on the robot controller.

 (>>> 13.9 "Activating the safety configuration" Page 233)

9.6 Loading the project from the robot controller

Description A project can be loaded from the robot controller if the project is not located in
the workspace of Sunrise.Workbench.

Precondition Network connection to the robot controller

 The workspace does not contain any project with the name of the project
to be loaded.

Procedure 1. Select the menu sequence File > New > Sunrise project. The project cre-
ation wizard opens.

2. Enter the IP address of the robot controller from which the project is to be
loaded in the IP address of controller: box.

3. Select the Load project from controller option.

4. Click on Next >. The system checks whether there is a project on the robot
controller.

5. If there is a project is on the robot controller and there is no project with the
same name in the workspace, a summary of information on the project is
displayed.

Click on Finish. The project is created in the workspace and then dis-
played in the Package Explorer.

9.7 Converting the safety configuration to a new software version

Description If a new software version of Sunrise.Workbench is installed, a Sunrise project
which was created with an earlier software version can be loaded to the work-
space and continue to be used.

The station configuration changes when the Sunrise project is loaded. Saving
the station configuration will transfer the corresponding safety configuration to
the new version.

Precondition The Sunrise project is archived or saved in any directory.

 New version of Sunrise.Workbench is installed.

Procedure 1. Load the Sunrise project into the workspace.

2. Open the station configuration of the project and click on Save.

3. The system asks whether the modifications to the project should be ac-
cepted. Click on Save and apply.

4. The safety configuration is updated and its parameters are converted.
When the operation is completed, this is indicated by a message. Confirm
with OK.

The IP address of the robot controller can be displayed on the sm-
artHMI. (>>> 6.17.6 "Displaying information about the robot and robot
controller" Page 105)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

9 Project management
5. Further steps are required in order to be able to use the updated project
on the robot controller:

a. Install the system software.

b. Synchronize the project.

c. Reactivate the safety configuration.

d. Carry out safety acceptance.
165 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

166 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 Station configuration and installat...
10 Station configuration and installation

10.1 Station configuration overview

Procedure Open the station configuration:

 Double-click on the file StationSetup.cat in the Package Explorer view.

The file contains the station configuration of the project.

The station configuration can be edited and installed using the following tabs:

Topology The Topology tab displays the hardware components of the station. The to-
pology can be restructured or modified.

Software The Software tab displays the software catalog of Sunrise.Workbench. The
user can select the catalog elements to be installed or uninstalled in the proj-
ect.

The elements that can be selected depend on the topology and the software
options installed in Sunrise.Workbench.

Configuration The Configuration tab displays the configuration of the robot controller. The
configuration can be changed. The parameters that can be configured depend
on the topology and the software options installed in Sunrise.Workbench.

 IP address and subnet mask of the robot controller

 IP address range for KUKA Line Interface (KLI)

 Manual guidance support

 General safety settings

 Parameters for calibration

 Type of media flange (if present on robot)

 Installation direction (default: floor-mounted installation)

Installation The system software is installed on the robot controller via the Installation
tab.

10.2 “Software” tab

10.2.1 Eliminating errors in the software catalog

Description A software catalog containing errors prevents installation of the System Soft-
ware on the robot controller. The errors must be eliminated before installation.

Possible causes of errors are:

 Missing reference to a catalog element

Some catalog elements are dependent on others. If a catalog element that
is required by another one is deselected in the software catalog or re-
moved by being uninstalled, the remaining catalog element is marked in
red.

 Catalog element used, but not installed

If a catalog element that is not installed in Sunrise.Workbench is used in a
project, this catalog element is indicated and marked in red.

Example This example describes the options for elimination of errors.

t

t

f

The installation and use of software options in the project may cause
further parameters to be added.
167 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

168 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
10.3 “Configuration” tab

10.3.1 IP address range for KUKA Line Interface (KLI)

Description The KLI is the Ethernet interface of the robot controller for external communi-
cation. In order for external PCs, e.g. the development computer with KUKA
Sunrise.Workbench, to be able to connect to the robot controller via a network,
the KLI must be configured accordingly.

The following IP address ranges are used internally by the robot controller.

 192.*.*.*

 172.16.*.*

 172.17.*.*

If one or more KLI network devices (e.g. the robot controller, bus devices or
other network devices) use IP addresses from one of these ranges, this IP ad-
dress range must be set. Sunrise then reconfigures the internal network to en-
sure that there are no IP address conflicts.

Fig. 10-1: Error display in the software catalog

1 Missing reference to a catalog element

2 Catalog element used, but not installed

Item Description

1 The catalog element Manual guidance support is not available
because the catalog element Robotics API has been deselected.

Possible remedies:

 Deselect the catalog element that is not available (deactivate
check box) and save the station configuration.

 Select the required catalog element (activate check box) and
save the station configuration.

2 The project uses functions of the safety option KUKA Sun-
rise.HRC. The catalog element Human Robot Collaboration is
not available because the option is not installed in Sunrise.Work-
bench.

Possible remedies:

 Deselect the catalog element that is not available (deactivate
check box) and save the station configuration.

 Install the safety option in Sunrise.Workbench (only necessary
if the safety configuration has not yet been completed and
AMFs of the safety option are required for the configuration).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 Station configuration and installat...
Field buses How the KLI has to be configured depends, among other things, on whether
an Ethernet-based field bus is installed on the robot controller.

Ethernet-based field buses are:

 KUKA Sunrise.ProfiNet M/S

10.3.2 Manual guidance support

Robots that have a hand guiding device with a safety-oriented enabling device
can be guided manually if no application is selected or if an application is
paused.

An application is paused if it has one of the following states:

 Selected

 Motion paused

 Error

Manual guidance is supported by default in all operating modes except CRR
mode. It is possible to configure manual guidance as not allowed in Test mode
and/or Automatic mode.

Configuration parameters in the catalog element Manual guidance support:

10.3.3 General safety settings

The smartPAD can be configured as unpluggable.

Unplugging of the smartPAD is a safety function. The correct functioning of
this safety function must be tested during initial start-up and recommissioning
of the industrial robot.

Parameter Description

IP address range for KUKA
Line Interface

The following IP address ranges are available:

 192.*.*.*

 172.16.*.*

 172.17.*.*

 Other

Default: Other

Parameter Description

Enable manual guidance in
Automatic mode

Manual guidance in Automatic mode

 True: Manual guidance is allowed in Automatic mode.

 False: Manual guidance is not allowed in Automatic mode.

Default: True

Enable manual guidance in
the test modes

Manual guidance in Test mode (T1, T2)

 True: Manual guidance is allowed in Test mode.

 False: Manual guidance is not allowed in Test mode.

Default: True

In order to be able to use the motion command handguiding() for
manual guidance, the parameter Enable manual guidance in Auto-
matic mode must be set to False. If the parameter is set to True,

manual guidance is not possible for the running application.
169 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

170 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 (>>> 13.13 "Safety acceptance overview" Page 275)

Configuration parameters in the catalog element General safety settings:

10.3.4 Configuration parameters for calibration

The parameters for calibration can be modified.

Configuration parameters in the catalog element smartHMI > Measurement:

Parameter Description

smartPAD unplugging
allowed

Unplugging the smartPAD

 True: Unplugging of the smartPAD is allowed. The robot can
be moved with the smartPAD unplugged.

 False: Unplugging of the smartPAD is not allowed. The robot
cannot be moved with the smartPAD unplugged. An EMER-
GENCY STOP is triggered.

Default: True

If the smartPAD is disconnected, the system can no lon-
ger be switched off by means of the EMERGENCY

STOP device on the smartPAD. If the smartPAD is configured as unplugga-
ble, at least one external EMERGENCY STOP device must be installed that
is accessible at all times.
Failure to observe this can lead to death, injury or property damage.

The operator must ensure that disconnected smartPADs
are immediately removed from the system and stored out

of sight and reach of personnel working on the industrial robot. This prevents
operational and non-operational EMERGENCY STOP devices from becom-
ing interchanged.
Failure to observe this can lead to death, injury or property damage.

Parameter Description

Minimum calibration point
distance (tool) in mm

Minimum distance which must be maintained between 2 mea-
suring points (XYZ 4-point and ABC 2-point methods) during
tool calibration

 0 … 200

Default: 8

Maximum calculation error
in mm

Maximum translational calculation error during tool calibration
up to which the quality of the calibration is considered sufficient

 0 … 200

Default: 50

Minimum calibration point
distance (base) in mm

Minimum distance which must be maintained between 2 mea-
suring points during base calibration

 0 … 200

Default: 50

Minimum angle in ° Minimum angle to be maintained between the straight lines
which are defined by the 3 measuring points during base cali-
bration (3-point method)

 0 … 360

Default: 2.5
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 Station configuration and installat...
10.3.5 Configuration parameters for Backup Manager

If the software option KUKA Sunrise.BackupRestore is installed, the catalog
element Backup Manager is available on the Configuration tab.

Configuration parameters in the catalog element Backup Manager:

Parameter Description

Automatic backup
active/inactive

Activation/deactivation of automatic backup

 active: The robot controller automatically carries out back-
ups.

The following parameters determine the time and the inter-
val:

 Time [hh:mm]: Time of backup

Default: 0.00

 Time interval [days]: Backup interval in days

Default: 7

Note: If the robot controller was switched off at the config-
ured time, it carries out a data backup as soon as it is
switched on at the next configured time. It only carries out
one backup, even if the time was missed more than once.

 inactive: No automatic backup.

Default: inactive

Backup mode Target and source directory for backups and restorations

 Local: The target directory for backups and the source direc-
tory for restorations is the directory D:\ProjectBackup on the
robot controller.

Note: If the backup of the projects and user data takes up too
much memory, the local memory may be full before the max-
imum configured number of backup copies has been
reached. In this case, no further backup is possible.

 network storage: The target directory for backups and the
source directory for restorations is a network path:

 Network path

If during backup and/or restoration the robot controller must
access the network and an authentication is required, the
user name and password for the network path must be spec-
ified:

 User name for network path

 Password for network path

Note: Any other network path can be set on the robot con-
troller for restorations.

Default: Local
171 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

172 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
CSV file Network configurations for restorations must be entered in a CSV file and
saved on the robot controller. The data set with the network configurations can
then be loaded using the Backup Manager and the source directory from
which the data are to be restored can be selected.

Example of a CSV file:

The following points must be observed when creating the CSV file:

 The header data set must contain the columns specified in the example
file.

 The column names must not be modified.

 The columns can be saved in any order.

 Further columns can be added, e.g. to save additional information.

10.4 “Installation” tab

10.4.1 Installing system software on the robot controller

Description During installation, all configuration data relevant for operation of the industrial
robot are transferred from Sunrise.Workbench to the robot controller. These
include:

 Station configuration

 Safety configuration

 Passwords for user groups

The following points must be observed during installation:

 The robot type and media flange (if present) set in the station configuration
must match the robot connected to the robot controller (see identification

Maximum number of back-
ups

Maximum number of backup copies

 1 … 50

Once the maximum number of backup copies has been
reached, the oldest backup copy is overwritten.

If more backup copies than the permissible number are present,
e.g. because the maximum number has been reduced, the
excess backup copies will be deleted next time a backup is
made (starting with the oldest).

Default: 1

Restore-configuration file Path to a file with network configurations for restorations

The file must be present in CSV format and copied manually to
the robot controller.

Note: It is advisable to save the file on drive D:\. If it is saved on
C:\, it is not possible to rule out the possibility of it being over-
written in the case of a restoration or installation.

Parameter Description

IP_adress;subnetmask;BM_Username;BM_Password;BM_ProjectRestoreDirecto
ryPath;Server

192.168.0.131;255.255.0.0;User41;pwd82p;\\Server\Path\Restore;Restore
3Backup857

192.168.0.239;255.255.0.0;User66;pwd24ppp;\\Server\Path\Restore;Resto
re0Remote415

192.168.0.151;255.255.0.0;User38;pwd75ppp;\\Server\Path\Lokal;Lokal1R
estore705

...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 Station configuration and installat...
plate). If the data do not match, the robot cannot be moved after installa-
tion.

 The safety configuration is not yet active after installation. The robot can-
not be moved until the safety configuration has been activated.

 (>>> 13.9 "Activating the safety configuration" Page 233)

Installation If the station configuration or the password for a user group on the robot con-
troller changes, installation must be carried out again:

 Change to the station configuration on the Topology tab

 Change to the station configuration on the Software tab

Examples:

 Installation of additional software options

 Incompatible version changes of existing software packages

Incompatible version changes can occur if a project that was created
with an older version of Sunrise.Workbench is loaded into the work-
space.

 Change to the station configuration on the Configuration tab

 Change of password for a user group on the robot controller in the project
settings

Precondition Network connection to the robot controller

 The station configuration is completed.

Procedure 1. Select the Installation tab.

By default, the Installation events window displays the warnings and er-
rors which occur during installation (check mark next to Show only warn-
ings and errors.).

2. If all events which occur during installation are to be displayed, remove the
check mark next to Show only warnings and errors..

3. Click on Install. The installation is prepared and the Installation window
opens.

The Configured IP box is marked in color:

 Marked in green: Network connection is present. Continue with step 5.

 Marked in red: Network connection is not present.

Possible causes include:

 The network cable is not connected correctly.

 The configured IP address does not match the IP address of the
robot controller.

Software updates may result in undesired modifications to the Sun-
rise project. If the robot controller is reinstalled following a software
update, all applications must therefore be tested in Manual Reduced

Velocity mode (T1).

If only the Administrator password is modified, no installation is re-
quired. The Administrator merely manages the passwords in Sun-
rise.Workbench. The modified Administrator password immediately

takes effect locally and is saved on the robot controller during project syn-
chronization.
173 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

174 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
4. Only if the Configured IP box is marked in red:

 If the configured IP address matches the actual address of the robot
controller, there is no network connection to the robot controller. Es-
tablish network connection.

 If the IP address of the robot controller is different from the configured
address, enter the current IP address of the robot controller in the Ac-
tual IP box. To do this, double-click in the box.

5. To continue the installation, click on OK.

6. Only relevant if the IP address in the Actual IP box has been changed: If
the red marking under Configured IP persists or the installation fails, there
is no network connection to the robot controller with this IP address.

Establish a network connection and restart the installation process (return
to step 3).

7. Confirm the reboot prompt with OK. The robot controller is rebooted and
the installation is completed.

10.5 Software options

The functionalities of the following installable software options are described
in this documentation:

 KUKA Sunrise.AntiVirus

Virus scanner for protection against viruses

 (>>> 10.5.2 "Installing or updating the virus scanner" Page 176)

 KUKA Sunrise.BackupRestore

Backup manager for backing up and restoring data

 KUKA Sunrise.SafeOperation

Safety option with additional safety monitoring functions, e.g. velocity
monitoring functions or Cartesian workspace monitoring functions

 KUKA Sunrise.HRC

Safety option with additional safety monitoring functions for HRC applica-
tions, e.g. collision detection or TCP force monitoring

10.5.1 Installing a software option

Description If a software option is supplied together with KUKA Sunrise.Workbench, it is
automatically installed during installation of Sunrise.Workbench. If Sun-
rise.Workbench is already installed, the software option must be installed sub-
sequently.

Software options are provided for installation as ZIP archives. The archive
names have the following composition:

Fig. 10-2: The robot controller cannot be reached
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 Station configuration and installat...
 Article number;revision number (2-digit);product name;build version

Installation is carried out in 3 parts:

 Installation of the software option in Sunrise.Workbench

Depending on the software option, the software catalog of Sunrise.Work-
bench is expanded by one or more entries.

 Selection of the software option for installation in the station configuration
of the Sunrise project

 Installation of the system software on the robot controller

Once the robot controller has been rebooted, the new software is available
for the station.

Precondition Local administrator rights

 Sunrise.Workbench is installed.

 Data storage medium with the software to be installed

Procedure 1. Select the menu sequence Help > Install new software The Install
window is opened.

2. To the right of the Work with box, click on Add. The Add repository win-
dow is opened.

Alternatively: Drag the ZIP archive of the software into the window, then
continue with step 5.

3. Click on Archive …, navigate to the directory in which the ZIP archive of
the software is located and select the archive.

4. Confirm your selection with Open. The Position box now displays the in-
stallation path. Confirm the path with OK.

5. In the Install window, the installation path is adopted in the Work with
box.

The window now also displays a check box with the name of the new soft-
ware.

Activate the check box with the name of the new software.

6. Leave the other settings in the Install window as they are and click on
Next >.

7. An installation details overview is displayed. Click on Next >.

8. A license agreement is displayed. In order to be able to install the soft-
ware, the agreement must be accepted. Then click on Finish. The instal-
lation is started.

9. A safety warning concerning unsigned contents is displayed. Confirm with
OK.

10. A message indicates that Sunrise.Workbench must be restarted in order
to apply the changes. Click on Restart now.

11. Sunrise.Workbench restarts. This completes installation in Sunrise.Work-
bench.

12. Open the station configuration in the desired Sunrise project. The new
software entries are displayed on the Software tab.

13. If the check mark is set in the Install column for the new entries, the new
software has automatically been selected for installation.

If not, set the check mark for the new entries.

14. Save the station configuration. The system asks whether the modifications
to the project should be accepted. Click on Save and apply.

15. Install the system software on the robot controller. Once the robot control-
ler has been rebooted, the new software is available for the station.
175 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

176 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
10.5.2 Installing or updating the virus scanner

Description Once the virus scanner has been installed on the robot controller, a tile for the
virus scanner is available on the smartHMI. This tile can be used, for example,
to display the version of the installed virus scanner and messages about virus-
es that have been found.

 (>>> 18.4 "Displaying messages of the virus scanner" Page 505)

Precondition Local administrator rights

 Sunrise.Workbench is installed.

 Data storage medium with the software to be installed

 In the case of an update on the robot controller: Network connection with-
out Internet access or with an active firewall

During the update, the virus scanner is briefly inactive.

Procedure (>>> 10.5.1 "Installing a software option" Page 174)

10.5.3 Installing a language package

Description The user interface on the smartHMI is available in the following languages:

Languages which are only available after software is delivered can be installed
later if required.

Precondition Local administrator rights

 Sunrise.Workbench is installed.

 Data storage medium with the software to be installed

Procedure (>>> 10.5.1 "Installing a software option" Page 174)

10.5.4 Uninstalling a software option

Description Software options that are no longer required can be uninstalled in Sun-
rise.Workbench.

The following points must be observed when uninstalling safety options:

 Following uninstallation, the AMFs provided by an option are no longer
available.

It is advisable to check what version is currently installed on the robot
controller before updating the virus scanner. Do not perform a down-
grade.

Chinese (simplified) Polish

Danish Portuguese

German Romanian

English Russian

Finnish Swedish

French Slovak

Greek Slovenian

Italian Spanish

Japanese Czech

Korean Turkish

Dutch Hungarian
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

10 Station configuration and installat...
 In the case of existing projects, an AMF that is no longer available is only
displayed in the selection table if a cell that uses the AMF is selected in the
safety configuration.

 The safety configuration of existing projects is retained, even if it uses
AMFs of an uninstalled safety option. The user can continue to use it with-
out restrictions.

 If the existing safety configuration uses AMFs of an uninstalled safety op-
tion, it can no longer be modified. Saving of the configuration is prevented.

Procedure 1. Select the menu sequence Help > Install new software The Install
window is opened.

2. Click on the link by What is already installed?. The Installation details
for Sunrise Workbench is opened.

3. Select the Installed software tab (if it is not already selected).

4. In the list of installed software, select the option that is no longer required.

5. Click on Uninstall. The Uninstall window is opened. The details of the
software to be uninstalled can be viewed here.

6. Click on Finish. The uninstallation is started.

A progress bar indicates the progress of the uninstallation.

7. A message indicates that Sunrise.Workbench must be restarted in order
to apply the changes. Click on Restart now.

8. Sunrise.Workbench restarts. This completes uninstallation in Sun-
rise.Workbench.

It is possible to select several options simultaneously and uninstall
them together.

It is advisable not to uninstall the Sunrise.Workbench
software or components of it under any circumstances.

This can result in unpredictable problems.
177 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

178 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

11 Bus configuration
11 Bus configuration

11.1 Configuration and I/O mapping in WorkVisual – overview

11.2 Overview of field buses

The following field buses are supported by Sunrise and can be configured with
WorkVisual:

s

f

Step Description

1 Install the Sunrise option package in WorkVisual.

The option package is available as a KOP file and is supplied
together with Sunrise.Workbench (file Sunrise.kop in the
directory WorkVisual AddOn).

Note: The option package supplied with Sunrise.Workbench
must always be used. If an old version of Sunrise.Workbench
is uninstalled and a new version installed, the option package
must also be exchanged in WorkVisual.

2 Terminate WorkVisual and create a new I/O configuration in
Sunrise.Workbench or open an existing I/O configuration.
WorkVisual is started automatically and the WorkVisual proj-
ect corresponding to the I/O configuration is opened.

 (>>> 11.3 "Creating a new I/O configuration" Page 180)

 (>>> 11.4 "Opening an existing I/O configuration" Page 180)

3 Only necessary if devices are used for which no device
description files have yet been imported:

1. Close the WorkVisual project.

2. Import the required device description files.

3. Reopen the WorkVisual project.

4 Configure the field bus.

 (>>> 11.2 "Overview of field buses" Page 179)

5 Create the Sunrise I/Os and map them.

 (>>> 11.5 "Creating Sunrise I/Os" Page 181)

 (>>> 11.6.3 "Mapping Sunrise I/Os" Page 187)

6 Export the I/O configuration to the Sunrise project.

 (>>> 11.7 "Exporting the I/O configuration to the Sunrise proj-
ect" Page 187)

7 Transfer the I/O configuration to the robot controller (Synchro-
nize Project) and reboot the robot controller.

 (>>> 9.5 "Project synchronization, overview" Page 161)

Information about installing and managing option packages can be
found in the WorkVisual documentation.

Information about importing device description files and general infor-
mation about configuring field buses can be found in the WorkVisual
documentation.
179 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

180 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
11.3 Creating a new I/O configuration

Precondition Sunrise project without I/O configuration

Procedure 1. Select the project in the Package Explorer.

2. Select the menu sequence File > New > I/O configuration.

WorkVisual is started and the WorkVisual project corresponding to the I/O
configuration is opened. The file IOConfiguration.wvs is inserted into the
Sunrise project; this can be used to call the corresponding WorkVisual
project.

11.4 Opening an existing I/O configuration

Precondition Sunrise project with I/O configuration

Procedure 1. Double-click on the file IOConfiguration.wvs. WorkVisual is started and
the WorkVisual project corresponding to the I/O configuration is opened.

2. Right-click on the inactive robot controller on the Hardware tab in the Proj-
ect structure window.

3. Select Set as active controller from the context menu. The I/O Mapping
window opens. The Sunrise I/Os can be edited.

Field bus Description

PROFINET An Ethernet-based field bus. Data exchange is carried
out on a client-server basis. PROFINET is installed on
the robot controller.

PROFIBUS Universal field bus which enables communication
between devices from different manufacturers without
special interface adaptations. Data exchange is carried
out on a master-slave basis.

EtherCAT An Ethernet-based field bus suitable for real-time
requirements.

For configuration of a field bus, the documentation of the field bus is
required.

The I/O configuration is created automatically for the media flange set
in the project. If a media flange with an EtherCAT output (e.g. media
flange IO pneumatic) is used and additional EtherCAT devices are

connected, these must be configured using WorkVisual.

When connecting additional EtherCAT devices to a media flange with
an EtherCAT output, e.g. media flange IO pneumatic, it must be en-
sured that the number of available signals on the bus is limited.

If there are too many connected devices, this can result in overloading of the
bus and loss of communication. Under certain circumstances, the robot can
then no longer be moved.

If the robot controller is used as a PROFINET master or device, hard-
ware problems can result in an inability to access bus devices. In this
case, use of a diagnostic tool, such as WorkVisual, Step 7 or Wire-

Shark, is recommended.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

11 Bus configuration
11.5 Creating Sunrise I/Os

Precondition Field bus configuration has been completed.

 The robot controller has been set as the active controller.

Procedure 1. Select an input or output module of the configured bus on the Field buses
tab in the top right-hand corner of the I/O Mapping window.

 (>>> 11.6.1 "I/O Mapping window" Page 185)

2. Select the Sunrise I/Os tab in the top left-hand corner of the I/O Mapping
window.

3. In the bottom left-hand corner of the I/O Mapping window, click on the
Creates signals at the provider button. The Create I/O signals window
is opened.

 (>>> 11.5.1 "“Create I/O signals” window" Page 182)

4. Create an I/O group and inputs/outputs within the group.

 (>>> 11.5.2 "Creating an I/O group and inputs/outputs within the group"
Page 183)

5. Click on OK. The Sunrise I/Os are saved. The Create I/O signals window
is closed.

The created I/O group is displayed on the Sunrise I/Os tab of the I/O Mapping
window. The signals can now be mapped.

 (>>> 11.6.3 "Mapping Sunrise I/Os" Page 187)
181 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

182 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
11.5.1 “Create I/O signals” window

Overview

The window for creating and editing the Sunrise I/Os and Sunrise I/O groups
consists of the following areas:

Signal properties In the Edit I/O area, new signals can be created and their properties defined:

Fig. 11-1: “Create I/O signals” window

Area Description

Edit I/O group In this area, I/O groups are created and edited. It is also possi-
ble to save I/O groups as a template or to import previously cre-
ated templates.

Edit I/O signals In this area, the input/output signals of an I/O group are dis-
played.

Edit I/O In this area, the inputs/outputs of an I/O group are created and
edited.

Input boxes are displayed with a red frame if values must be entered
or if incorrect values have been entered. A help text is displayed when
the mouse pointer is moved over the box.

Property Description

I/O name Enter the name of the input or output.

Description Enter a description for the input or output (optional).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

11 Bus configuration
11.5.2 Creating an I/O group and inputs/outputs within the group

Precondition The Create I/O signals window is open.

Procedure 1. In the Edit I/O group area, click on Create.

The Create I/O group window is opened.

2. Enter a name for the I/O group.

3. Enter a description for the I/O group (optional).

4. Click on Create. The I/O group is created and displayed in the selection
menu I/O group.

5. In the Edit I/O area, enter a name for the input or output of the group and
define the signal properties.

 (>>> "Signal properties" Page 182)

6. In the Edit I/O group area, click on Create. The input or output signal is
created and displayed in the Edit I/O Signals area.

7. Repeat steps 5 and 6 to define further inputs/outputs in the group.

Direction Specify whether the signal is an input or output.

 Input, Output

Type Specify whether the signal is an analog or digital signal.

 Analog, Digital

Data type Select the data type of the signal.

In WorkVisual, a total of 15 different data types are available for
selection. For use with Java, these data types are mapped to
the following data types:

 integer, long, double, boolean

Bit width Enter the number of bits that make up the signal. With the data
type BOOL, the bit width is always 1.

Note: The value must be a positive integer which does not
exceed the maximum permissible length of the selected data
type.

Range start Only relevant for analog inputs/outputs!

Enter the start and end of the range for the analog value and if
applicable set the check mark at Signed.

Note: These values can generally be found in the data sheet of
the field bus module. The range start must be lower than the
range end. It is also possible to enter decimal values.

Range end

Signed

Property Description

Fig. 11-2: Create I/O group

It is advisable to enter a description in all cases. This description is
displayed later as a help text in the robot application and on the sm-
artHMI.
183 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

184 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
11.5.3 Editing an I/O group

Precondition The Create I/O signals window is open.

 The inputs/outputs of the group are not mapped.

Procedure 1. Select the desired I/O group from the I/O group selection menu.

2. Click on Edit. The Rename I/O group window is opened.

3. Change the name of the I/O group and/or the corresponding description
(optional). Confirm with Apply.

11.5.4 Deleting an I/O group

Precondition The Create I/O signals window is open.

 The inputs/outputs of the group are not mapped.

Procedure 1. Select the desired I/O group from the I/O group selection menu.

2. Click on Delete. If signals have already been created for the I/O group, a
request for confirmation is displayed.

3. Reply to the request for confirmation with Yes. The I/O group is deleted.

11.5.5 Changing an input/output of a group

Precondition The Create I/O signals window is open.

 The signals that are to be changed are not mapped.

Procedure 1. Select the I/O group of the signal from the I/O group selection menu.

2. In the Edit I/O Signals area, click on the desired input or output.

3. In the Edit I/O area, edit the signal properties as required.

 (>>> "Signal properties" Page 182)

4. Click on Change. The changes are saved.

11.5.6 Deleting an input/output of a group

Precondition The Create I/O signals window is open.

 The signals that are to be deleted are not mapped.

Procedure 1. Select the I/O group of the signal from the I/O group selection menu.

2. In the Edit I/O Signals area, click on the desired input or output.

3. Click on Delete.

11.5.7 Exporting an I/O group as a template

Description I/O groups can be saved as a template. The template contains all the in-
puts/outputs belonging to the saved I/O group. This enables I/O groups, once
created, to be reused. The mapping of the inputs and outputs is not saved,
however.

After exporting the template, the templates created in WorkVisual are avail-
able in Sunrise.Workbench in the IOTemplates folder of the project.

Precondition The Create I/O signals window is open.

All the changes can be discarded by clicking on the Discard button.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

11 Bus configuration
Procedure 1. In the Edit I/O group area, select the I/O group that is to be exported as a
template.

2. Click on Export as template. The Save I/O group as template window is
opened.

3. Enter a name for template.

4. Enter a description for the template (optional).

5. Click on Export. The template is saved.

11.5.8 Importing an I/O group from a template

Precondition The Create I/O signals window is open.

 There is at least one I/O group available in Sunrise.Workbench as a tem-
plate in the Sunrise project.

Procedure 1. In the Edit I/O group area, click on Import from template. The Import I/O
group from template window is opened.

2. In the selection list Used template, select the template to be imported.

3. Enter a name in the I/O-group name box for the I/O group to be created.

4. Click on Import. An I/O group configured in accordance with the template
is imported and can be edited.

11.6 Mapping the bus I/Os

11.6.1 I/O Mapping window

Overview

If a template with the same name already exists in the Sunrise proj-
ect, it will be overwritten during the export operation.

Fig. 11-3: “I/O Mapping” window
185 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

186 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
11.6.2 Buttons in the “I/O Mapping” window

Some of these buttons are displayed in several places. In such cases, they re-
fer to the side of the I/O Mapping window on which they are located.

Edit

Item Description

1 Displays the Sunrise I/O groups

The signals in the I/O group selected here are displayed in the
overviews lower down.

2 Displays the inputs/outputs of the bus modules

The signals in the module selected here are displayed in the over-
views lower down.

3 Connection overview

Displays the mapped signals. These are the signals of the I/O
group selected under Sunrise I/Os, which are mapped to the bus
module selected under Field buses.

4 Signal overview

Here the signals can be mapped.

 (>>> 11.6.3 "Mapping Sunrise I/Os" Page 187)

5 The arrow buttons allow the connection and signal overviews to
be collapsed and expanded independently of one another.

 Collapse connection view (left-hand arrow symbol pointing
up)

 Expand connection view (left-hand arrow symbol pointing
down)

 Collapse signal view (right-hand arrow symbol pointing up)

 Expand signal view (right-hand arrow symbol pointing down)

6 Buttons for creating and editing the Sunrise I/Os

7 Displays how many bits the selected signals contain.

For the I/O mapping in Sunrise, only the Sunrise I/Os and Field bus-
es tabs are relevant.

Button Name/description

Creates signals at the provider

Opens the Create I/O signals window.

 (>>> 11.5.1 "“Create I/O signals” window" Page 182)

The button is only active if an input or output module is
selected on the Field buses tab and a signal of the I/O group
is selected in the signal overview.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

11 Bus configuration
Mapping

11.6.3 Mapping Sunrise I/Os

Description This procedure is used to map the Sunrise I/Os to the inputs/outputs of the
field bus module. It is only possible to map inputs to inputs and outputs to out-
puts if they are of the same data type. For example, it is possible to map BOOL
to BOOL or INT to INT, but not BOOL to INT or BYTE.

Precondition The robot controller has been set as the active controller.

Procedure 1. On the Sunrise I/Os tab in the left-hand half of the window, select the I/O
group for which the I/Os are to be mapped.

The signals of the group are displayed in the bottom area of the I/O Map-
ping window.

2. On the Field buses tab in the right-hand half of the window, select the de-
sired input or output module.

The signals of the selected field bus module are displayed in the bottom
area of the I/O Mapping window.

3. Drag the signal of the group onto the input or output of the module. (Or al-
ternatively, drag the input or output of the device onto the signal of the
group.)

The signals are now mapped. Mapped signals are indicated by green ar-
rows.

Alternative procedure for mapping:

 Select the signals to be mapped and click on the Connect button.

11.7 Exporting the I/O configuration to the Sunrise project

Description When exporting an I/O configuration from WorkVisual, a separate Java class
is created for each I/O group in the corresponding Sunrise project. Each of
these Java classes contains the methods required for programming, in order

Edit signals at the provider

Opens the Edit I/O signals window.

The button is only active if an I/O group is selected on the
Sunrise I/Os tab and a signal of the I/O group is selected in
the signal overview.

Deletes signals at the provider

Deletes all the selected inputs/outputs. If all the inputs/outputs
of a group are selected, the I/O group is also deleted.

The button is only active if an I/O group is selected on the
Sunrise I/Os tab and a signal of the I/O group is selected in
the signal overview.

Button Name/description

Button Name/description

Disconnect

Disconnects the selected mapped signals. It is possible to
select and disconnect a number of connections simultane-
ously.

Connect

Connects signals which are selected in the signal overview.
187 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

188 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
to be able to read the inputs/outputs of an I/O group and write to the outputs
of an I/O group.

The classes and methods are saved in the Java package com.kuka.generat-
ed.ioAccess in the source folder of the Sunrise project.

The structure of the Sunrise project after exporting an I/O configuration is de-
scribed here:

 (>>> 15.11 "Using inputs/outputs in the program" Page 367)

Precondition The robot controller has been set as the active controller.

 The automatic change recognition is activated in Sunrise.Workbench.

 (>>> 5.11 "Activating the automatic change recognition" Page 60)

Procedure 1. Select the menu sequence File > Import / Export. The import/export wiz-
ard for files opens.

2. Select Export the I/O configuration to the Sunrise Workbench proj-
ect..

3. Click on Next > and then on Finish. The configuration is exported to the
Sunrise project.

4. A message is displayed as to whether the export was successfully com-
pleted. If Sunrise I/Os have not been mapped, this is also indicated.

Click Close to terminate the wizard.

5. Close WorkVisual by selecting File > Exit.

The source code of the Java classes of the package com.kuka.gen-
erated.ioAccess must not be changed manually. To expand the
functionality of an I/O group, it is possible to derive further classes

from the classes created or to continue to use objects from these classes,
e.g. as arrays of their own classes (aggregating).

It is not essential to map all the Sunrise I/Os that have been created.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
12 External control

12.1 Overview of external controller

If the processes of the station are to be controlled by an external controller in
Automatic mode, the Sunrise project on the robot controller must be config-
ured for external control.

Default appli-

cation

A default application must be assigned to every project that is to be controlled
externally.

The default application has the following characteristics:

 It is automatically selected when the operating mode is switched to Auto-
matic.

 It can only be started via the input signal App_Start (not by means of the
Start key on the smartPAD).

 It cannot be deselected again in Automatic mode.

Interfaces External controller and robot controller can communicate via the following in-
terfaces:

 I/O system of the robot controller

 Network protocol UDP

The input/output signals for communication are predefined:

 The external controller can start, pause and resume the default application
via the input signals.

 (>>> 12.4 "External controller input signals" Page 190)

 The output signals can be used to provide information about the status of
the default application and the station to the external controller.

 (>>> 12.5 "External controller output signals" Page 191)

Precondition In order to be able to start an application, the following preconditions must be
met:

 The robot is mastered (all axes).

 A Sunrise project has been configured for external control.

 AUT mode

 If configured: the input signal App_Enable has a HIGH level or is TRUE.

 The motion enable signal is present.

12.2 Configuring the external controller via the I/O system

The following steps are required for configuring the external controller via the
I/O system:

2

x

t

Step Description

1 Configure and map inputs/outputs for communication with the
external controller in WorkVisual.

 (>>> 12.4 "External controller input signals" Page 190)

 (>>> 12.5 "External controller output signals" Page 191)

2 Export I/O configuration from WorkVisual to Sunrise.Work-
bench.

3 Create the default application for the external controller.
189 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

190 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
12.3 Configuring the external controller via the UDP interface

The following steps are required for configuring the external controller via the
UDP network protocol:

Use of the UDP is illustrated by the following example:

 (>>> 12.9 "External control via UDP – Start-up example" Page 199)

12.4 External controller input signals

App_Start The input signal is absolutely vital for an externally controlled project.

The default application is started and resumed in Automatic mode by the ex-
ternal controller by means of a rising edge of the signal (change from FALSE
to TRUE).

App_Enable The input signal is optionally configurable.

The default application can be paused by the higher-level controller in Auto-
matic mode using this signal. For this, the signal must have a LOW level or be
FALSE.

Get_State The input signal is only available if the UDP interface is used.

The external controller can use this signal to poll application and station sta-
tuses from the robot controller. The value of the signal can be TRUE or
FALSE.

System response The input signal App_Enable has a higher priority than the input signal
App_Start. If the input signal App_Enable is configured, the default applica-
tion can only be started if App_Enable has a HIGH level or is TRUE.

The following table describes the system behavior when the App_Enable sig-
nal is configured.

4 Configure the external controller in the project settings.

 (>>> 12.7 "Configuring the external controller in the project
settings" Page 193)

5 Transfer the project to the robot controller by means of syn-
chronization.

The physical inputs/outputs used for communication with the external
controller must not be multiply mapped.

Step Description

Step Description

1 Create the default application for the external controller.

2 Configure the external controller in the project settings.

 (>>> 12.7 "Configuring the external controller in the project
settings" Page 193)

3 Transfer the project to the robot controller by means of syn-
chronization.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
12.5 External controller output signals

The configuration of these output signals is optional.

AutExt_Active The output signal has a HIGH level or is TRUE if Automatic mode is active and
the project on the robot controller can be controlled externally via the interface.

AutExt_AppRead

yToStart

The output signal has a HIGH level or is TRUE if the default application is
ready to start.

The application is ready to start in the following states:

 Selected

 Motion paused

DefaultApp_Error The output signal has a HIGH level or is TRUE if an error occurred when the
default application was run.

Station_Error The output signal has a HIGH level or is TRUE if the station is in an error state.

There is an active error state in the following cases:

 Motion enable signal is not present.

 Drive error or bus error active.

 At least one robot axis is not mastered and the operating mode is not set
to T1.

App_Start App_Enable Application status Reaction

FALSE -->
TRUE

FALSE Selected None

FALSE -->
TRUE

FALSE Motion paused None

FALSE -->
TRUE

TRUE Selected Application is started.

FALSE -->
TRUE

TRUE Motion paused Application is resumed.

If the path is left: the robot is
repositioned. The application is
then paused.

Any TRUE -->
FALSE

Running Application is paused.

Any TRUE -->
FALSE

Repositioning Application is paused.

It is not permissible to set outputs in a robot application
that signal system states to the external controller. Fail-

ure to observe this precaution may result in malfunctioning of the external
controller and damage to property.
191 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

192 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
12.6 Signal diagrams

Fig. 12-1: Automatic system start and normal operation

Fig. 12-2: Restart after user stop
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
12.7 Configuring the external controller in the project settings

Procedure 1. Right-click on the desired project in the Package Explorer view and select
Sunrise > Change project settings from the context menu.

The Properties for [Sunrise Project] window opens.

2. Select Sunrise > External control in the directory in the left area of the
window.

3. Make the settings for external control of the project in the right-hand area
of the window.

 Set the check mark at Project is controlled externally.

 In the Default application area, select the default application.

 Under Input interface:, select the interface for the external communi-
cation.

 Configure the input/output parameters for the interface.

 (>>> 12.7.1 "Input/output parameters of the I/O interface" Page 194)

 (>>> 12.7.2 "Input/output parameters of the UDP interface"
Page 195)

4. Click on OK to save the settings and close the window.

Fig. 12-3: Restart after external EMERGENCY STOP

The selected default application is indicated by the following icon in

the Package Explorer view:
If the default application is renamed, the icon is no longer displayed

and the application must be selected as the default application once again.
 (>>> 5.5 "Setting the robot application as the default application" Page 54)
193 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

194 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Description

12.7.1 Input/output parameters of the I/O interface

If the I/O interface is used, mapped inputs/outputs of an I/O group must be as-
signed to the required input/output signals.

The input App_Start is absolutely vital for external control of a project. The in-
put App_Enable and the signal outputs can optionally be configured.

Fig. 12-4: External control

Item Description

1 Directory of the project settings

2 “Default application” area

All robot applications of the project are available for selection as
the default application.

3 “Input configuration” area

The interface for the external communication is selected here:

 IO Groups: I/O interface

 UDP: UDP interface

The configurable input parameters depend on the specific inter-
face.

4 “Output configuration” area

The configurable output parameters are not dependent on the in-
terface selected for the inputs. The values of the outputs can also
be polled via UDP, for example, if the I/O interface has been con-
figured for the inputs.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
12.7.2 Input/output parameters of the UDP interface

12.8 Formatting of the UDP data packets

Form and length of the UDP data packets for the data exchange are pre-
defined:

 UTF-8 coding

 Data arrays are separated by a semicolon.

12.8.1 Status messages of the robot controller

Description In the case of the UDP interface, application and station statuses are trans-
ferred from the robot controller to an external controller by means of so-called
status messages.

In the following cases, the robot controller sends status messages to the cli-
ents that are configured as recipients of status messages in the project set-
tings:

 Following receipt of the control message from an external client

 Following the change in state of an output signal

The data packet sent by the robot controller consists of the following data ar-
rays:

Column Description

I/O group All I/O groups of the I/O configuration of the project are available.

Boolean input All inputs of the I/O group selected in the I/O group column are
available.

Boolean output All outputs of the I/O group selected in the I/O group column are
available.

Parameter Description

with App_Enable sup-
ported

Use of the input signal App_Enable

 Check box not active (default): App_Enable is not evaluated.

 Check box active: App_Enable is evaluated.

IP of controlling client: IP address of the client configured for external control of the proj-
ect

IPs of state receivers: List of clients to receive status information (optional)

For each client, the IP address must be specified in the following
format together with the corresponding port:

 IP_address_1:Port_1;IP_address_2:Port_2;...

Note: It is advisable to specify the IP address and port of the con-
trolling client in order to inform it of changes of state.
195 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

196 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Array no. Description

1 Time stamp

Type: Integer (long); unit: ms

The time stamp is the current system time of the robot controller when the status
message is sent. Corresponds to the time in milliseconds elapsed since midnight
on 1.1.1970.

2 Data packet counter (packets sent to the client)

When the robot controller sends a new status message, the counter is incremented
by 1. The client can use the counter to determine the order in which the status
messages were sent.

3 Data packet counter (valid packets received by the client)

When the robot controller signals to the client that the received packet is valid, the
counter is incremented by 1. The client can use the counter to determine the con-
troller message to which the robot controller is responding.

The client can poll the counter for restoration of a cancelled connection and then
use the polled value+1 as the counter in its next controller message.

4 Error ID

The ID signals to the client whether the received controller message was valid or
defective.

 (>>> "Error codes" Page 197)

5 Current status of the output signal AutExt_Active

 TRUE: AUT mode is active and the project on the robot controller can be con-
trolled externally via UDP.

 FALSE: AUT mode is not active or the project on the robot controller cannot be
controlled externally via UDP.

6 Current status of the output signal AutExt_AppReadyToStart

 TRUE: The default application is ready to start.

 FALSE: The default application cannot be started.

7 Current status of the output signal DefaultApp_Error

 TRUE: An error occurred during execution of the default application.

 FALSE: The default application has not signaled an error.

8 Current status of the output signal Station_Error

 TRUE: The station has signaled an error.

 TRUE: The station is running without errors.

9 Current state of the default application

 IDLE: The application is selected.

 RUNNING: The application is executed.

 MOTIONPAUSED: The application is paused.

 REPOSITIONING: The robot is repositioned. The application is still paused be-
cause the robot has left the path.

 ERROR: An error occurred while the application was running.

 STARTING: The application is being initialized to switch to the RUNNING state.

 STOPPING: The application is being reset to the start of the program. The ap-
plication is then in the IDLE state.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
Example

Error codes

10 Current status of the input signal App_Start

 TRUE, FALSE

Status defined by the last valid controller message.

The client can poll the current status of the signal for restoration of a cancelled con-
nection.

11 Current status of the input signal App_Enable

 TRUE, FALSE

Status defined by the last valid controller message; FALSE if no controller message
has been received in the last 100 ms.

The client can poll the current status of the signal for restoration of a cancelled con-
nection.

Array no. Description

1449066055468;7;2;1;true;false;false;false;RUNNING;false;false

ID Description

1 No error – internally triggered change of state

The change of state of an output signal was not triggered by a
message from the controlling client, but by an internal event on
the robot controller.

0 No error – valid message received

The most recently received message is valid and is being pro-
cessed.

-1 Incorrect client IP address

The IP address of the client that sent the message does not
match the IP address of the client configured for external control.

-2 Incorrect message structure

The message could not be decoded, e.g. because it contains too
many or too few data arrays or because the data arrays are not
separated by semicolons.

-3 Incorrect data packet counter

The data packet counter of the current message was not incre-
mented by 1 (relative to the most recently received message).

-4 Incorrect time stamp

The time stamp must be an integer.

-5 Incorrect signal name

The signal name must be App_Start, App_Enable or Get_State.

-6 Incorrect signal value

The signal value must be TRUE or FALSE.

-7 Timeout error

After App_Enable was set to TRUE, no further valid message
was received for 100 ms. The application is paused.

If more than one fault occurs simultaneously, the fault with the highest
priority is transferred. A fault with the ID -3, for example, has a higher
priority than a fault with the ID -4.
197 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

198 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
12.8.2 Controller messages of the external client

Precondition When a controller message is sent, the following target address and port must
always be specified:

 IP address of the robot controller (see Configuration tab in the station
configuration)

 Port 30300 (fixed port of the robot controller)

Description With the UDP interface, input signals are set via so-called controller messages
that the external controller must send to the robot controller. This client data
packet must contain the following data arrays:

Example

App_Enable If the input signal App_Enable is evaluated, the following points must be taken
into consideration when sending controller messages:

 The application can only be started by the input signal App_Start if the ro-
bot controller has received a message with …App_Enable;true in the
last 100 ms.

 The input signal App_Enable functions like a heartbeat signal.

The application is executed as long as the robot controller receives a con-
troller message, e.g. …App_Enable;true, at least every 100 ms. If no
message is received, the application is paused.

 If the external client sets the input signal App_Enable from TRUE to
FALSE within the 100 ms, this also pauses the application.

Array no. Description

1 Time stamp

Type: Integer (long); unit: ms

The time stamp should be the current system time of the client when the controller
message is sent.

2 Data packet counter (packets sent to the robot controller)

When the client sends a new controller message, the counter must be incremented
by 1.

4 Name of the input signal

 App_Start

The default application can be started or resumed by means of a change of state
from FALSE to TRUE as long as the output signals AutExt_Active and
AutExt_AppReadyToStart are TRUE.

 App_Enable

If App_Enable is activated in the project settings, the signal must be TRUE in
order to be able to start or resume the default application.

 (>>> "App_Enable" Page 198)

 Get_State

With this signal (TRUE or FALSE), the client can request a status message from
the robot controller.

5 Value of the sent input signal

 TRUE, FALSE

1449066055468;1;App_Start;true

When sending the controller messages, the client must take the net-
work delay into account.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
12.9 External control via UDP – Start-up example

The example shows how a robot application can be started from a PC via UDP
and what start-up steps and programming are required for this.

The input signal App_Enable is not used in this example. This example can
thus not be used to pause an application and does not claim to be comprehen-
sive.

12.9.1 Starting up the external controller

The following steps are required for starting up the external controller:

1. Connect the PC to the robot controller via the Ethernet interface KLI.

2. Assign a fixed network IP address to the PC, e.g. 192.168.0.10.

3. Carry out the required project settings in Sunrise.Workbench.

 Select the application to be started as the default application.

 Select the UDP interface.

 Enter the network IP address of the PC as the IP of the controlling cli-
ent.

 Enter the IP address and port via which the PC receives the status
messages from the robot controller (here: port 30333).

4. Synchronize the project to the robot controller.

It is recommended not to use dynamic IP address assignment via
DCHP.

Fig. 12-5: Project settings in Sunrise.Workbench
199 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

200 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
5. Select AUT mode.

Once the robot is ready to move, all status indicators on the smartHMI are
green and the application can be started via the UDP interface.

12.9.2 Programming the external controller

On the PC used for external control, there must be a program that can gener-
ate and send UDP data packets.

Precondition The correct target address and port have been assigned to the data pack-
ets that are to be sent:

 IP address of the robot controller (see Configuration tab in the station
configuration)

 Port 30300 (fixed port of the robot controller)

Description Following a reboot of the robot controller, the robot application can be started
with a controller message with App_Start:

If the value to be transferred for the counter is not known, a socket on the PC
must be opened that can receive UDP messages at port 30333. Get_State
can then be used to poll the current counter value:

If the socket is now polled for received messages, a status message should
now be present as the answer from the robot controller, e.g.:

The received message shows that the current value of the data packet counter
is 1337. The counter value 1338 must therefore be transferred in the next data
packet.

In order to restart a robot application, the state of the signal from App_Start
must change from FALSE to TRUE. For this purpose, the following packets
are sent:

If a firewall is used, it must be ensured that it does not block the in-
coming and outgoing UDP data packets.

1457449078435;1;App_Start;true

The first number in the packet is the time stamp that must be used to
document when the packet was sent. Here, and in the following code
examples, this number must always be replaced with a current time

stamp in milliseconds. (When using Java, such a number can be generated,
for example, with java.lang.System.currentTimeMillis().)

Following a reboot of the robot controller, the value 1 must always be
transferred for the data packet counter. For each subsequent data
packet, the counter must be incremented by 1.

1457450539457;0;Get_State;true

In Sunrise.Workbench, port 30333 has been defined in the project
settings as the port via which the PC receives the status messages
from the robot controller. If a different port is to be used, it can be en-

tered in the project settings.

1457450539459;4;1337;-3;true;true;false;false;IDLE;false;true

1457450539511;1338;App_Start;false

1457450539511;1339;App_Start;true
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

12 External control
Java program

12.10 Configuring the signal outputs for a project that is not externally controlled

Description The predefined output signals for the external controller can also be used to
signal application and station statuses in projects that are not externally con-
trolled.

The application statuses always refer to the default application selected in the
project settings.

It is advisable to check the socket for received messages after every
data packet that is sent to the robot controller. In this way, it is easy
to check whether an error occurred during processing of a message.

(>>> "Error codes" Page 197)

1 import java.net.*;
2 class UdpSample
3 {

4 public static void main(String args[]) throws Exception
5 {

6 DatagramSocket mySocket = new DatagramSocket(30333);
7

8 // robot address (please adjust IP!)

9 InetSocketAddress robotAddress =

10 new InetSocketAddress("192.168.0.2", 30300);
11

12 // get robot state

13 byte[] msg = String.format(
14 "%d;0;Get_State;true", System.currentTimeMillis())

15 .getBytes("UTF-8");

16 mySocket.send(new DatagramPacket(
17 msg, msg.length, robotAddress));

18

19 // receive answer state message

20 byte[] receiveData = new byte[508];
21 DatagramPacket receivePacket = new DatagramPacket(
22 receiveData, receiveData.length);

23 mySocket.receive(receivePacket);

24

25 // extract counter

26 String[] stateMessage = new String(
27 receivePacket.getData()).split(";");

28 long counter = Long.parseLong(stateMessage[2]);
29

30 // start application by sending a rising edge

31 // (false->true) for App_Start

32 msg = String.format("%d;%d;App_Start;false",

33 System.currentTimeMillis(), ++counter)

34 .getBytes("UTF-8");

35 mySocket.send(new DatagramPacket(
36 msg, msg.length, robotAddress));

37 msg = String.format("%d;%d;App_Start;true",

38 System.currentTimeMillis(), ++counter)

39 .getBytes("UTF-8");

40 mySocket.send(new DatagramPacket(
41 msg, msg.length, robotAddress));

42 }

43 }
201 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

202 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Precondition In the case of communication via the I/O system of the robot controller:
The I/O configuration of the project contains the outputs configured and
mapped in WorkVisual.

 (>>> 12.5 "External controller output signals" Page 191)

Procedure 1. Right-click on the desired project in the Package Explorer view and select
Sunrise > Change project settings from the context menu.

The Properties for [Sunrise Project] window opens.

2. Select Sunrise > General in the directory in the left area of the window.

3. Make the general settings for the project in the right-hand area of the win-
dow.

 If application statuses are to be signaled: In the Default application
area, select the desired default application.

 In the Output configuration area, configure the output parameters re-
quired by the communications interface.

 (>>> 12.10.1 "Output parameters of the I/O interface" Page 202)

 (>>> 12.10.2 "Output parameters of the UDP interface" Page 202)

4. Click on OK to save the settings and close the window.

12.10.1 Output parameters of the I/O interface

If the I/O interface is used, mapped outputs of an I/O group must be assigned
to the required output signals.

12.10.2 Output parameters of the UDP interface

The selected default application is indicated by the following icon in

the Package Explorer view:
If the default application is renamed, the icon is no longer displayed

and the application must be selected as the default application once again.
 (>>> 5.5 "Setting the robot application as the default application" Page 54)

Column Description

I/O group All I/O groups of the I/O configuration of the project are available.

Boolean output All outputs of the I/O group selected in the I/O group column are
available.

Parameter Description

IPs of state receivers: List of clients to receive status information

For each client, the IP address must be specified in the following
format together with the corresponding port:

 IP_address_1:Port_1;IP_address_2:Port_2;...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13 Safety configuration

13.1 Overview of safety configuration

The safety configuration defines the safety-oriented functions in order to inte-
grate the industrial robot safely into the system. Safety-oriented functions
serve to protect human operators when they work with the robot.

The safety configuration is an integral feature of a Sunrise project and is man-
aged in tabular form. The individual safety functions are grouped in KUKA
Sunrise.Workbench on an application-specific basis. The safety configuration
is then transferred with the project to the controller and activated there.

13.2 Safety concept

Overview The safety configuration must implement all safety functions which are re-
quired to operate the industrial robot. A safety function monitors the entire sys-
tem on the basis of specific criteria. These are described by individual
monitoring functions, so-called AMFs (Atomic Monitoring Functions). To con-
figure a safety function, several AMFs can be linked to form complex safety
monitoring functions. In addition, the safety function defines a suitable reaction
which is triggered in case of error.

f

t

y

f

Serious damage and injury or death can result from in-
correct safety configuration. If a new or changed safety

configuration is activated, the safety maintenance technician must conduct
tests to ensure that the configured safety parameters have been correctly ap-
plied and that the safety functions of the configuration are fully functional
(safety acceptance).

Configuration of the safety functions, activation and deactivation of
the safety functions and safety acceptance may only be carried out
by a trained safety maintenance technician. The safety maintenance

technician is responsible for ensuring that the safety configuration is only ac-
tivated on those robots for which it is intended.
The safety configuration is not checked for plausibility by KUKA Sun-
rise.Workbench.

In the case of incomplete start-up of the system, additional substitute
measures for minimizing risk must be taken and documented, e.g. in-
stallation of a safety fence, attachment of a warning sign, locking of

the main switch. Start-up is incomplete, for example, if not all safety functions
have yet been implemented, or if a function test of the safety functions has
not yet been carried out.

The system integrator must verify that the safety configuration suffi-
ciently reduces risks during collaborative operation (HRC).
It is advisable to perform this verification in accordance with the infor-

mation and instructions for operating collaborative robots in ISO/TS 15066.

States with various safety settings are defined in the safety configu-
ration as part of the ESM mechanism (Event-Driven Safety Monitor-
ing). It is possible to switch between these in the application. Since

switching between these states is carried out by means of non-safety-orient-
ed signals, all configured states must be consistent. This means that each
state must ensure a sufficient degree of safety, regardless of the time or
place of activation (i.e. regardless of the current process step).
203 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

204 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example: In a specific area of the robot's workspace, the velocity at the TCP
must not exceed 500 mm/s (“Workspace monitoring” and “Velocity monitoring”
monitoring functions). Otherwise, the robot must stop immediately (reaction in
case of error).

PSM and ESM The Sunrise safety concept provides 2 different monitoring mechanisms:

 Permanent safety-oriented monitoring

The safety functions of the PSM mechanism (Permanent Safety Monitor-
ing) are always active. It is only possible to deactivate individual safety
functions by changing the safety configuration.

The PSM mechanism is used to constantly monitor the system. It imple-
ments basic safety settings which are independent of the process step be-
ing carried out. These include, for example, EMERGENCY STOP
functions, the enabling switch on the smartPAD, the definition of a cell
area or safety functions that depend on the operating mode.

 Event-dependent safety-oriented monitoring

The ESM mechanism (Event-driven Safety Monitoring) defines safe
states. It is possible to switch between these in the application. A safe
ESM state contains the safety functions required in the corresponding pro-
cess step.

Since switching is carried out by means of non-safety-oriented signals, the
defined state must ensure a sufficient degree of safety, regardless of the
time or place of activation.

The ESM mechanism allows specific safety functions to be adapted for
specific processes. This is of particular importance for human-robot collab-
oration applications, as these often require various safety settings de-
pending on the situation. The required parameters, such as permissible
velocity, collision values or spatial limits, can be individually defined for
each process step using an ESM state.

AMF The smallest unit of a safety monitoring function is called an Atomic Monitoring
Function (AMF).

Each AMF supplies an elementary, safety-relevant piece of information, for
example if a safe input is set or if the Automatic operating mode is selected.

Atomic Monitoring Functions can have 2 different states and are LOW-active.
This means that if a monitoring function is violated, the state switches from “1”
to “0”.

 State “0”: The AMF is violated.

 State “1”: The AMF is not violated.

For example, the AMF smartPAD Emergency Stop is violated if the EMER-
GENCY STOP device on the operator panel is pressed.

Safety function A safe ESM state is defined with up to 20 safety functions. The safety func-
tions of the ESM mechanism use exactly one AMF. If this AMF is violated, the
safety function and thus the entire ESM state is considered to be violated.

For safety functions of the PSM mechanism, up to 3 AMFs are logically linked
to one another. This allows complex safety monitoring functions to be imple-
mented. If all AMFs of a safety function of the PSM mechanism are violated,
the entire safety function is considered to be violated.

Safety interfaces Various safety interfaces are available for exchanging safety-oriented signals
between a higher-level controller and a robot controller. The safe inputs of
these interfaces can be used to connect safety devices, for example external
EMERGENCY STOP devices or safety gates, and to evaluate the correspond-
ing input signals. The safe outputs of these interfaces can be used to signal
the violation of safety functions.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 Ethernet safety interfaces (only slave function available)

 PROFINET / PROFIsafe

 EtherCAT/FSoE

 Discrete safety interfaces

 CIB_SR/X11

Reactions A suitable reaction is defined for each safety function. This reaction must take
place in the case of an error and put the system into a safe state.

The following reactions can be configured:

 Safety stop 0 is triggered.

 Safety stop 1 is triggered.

 Safety stop 1 (path-maintaining) is triggered.

This is the recommended stop reaction. It has the lowest impact on the
process, as an application can be resumed without the need to reposition
the robot.

 Safe output is set to “0” (LOW level).

The reactions can be used for any number of safety functions. A reaction is
triggered once one of the safety functions using this reaction is violated. This
makes it possible, for example, to inform a higher-level controller via a safe
output when specific errors occur.

With the PSM mechanism, it is possible to trigger several different reactions
when a specific combination of AMFs is violated. For example, a safety stop
can be triggered as well as a safe output. To do so, 2 safety functions must be
configured with identical AMF combinations.

If different stop reactions are configured, a violation triggers the stronger stop
reaction. In other words, it triggers the stop reaction which causes an earlier
safety-oriented disconnection of the drives. If several safety functions use the
same output signal as a reaction, this signal is set to “0” once one of the safety
functions is violated.

Time behavior All the safety-oriented outputs use LOW as a safe state.

If a safety function which uses a safety output as a reaction is violated, this out-
put is immediately set to LOW.

The PROFINET bus can be configured in WorkVisual. Further infor-
mation about the concrete configuration of the field bus is contained
in the corresponding field bus documentation.

Further information on interface X11 can be found in the operating in-
structions for KUKA Sunrise Cabinet.

It is advisable to only configure a safety stop 0 if it is necessary to im-
mediately switch off the drives and apply the brakes as a reaction.

In crushing situations, safety stop 1 and safety stop 1
(path-maintaining) can result in higher crushing forces

due to the controlled stop on a planned braking path. It is therefore advisable
to use safety stop 0 for safety monitoring functions which recognize crushing
situations (e.g. the AMF Collision detection, TCP force monitoring).

Setting a safe output can only be configured as a reaction for safety
functions of the PSM mechanism. It cannot be configured for safety
functions of the ESM mechanism.
205 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

206 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
If the violation state is cancelled, the output is only set to HIGH again when the
following conditions have been met:

 The safety function is not violated for at least 24 ms. The reaction to can-
cellation of the violation state is always delayed.

 If an Ethernet safety interface is used:

The output has the LOW level for at least 500 ms beforehand. If the LOW
level has not yet been present for this time, the level change to HIGH waits
until the 500 ms has elapsed.

 If the discrete safety interface is used:

The output has the LOW level for at least 200 ms beforehand. If the LOW
level has not yet been present for this time, the level change to HIGH waits
until the 200 ms has elapsed.

13.3 Permanent Safety Monitoring

Description The safety functions of the PSM mechanism (Permanent Safety Monitoring)
are permanently active and use the criteria defined by these functions to en-
sure that the overall system is constantly monitored.

For a safety function of the PSM mechanism, up to 3 AMFs (Atomic Monitoring
Functions) can be linked to one another. The entire safety function is only con-
sidered violated if all of these AMFs are violated. The safety function also de-
fines a reaction. This is triggered if the entire safety function is violated.

Categories For diagnosis in case of error, a category is assigned to each safety function
of the PSM mechanism. Depending on the category, errors are displayed on

When using safety functions with a safe output as a reaction, it must
be noted that connection errors (i.e. communication errors) at safe in-
puts or outputs are automatically acknowledged by the safety control-

ler when the connection is restored. Accordingly, the level of the safe output
can switch from LOW to HIGH once the connection is restored.
For this reason, the safety maintenance technician must ensure that periph-
eral devices do not automatically restart.

Fig. 13-1: Safety functions of the PSM mechanism
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
the smartPAD and saved in the LOG file. For this reason, it is advisable to se-
lect these carefully.

The following categories are available:

13.4 Event-driven Safety Monitoring

The ESM mechanism (Event-driven Safety Monitoring) makes it possible to
switch between different safe ESM states depending on the situation.

Up to 10 safe states can be defined. Switching between states can be carried
out in the robot application or in a background task.

 (>>> 13.8.4.8 "Switching between ESM states" Page 230)

A safe ESM state is defined with up to 20 safety functions which must ensure
a sufficient degree of safety in every situation. An ESM state becomes active
when the program switches to this ESM state. As long as the ESM state is ac-
tive, all corresponding safety functions are monitored in addition to the perma-
nently active safety functions.

Use of the ESM mechanism is optional. The ESM mechanism is deactivated
if no ESM state is defined in the safety configuration.

When using the ESM mechanism, exactly one safe state is always active. It is
not possible to switch it off in the application.

The safety functions of an ESM state each contain a single AMF which is as-
signed to a suitable stop reaction.

Once a safety function of the active ESM state is violated, a stop is triggered.
The type of stop reaction will be the strongest of all the violated safety func-
tions in all ESM states (either active or inactive). In other words, it triggers the
stop reaction which causes the earliest safety-oriented disconnection of the
drives.

Category Recommended use

None For safety functions which cannot be assigned a category

Output For safety functions which use setting an output as a reaction

In this category, no diagnostic information is provided in case of viola-
tion.

Enabling device For safety functions which evaluate an enabling switch

In this category, no diagnostic information is provided in case of violation
because enabling is a normal operating state and not an error state.

Local EMERGENCY
STOP

For safety functions which evaluate an EMERGENCY STOP triggered
by the EMERGENCY STOP device on the smartPAD

External EMER-
GENCY STOP

For safety functions which evaluate an EMERGENCY STOP triggered
by an external EMERGENCY STOP device

Operator safety For safety functions which evaluate the signal for operator safety

Safe operational stop For safety functions which monitor robot standstill

Collision detection For safety functions which are used for collision detection or force moni-
toring

Safety stop For safety functions which use a safety stop as a reaction and cannot be
assigned to another category. Example: external safety stop

Velocity monitoring For safety functions which are used for monitoring an axis-specific or
Cartesian velocity

Workspace monitor-
ing

For safety functions which are used for monitoring an axis-specific or
Cartesian space
207 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

208 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.5 Atomic Monitoring Functions

The smallest unit of a safety function is designated as the Atomic Monitoring
Function (AMF). This can be, for example, evaluating the enabling switch on
the smartPAD or monitoring the velocity of an axis.

Categories Atomic Monitoring Functions are divided into 3 categories:

 Standard AMFs

 Parameterizable AMFs

 Extended AMFs

Overview KUKA Sunrise contains a basic package of AMFs. These include, for example,
all standard AMFs. The following safety options are also available and can be
used to install further AMFs:

 KUKA Sunrise.SafeOperation (SOP)

 KUKA Sunrise.HRC – safety option for HRC applications

Fig. 13-2: Safety functions of the ESM mechanism

AMF Basic SOP HRC

Axis range monitoring

Automatic mode

Test mode

High-velocity mode

Reduced-velocity mode

Input signal

Motion enable

smartPAD Emergency Stop

Position referencing

Time delay
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.5.1 Standard AMFs

Description Standard AMFs provide information about system components or system
states, e.g. the safety equipment on the smartPAD or the active operating
mode. Standard AMFs can be used in any number of safety functions.

Overview AMFs for evaluating the safety equipment on the smartPAD:

 (>>> 13.10.1 "Evaluating the safety equipment on the KUKA smartPAD"
Page 234)

AMFs for evaluating the operating mode:

smartPAD enabling switch inactive

smartPAD enabling switch panic active

Axis velocity monitoring

Cartesian workspace monitoring

Cartesian velocity monitoring

Cartesian protected space monitoring

Standstill monitoring of all axes

Tool-related velocity component

Tool orientation

Axis torque monitoring

Base-related TCP force component

Collision detection

Torque referencing

TCP force monitoring

Hand guiding device enabling active

Hand guiding device enabling inactive

AMF Basic SOP HRC

AMF Task

smartPAD Emergency Stop Monitors the EMERGENCY STOP device on the smartPAD

smartPAD enabling switch
inactive

Checks whether the enabling signal has not been issued on the
smartPAD.

smartPAD enabling switch
panic active

Checks whether an enabling switch on the smartPAD has been
pressed down fully (panic position).

AMF Task

Test mode Checks whether a test operating mode is active (T1, T2 , CRR)

Automatic mode Checks whether the Automatic operating mode is active (AUT)
209 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

210 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 (>>> 13.10.2 "Evaluating the operating mode" Page 235)

AMFs for evaluating the motion enable:

 (>>> 13.10.3 "Evaluating the motion enable" Page 235)

13.5.2 Parameterizable AMFs

Description In contrast to standard AMFs, parameterizable AMFs additionally have one or
more parameters. These can be configured depending on the values at which
the AMF is to be considered violated (e.g. monitoring limits).

Up to 100 instances are available for each parameterizable AMF. In this way,
differently parameterized versions of the AMF can be configured and used.
The instance of an AMF may be used multiple times in the table in which the
safety functions are configured.

Overview AMF for evaluating safe inputs:

AMFs for evaluating the enabling signal on the hand guiding device:

 (>>> 13.10.5 "Manual guidance with enabling device and velocity monitoring"
Page 236)

AMFs for evaluating the referencing status:

Reduced-velocity mode Checks whether an operating mode with reduced velocity is
active (T1, CRR)

Note: In the case of a mobile platform, the velocity is not
reduced in T1 and CRR mode.

High-velocity mode Checks whether an operating mode with programmed velocity
is active (T2 , AUT)

AMF Task

AMF Task

Motion enable Monitors the motion enable signal

Motion enable is refused if a safety stop is active.

AMF Task

Input signal Monitors a safe input

 (>>> 13.10.4 "Monitoring safe inputs" Page 235)

AMF Task

Hand guiding device enabling
inactive

Checks whether the enabling signal has not been issued on the
hand guiding device.

Hand guiding device enabling
active

Checks whether the enabling signal has been issued on the
hand guiding device.

The AMF is used to activate further monitoring functions during
manual guidance with an enabling device.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
AMFs for velocity monitoring:

AMFs for space monitoring:

AMF for monitoring the tool orientation:

AMFs for the safe monitoring of forces and torques (HRC):

AMF Task

Position referencing Monitors the referencing status of the position values for the
axes of a kinematic system

 (>>> 13.10.6 "Evaluating the position referencing" Page 239)

Torque referencing Monitors the referencing status of the joint torque sensors of the
axes of a kinematic system

 (>>> 13.10.7 "Evaluating the torque referencing" Page 239)

AMF Task

Axis velocity monitoring Monitors the velocity of one of the axes of a kinematic system

 (>>> 13.10.8.1 "Defining axis-specific velocity monitoring"
Page 240)

Cartesian velocity monitoring Monitors the Cartesian translational velocity at defined points of
a kinematic system

 (>>> 13.10.8.2 "Defining Cartesian velocity monitoring"
Page 241)

Tool-related velocity compo-
nent

Monitors the Cartesian translational velocity in a specific
defined direction.

 (>>> 13.10.8.3 "Direction-specific monitoring of Cartesian
velocity" Page 243)

AMF Task

Cartesian workspace monitor-
ing

Checks whether a part of the structure of a kinematic system
being monitored is located outside of its permissible workspace

 (>>> 13.10.9.1 "Defining Cartesian workspaces" Page 250)

Cartesian protected space
monitoring

Checks whether a part of the structure of a kinematic system
being monitored is located within a non-permissible protected
space

 (>>> 13.10.9.2 "Defining Cartesian protected spaces"
Page 252)

Axis range monitoring Monitors the position of one of the axes of a kinematic system

 (>>> 13.10.9.3 "Defining axis-specific monitoring spaces"
Page 255)

AMF Task

Tool orientation Checks whether the orientation of the tool of a kinematic system
is outside a permissible range

 (>>> 13.10.10 "Monitoring the tool orientation" Page 256)
211 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

212 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.5.3 Extended AMFs

Description An extended AMF differs from a standard AMF and a parameterizable AMF in
that monitoring parameters are only defined during operation. The parameters
are set at the time of activation. For the AMF Standstill monitoring of all axes,
for example, the axis angles are set as reference angles for monitoring at the
time of activation.

An extended AMF is activated if all other AMFs used by the safety function are
violated. As long as at least one of the other AMFs is not violated, the extend-
ed AMF is not active and not evaluated.

Up to 100 instances are available for each extended AMF.

Overview AMF for standstill monitoring:

AMF for switching a delay:

AMF Task

Axis torque monitoring Monitors the torque of one of the axes of a kinematic system

 (>>> 13.10.13.1 "Axis torque monitoring" Page 260)

Collision detection Monitors the external torque of the axes of a kinematic system

 (>>> 13.10.13.2 "Collision detection" Page 261)

TCP force monitoring Monitors the external force acting on the tool or on the flange of
a kinematic system

 (>>> 13.10.13.3 "TCP force monitoring" Page 262)

Base-related TCP force com-
ponent

Monitors the external force acting in a specific definable direc-
tion on the tool or on the flange of a kinematic system relative to
a base coordinate system

 (>>> 13.10.13.4 "Direction-specific monitoring of the external
force on the TCP" Page 264)

Extended AMFs are only evaluated one cycle after they are activated.
This can result in an extension of the reaction time by up to 12 ms.

It is advisable to use the instance of an extended AMF only once in
the safety configuration.

Extended AMFs are not available for the safety functions of the ESM
mechanism.

AMF Task

Standstill monitoring of all
axes

Monitors the standstill of all axes of a kinematic system.

 (>>> 13.10.11 "Standstill monitoring (safe operational stop)"
Page 259)

AMF Task

Time delay Delays the triggering of the reaction of a safety function for a
defined time.

 (>>> 13.10.12 "Activation delay for safety function" Page 259)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.5.4 Availability of the AMFs depending on the kinematic system

Description Some safety monitoring functions (AMFs) provided by the system software are
kinematic-specific. Kinematic-specific means that the kinematic system to be
monitored must be selected during configuration of these AMFs. (Parameter
Monitored kinematic system with the values First kinematic system … Fourth
kinematic system)

If kinematic-specific AMFs are used in the safety configuration, the kinematic
system that is to be monitored must be specified as follows:

 First kinematic system: An LBR iiwa is monitored.

 Second kinematic system: A mobile platform is monitored.

 Third kinematic system: Not currently assigned to a kinematic system

 Fourth kinematic system: Not currently assigned to a kinematic system

Overview Not all kinematic system-specific AMFs can be used for the mobile platform,
as the required safety-oriented sensor information is not available. If an AMF
cannot be used for the monitored kinematic system, it is always evaluated as
violated.

13.6 Worst-case reaction times of the safety functions in the case of a single fault

The reaction time describes the time between the following events:

 Time at which the event occurs that is to trigger a safety reaction (e.g. vi-
olation of a monitored axis range or setting of an EMERGENCY STOP in-
put)

 Time at which the safety reaction is initiated (e.g. stop reaction is initiated
or an output has been deactivated)

The reaction time thus contains fault detection times and delays before initia-
tion of the safety reaction. The worst-case reaction time in the case of a single
fault considers the presence of an individual fault and is thus greater than the
reaction time typically expected for the safety function. The reaction time does

AMF LBR iiwa KMP

Position referencing

Torque referencing

Axis velocity monitoring

Cartesian velocity monitoring

Tool-related velocity component

Cartesian workspace monitoring

Cartesian protected space monitoring

Axis range monitoring

Tool orientation

Axis torque monitoring

Collision detection

TCP force monitoring

Base-related TCP force component

Standstill monitoring of all axes
213 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

214 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
not include the time between initiation of a stop reaction and the robot coming
to a standstill.

The reaction time of a safety function depends on the monitoring function
(AMF) used, the linked reaction and the monitored kinematic system.

For the stop reactions, the reaction time for the safety stop 0 is specified in
each case. For safety stop 1 and safety stop 1 (path-maintaining), the reaction
time may be longer in the case of defective stopping with the drives. This fault
is detected by monitoring the braking ramps. The reaction time thus depends
on the actual motion up to triggering of the braking ramp monitoring. Deacti-
vation of the motor power can be delayed by a maximum of 1 second for safety
stop 1 and safety stop 1 (path-maintaining).

If multiple monitoring functions (AMFs) are combined in a PSM table row, the
monitoring function with the longest reaction time determines the reaction time
of the safety function.

13.6.1 Worst-case reaction times of the LBR iiwa monitoring functions

Axis range

monitoring

Input signal

CIB_SR

Fig. 13-3: Reaction time of a safety function

1 Reaction time

2 Braking time

3 Stopping time = Reaction time + Braking time

v Velocity

t Time

t0 Time at which the triggering event occurs

t1 Time at which the safety reaction is initiated

t2 Time at which the robot comes to a standstill

Reaction Reaction time

Stop 0 22 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 159 ms

CIB_SR output 322 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Input signal

PROFIsafe

*: For PROFIsafe inputs, delay y must additionally be taken into consideration.
This delay is dependent on the watchdog time of the PROFIsafe slave and is
set by the PROFIsafe master:

y = 24 ms * Floor(slave watchdog time / 12 ms)

Input signal FSoE

**: For FSoE inputs, delay y must additionally be taken into consideration. This
delay is dependent on the watchdog time of the FSoE slave and is set by the
FSoE master:

y = 24 ms * Floor(slave watchdog time / 12 ms)

Input signal

media flange

"Touch"

smartPAD

Emergency Stop

smartPAD

enabling switch

panic active

smartPAD

enabling switch

inactive

Reaction Reaction time

Stop 0 53 ms + y*

CIB_SR output 240 ms + y*

PROFIsafe output Watchdog time * [2 + Ceil(24 ms / watchdog
time)]

FSoE output 36 ms + y* + FSoE master watchdog time

Reaction Reaction time

Stop 0 53 ms + y**

CIB_SR output 240 ms + y**

PROFIsafe output 36 ms + y** + PROFIsafe master watchdog time

FSoE output Watchdog time * [2 + Ceil(24 ms / watchdog
time)]

Reaction Reaction time

Stop 0 159 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 159 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 159 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 159 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time
215 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

216 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Axis velocity

monitoring

Cartesian

workspace

monitoring

Cartesian velocity

monitoring

Cartesian

protected space

monitoring

Standstill

monitoring of all

axes

Tool-related

velocity

component

Tool orientation

Axis torque

monitoring

Reaction Reaction time

Stop 0 28 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 22 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 28 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 22 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 22 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 28 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 22 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 22 ms

CIB_SR output 265 ms

PROFIsafe output 61 ms + PROFIsafe master watchdog time

FSoE output 61 ms + FSoE master watchdog time
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Base-related TCP

force component

***: With this monitoring function, an additional detection time x must be taken
into account for collision detection, as the collision forces are not measured di-
rectly. Detection of the actual collision forces is carried out approximately with
a delay of a PT1 element with the time constant T=1/30 s.

Collision

detection

***: With this monitoring function, an additional detection time x must be taken
into account for collision detection, as the collision forces are not measured di-
rectly. Detection of the actual collision forces is carried out approximately with
a delay of a PT1 element with the time constant T=1/30 s.

TCP force

monitoring

***: With this monitoring function, an additional detection time x must be taken
into account for collision detection, as the collision forces are not measured di-
rectly. Detection of the actual collision forces is carried out approximately with
a delay of a PT1 element with the time constant T=1/30 s.

Hand guiding

device enabling

active

The reaction time depends on the input used to connect the enabling device
on the hand guiding device to the robot controller. The reaction time corre-
sponds to the reaction time of the corresponding AMF Input signal.

Hand guiding

device enabling

inactive

The reaction time depends on the input used to connect the enabling device
on the hand guiding device to the robot controller. The reaction time corre-
sponds to the reaction time of the corresponding AMF Input signal.

13.6.2 Worst-case reaction times of the KMP 400 monitoring functions

Input signal

CIB_SR

Input signal

PROFIsafe

Reaction Reaction time

Stop 0 22 ms + x***

CIB_SR output 253 ms + x***

PROFIsafe output 49 ms + PROFIsafe master watchdog time + x***

FSoE output 49 ms + FSoE master watchdog time + x***

Reaction Reaction time

Stop 0 22 ms + x***

CIB_SR output 253 ms + x***

PROFIsafe output 49 ms + PROFIsafe master watchdog time + x***

FSoE output 49 ms + FSoE master watchdog time + x***

Reaction Reaction time

Stop 0 22 ms + x***

CIB_SR output 253 ms + x***

PROFIsafe output 49 ms + PROFIsafe master watchdog time + x***

FSoE output 49 ms + FSoE master watchdog time + x***

Reaction Reaction time

Stop 0 197 ms

CIB_SR output 322 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 91 ms + y*

CIB_SR output 240 ms + y*
217 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

218 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
*: For PROFIsafe inputs, delay y must additionally be taken into consideration.
This delay is dependent on the watchdog time of the PROFIsafe slave and is
set by the PROFIsafe master:

y = 24 ms * Floor(slave watchdog time / 12 ms)

Input signal FSoE

**: For FSoE inputs, delay y must additionally be taken into consideration. This
delay is dependent on the watchdog time of the FSoE slave and is set by the
FSoE master:

y = 24 ms * Floor(slave watchdog time / 12 ms)

Input signal

media flange

"Touch"

smartPAD

Emergency Stop

smartPAD

enabling switch

panic active

smartPAD

enabling switch

inactive

Axis velocity

monitoring

PROFIsafe output Watchdog time * [2 + Ceil(24 ms / watchdog
time)]

FSoE output 36 ms + y* + FSoE master watchdog time

Reaction Reaction time

Reaction Reaction time

Stop 0 91 ms + y**

CIB_SR output 240 ms + y**

PROFIsafe output 36 ms + y** + PROFIsafe master watchdog time

FSoE output Watchdog time * [2 + Ceil(24 ms / watchdog
time)]

Reaction Reaction time

Stop 0 197 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 197 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 197 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 197 ms

CIB_SR output 346 ms

PROFIsafe output 142 ms + PROFIsafe master watchdog time

FSoE output 142 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 104 ms

CIB_SR output 253 ms
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Cartesian velocity

monitoring

Standstill

monitoring of all

axes

Tool-related

velocity

component

Hand guiding

device enabling

active

The reaction time depends on the input used to connect the enabling device
on the hand guiding device to the robot controller. The reaction time corre-
sponds to the reaction time of the corresponding AMF Input signal.

Hand guiding

device enabling

inactive

The reaction time depends on the input used to connect the enabling device
on the hand guiding device to the robot controller. The reaction time corre-
sponds to the reaction time of the corresponding AMF Input signal.

13.7 Deactivation of safety functions via an input

Description A safety-oriented input can be configured in the project settings to allow the
deactivation of safety functions. A safety stop triggered by one of the following
AMFs can be briefly cancelled:

 Axis range monitoring

 Cartesian workspace monitoring

 Cartesian protected space monitoring

 Tool orientation

 Tool-related velocity component

 Standstill monitoring of all axes

 Position referencing

 Torque referencing

 Axis torque monitoring

 Collision detection

 TCP force monitoring

 Base-related TCP force component

Use Deactivation of safety functions may be used, for example, for freeing persons
in a crushing situation.

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Reaction Reaction time

Stop 0 104 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 104 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time

Reaction Reaction time

Stop 0 104 ms

CIB_SR output 253 ms

PROFIsafe output 49 ms + PROFIsafe master watchdog time

FSoE output 49 ms + FSoE master watchdog time
219 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

220 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 To cancel a safety stop triggered by one of the defined AMFs, the config-
ured input must be set to HIGH.

 As long as the input is HIGH, the robot can be moved for a maximum of 5
seconds. Every further safety stop triggered by one of the defined AMFs
in this time does not become active.

 After this time, the input must be reset and set again.

Velocity

monitoring

While the safety functions are deactivated, all axis-specific velocity monitoring
functions and the Cartesian velocity monitoring function remain active.

For all kinematic systems, safety-oriented monitoring of the Cartesian velocity
of 250 mm/s of the robot and tools is additionally active. This additional Carte-
sian velocity monitoring is active irrespective of the operating mode.

Procedure 1. Right-click on the desired project in the Package Explorer view and select
Sunrise > Change project settings from the context menu.

The Properties for [Sunrise Project] window opens.

2. Select Sunrise > Safety in the directory in the left area of the window.

3. Make the following settings in the right-hand part of the window:

 Set the check mark at Allow muting via input.

 Select the input that is to allow the deactivation of safety functions.

The inputs of the discrete safety interface and of the Ethernet safety
interface can be used as long as they are configured in WorkVisual.

 (>>> "Safety interfaces" Page 204)

4. Click on OK to save the settings and close the window.

13.8 Safety configuration (SafetyConfiguration.sconf file)

The safety configuration is an integral feature of a Sunrise project. It is man-
aged in tabular form.

When creating a new Sunrise project, a standard safety configuration is auto-
matically generated (SafetyConfiguration.sconf file).

 (>>> 5.3 "Creating a Sunrise project with a template" Page 51)

The standard safety configuration contains permanently active safety func-
tions predefined by KUKA.

Further safety functions and safe ESM states can be configured. Safety-ori-
ented tools can also be mapped.

After the safety configuration has been transferred to the robot controller, it
must be activated and safety acceptance must be carried out.

The enabling device of the hand guiding device can be used as an in-
put for deactivating safety functions. In this case, it must be taken into
consideration in the risk assessment that every time the enabling

switch on the hand guiding device is used, a safety stop that is active at the
time of the enabling can be canceled if it was triggered by one of the defined
safety functions.

Further information on the standard safety configuration can be found
in the “Safety” chapter.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.8.1 Overview of safety configuration and start-up

Step Description

1 Open the safety configuration.

 (>>> 13.8.2 "Opening the safety configuration" Page 222)

2 Edit the safety functions in the Customer PSM table or create
new safety functions.

 (>>> 13.8.3 "Configuring the safety functions of the PSM
mechanism" Page 224)

3 Configure event-dependent monitoring functions if required.

To do so, create safe ESM states and corresponding safety
functions. Existing ESM states can be changed by adapting
safety functions which are already configured or by adding
new ones.

 (>>> 13.8.4 "Configuring the safe states of the ESM mecha-
nism" Page 227)

4 If necessary, map safety-oriented tools.

 (>>> 13.8.5 "Mapping safety-oriented tools" Page 231)

5 Save safety configuration.

6 When using the ESM mechanism

Program the necessary switch between the safe states in
robot applications and background tasks.

 (>>> 13.8.4.8 "Switching between ESM states" Page 230)

7 When using position-based AMFs (>>> "Position-based
AMFs" Page 279)

Create the application prepared by KUKA for the position and
torque referencing of the LBR iiwa or an application of your
own for the reference run.

 (>>> 13.12.1 "Position referencing" Page 271)

8 When using axis torque-based AMFs (>>> "Axis torque-
based AMFs" Page 280)

Create the application prepared by KUKA for the position and
torque referencing of the LBR iiwa and integrate the safety-
oriented tool into the application. Further adaptations in the
application may be necessary.

 (>>> 13.12.2 "Torque referencing" Page 273)

9 Transfer the safety configuration to the robot controller.

 By installation of the system software or by project syn-
chronization

10 Reboot the robot controller to apply the safety configuration.

11 Activate the safety configuration on the robot controller

 (>>> 13.9 "Activating the safety configuration" Page 233)

12 When using position-based AMFs (>>> "Position-based
AMFs" Page 279)

Carry out position referencing.
221 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

222 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.8.2 Opening the safety configuration

Procedure In the Sunrise project, double-click on the file SafetyConfigura-
tion.sconf.

Description The safety configuration contains several tables.

 KUKA PSM table

The table contains the safety functions prescribed by KUKA. These cannot
be deactivated or deleted. The reactions are permanently configured. The
parameters of the parameterizable AMFs used can be changed.

The table documents the system behavior and, in conjunction with the
Customer PSM table, provides a full description of the permanently active
safety functions.

 Customer PSM table

The user-specific safety functions are configured in this table. It contains
the safety functions preconfigured by KUKA. These can be deactivated,
changed or deleted.

 Tables for ESM states (optional)

A table is created for each ESM state. It contains the safety functions of
the state. The standard configuration does not contain any preconfigured
ESM states.

 Tool selection table table

Safety-oriented tools can be mapped in this table. Each kinematic system
can be assigned a maximum of one fixed tool that is always active and one
or more tools that can be activated via an input.

13.8.2.1 Evaluating the safety configuration

When the safety configuration is evaluated, the Customer PSM and KUKA
PSM tables are always checked simultaneously. It is possible for the two ta-
bles to contain identical safety functions with different reactions. If different
stop reactions are configured, a violation triggers the stronger stop reaction. In
other words, it triggers the stop reaction which causes an earlier safety-orient-
ed disconnection of the drives.

If the ESM mechanism is used, all safety functions of the currently active ESM
state are additionally monitored.

13 When using axis torque-based AMFs (>>> "Axis torque-
based AMFs" Page 280)

Carry out torque referencing.

14 Carry out safety acceptance.

 (>>> 13.13 "Safety acceptance overview" Page 275)

Step Description
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.8.2.2 Overview of the graphical user interface for the safety configuration

The description of the user interface elements refers to the configuration of
safety functions. The tool selection table is described separately.

Fig. 13-4: Graphical user interface for safety configuration

Item Description

1 Table selected

Contains the configured safety functions of the selected PSM
table or of the selected ESM state.

2 Selection table

With respect to the cell selected in the highlighted table row, the
category, AMF or reaction of a safety function can be selected
here.

3 Instance table

This area displays the instances of the AMF marked in the selec-
tion table as well as the table rows in which they are used.

4 Parameter table

The parameter values of the AMF instance selected in the
instance table are displayed here. The values can be changed.

5 Information display

Information about the selected category, AMF or reaction
223 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

224 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
List of tables The list of tables in the lower area of the Editor is used to select the table to be
displayed and edited.

13.8.3 Configuring the safety functions of the PSM mechanism

The PSM mechanism defines safety monitoring functions which are perma-
nently active.

The safety functions are displayed in tabular form. Each row in the table con-
tains a safety function.

In the PSM table Customer PSM, new safety functions are added and existing
settings are adapted. This means that the category, the Atomic Monitoring
Functions (AMFs) used, the parameterization of the AMF instances and the re-
action can be changed. Individual safety functions can be activated or deacti-
vated.

13.8.3.1 Opening the Customer PSM table

Procedure 1. Open the safety configuration.

2. Select the Customer PSM tab from the list of tables. The table is displayed
and can be edited.

6 List of tables

In this area, the desired tables can be selected and new ESM
states can be added.

7 Computing time utilization of the safety controller

Indicates the percentage of the computing time used for the open
safety configuration, including all changes that have not been
saved.

Item Description

Fig. 13-5: List of tables

Item Description

1 “Tool selection table” tab

Opens the Tool selection table table. Safety-oriented tools can be
mapped.

2 “KUKA PSM” tab

Opens the KUKA PSM table. The parameters of the parameteriz-
able AMFs used can be changed.

3 “Customer PSM” tab

Opens the Customer PSM table. Safety functions can be modified
and created.

4 Tab for an ESM state

Opens the ESM state. The ESM state can be edited.

5 Add new ESM state button

Adds a new ESM state. The new state is automatically opened
and can be edited.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The following buttons are available:

Fig. 13-6: PSM table Customer PSM

Item Description

1 Active column

Defines whether the safety function is active. Deactivated safety
functions are not monitored.

 Check box active: safety function is active.

 Check box not active: safety function is deactivated.

2 Category column

Defines the category of the safety function. In the event of an
error, the category is shown on the smartHMI as the cause of
error.

3 Columns AMF 1, AMF 2, AMF 3

Define the individual AMFs of the safety function. Up to 3 AMFs
can be used. The safety function is violated if all of the AMFs used
are violated.

4 Reaction column

Defines the reaction of the safety function. It is triggered if the
safety function is violated.

5 Number of safety functions currently configured

A total of 100 rows are available for configuring the user-specific
safety monitoring functions.

6 Buttons for editing the table

7 Selected row

The row containing the currently selected safety function is high-
lighted in gray.
225 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

226 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.8.3.2 Creating safety functions for the PSM mechanism

Precondition The Customer PSM table is open.

Procedure Non-configured empty rows are displayed:

1. Select an empty row in the table.

2. Set the category, the AMFs used and the reaction of the safety function in
the corresponding columns.

3. Set the check mark in the Active column if the row is to be activated.

Non-configured empty rows are not displayed:

1. Click on Add row. A preconfigured row is added to the table. The row is
automatically activated (check mark in the Active column).

2. Set the category, the AMFs used and the reaction of the safety function in
the corresponding columns.

13.8.3.3 Deleting safety functions of the PSM mechanism

Precondition The Customer PSM table is open.

Procedure 1. In the table, select the row with the safety function to be deleted.

2. Click on Reset row. The safety function is deactivated and is given the
standard configuration (None, AMF, Reaction: Stop 1).

13.8.3.4 Editing existing safety functions of the PSM mechanism

Precondition The Customer PSM table is open.

Procedure Changing the category:

1. Select the Category column in the desired row. The available categories
are displayed in the Main Selection table.

2. Select the desired category from the Main selection table. The category is
applied to the safety function.

Button Description

Add row

Adds a new row to the table (only possible when the
non-configured blank rows are hidden). The new row
has the standard configuration and is activated auto-
matically.

Reset row

Resets the configuration of the selected row to the
standard configuration. The safety function is deacti-
vated.

Show empty rows/Hide empty rows

All empty rows which are not configured are deacti-
vated and preset with the standard configuration.

 Category: None

 AMF 1, AMF 2, AMF 3: None

 Reaction: Stop 1

The empty rows can be shown or hidden. The empty
rows are hidden by default.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Changing the AMF used:

1. Select the AMF 1, AMF 2 or AMF 3 column in the desired row. The avail-
able AMFs are displayed in the Main selection table.

2. Select the desired AMF from the Main selection table. The AMF is applied
to the safety function.

3. For multiply instanced AMFs: select the desired instance from the Main se-
lection table. The instance is applied to the safety function.

4. For parameterizable AMFs: in the parameter table, set the parameter of
the AMF in the Value column and insert the settings with the Enter key.

Changing a reaction:

1. Select the Reaction column in the desired row. The available reactions are
displayed in the Main selection table.

2. Select the desired reaction from the Main selection table. The reaction is
applied to the safety function.

3. If the Output reaction has been selected: in the Parameter table, select
the output bit whose signal is to be set to LOW if a safety function is vio-
lated. Accept the setting with the Enter key.

Activating/deactivating a safety function:

 Click on the Active column in the desired row. The check mark is set / re-
moved.

13.8.4 Configuring the safe states of the ESM mechanism

Using the ESM mechanism, various safety settings are defined by configu-
rable safe states. Up to 10 safe states can be created. The states are num-
bered sequentially from 1 to 10 and can therefore be identified unambiguously.

A safe state is defined in a table with up to 20 safety functions. These safety
functions define the safety settings which must be valid for the state.

A safe state is represented in a table. Each row in the table contains a safety
function.

Use of the ESM mechanism is optional. The ESM mechanism is activated if at
least one ESM state is configured. If no ESM states are configured, the mech-
anism is deactivated.

If the ESM mechanism is active, exactly one safe state is valid. The safety
functions of this state are monitored in addition to the permanently active safe-
ty functions. Depending on the situation, it is possible to switch between the
configured safe states. Switching can be carried out in the robot application or
in a background task.

 (>>> 13.8.4.8 "Switching between ESM states" Page 230)

An ESM state is active until it is commanded to switch to another ESM state.

The configured ESM state with the lowest number is automatically active when
the controller is booted.

13.8.4.1 Adding a new ESM state

Up to 10 safe states can be created for the ESM mechanism. If this number is
reached, the tab for adding new states is hidden.

Procedure 1. Open the safety configuration.

Once the safety configurations are transferred to the robot controller
and activated, only the activated safety functions are available.
227 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

228 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
2. Select the Add new ESM state button in the list of tables. A new ESM
state is created.

The new ESM state is given the lowest state number which has not yet
been assigned. It has an active safety function with a standard configura-
tion. A new tab for the state is added to the list of tables. The table for the
state is automatically opened and can be edited.

13.8.4.2 Opening a table for an ESM state

Precondition The ESM mechanism is activated.

Procedure 1. Open the safety configuration.

2. Select the tab for the desired ESM state from the list of tables. The table
for the ESM state is automatically displayed and can be edited.

The following buttons are available:

Fig. 13-7: Table for an ESM state

Item Description

1 Active column

Defines whether the safety function is active. Deactivated safety
functions are not monitored.

 Check box active: safety function is active.

 Check box not active: safety function is deactivated.

The safety function in the first row of the table is always active. It
cannot be deactivated (indicated by the lock icon).

2 AMF column

Defines the AMF of the safety function. Only one AMF is used for
safety functions of ESM states. If this AMF is violated, the safety
function and thus the entire state is violated.

3 Reaction column

Defines the reaction of the safety function. It is triggered if the
safety function is violated.

4 Number of safety functions currently configured

A total of 20 rows are available for configuring the safety monitor-
ing functions of an ESM state.

5 Buttons for editing the table

6 Selected row

The row containing the currently selected safety function is high-
lighted in gray.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.8.4.3 Deleting an ESM state

Procedure 1. Open the safety configuration.

2. Select the tab for the ESM state to be deleted from the list of tables.

3. Click on Delete state.

4. Reply to the request for confirmation with Yes. The state is deleted.

Once the safety configuration is saved and closed, an ESM state is automati-
cally removed if it has the following settings:

 All rows have the standard configuration (AMF: None, Reaction: Stop 1)

 The first row is activated and all other rows are deactivated.

13.8.4.4 Creating a safety function for the ESM state

Precondition The table for the desired ESM state is open.

Procedure Non-configured empty rows are displayed:

1. Select an empty row in the table.

2. Set the AMF used and the reaction of the safety function in the corre-
sponding columns.

3. Set the check mark in the Active column if the row is to be activated.

Non-configured empty rows are not displayed:

1. Click on Add row. A preconfigured row is added to the table. The row is
automatically activated (check mark in the Active column).

2. Set the AMF used and the reaction of the safety function in the corre-
sponding columns.

Button Description

Delete state

Deletes the entire state The delete operation must be
confirmed via a dialog.

Add row

Adds a new row to the table (only possible when the
non-configured blank rows are hidden). The new row
has the standard configuration and is activated auto-
matically.

Reset row

Resets the configuration of the selected row to the
standard configuration. The safety function is deacti-
vated (exception: the first row of the table is always
active).

Show empty rows/Hide empty rows

All empty rows which are not configured are deacti-
vated and preset with the standard configuration.

 AMF: None

 Reaction: Stop 1

The empty rows can be shown or hidden. The empty
rows are hidden by default.
229 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

230 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.8.4.5 Deleting a safety function of an ESM state

Precondition The table for the desired ESM state is open.

Procedure 1. In the table, select the row with the safety function to be deleted.

2. Click on Reset row. The safety function is deactivated and is given the
standard configuration (None, AMF, Reaction: Stop 1).

13.8.4.6 Editing an existing safety function of an ESM state

Precondition The table for the desired ESM state is open.

Procedure Changing the AMF used:

1. Select the AMF column in the desired row. The available AMFs are dis-
played in the Main selection table.

2. Select the desired AMF from the Main selection table. The AMF is applied
to the safety function.

3. For multiply instanced AMFs: select the desired instance from the Main se-
lection table. The instance is applied to the safety function.

4. For parameterizable AMFs: in the parameter table, set the parameter of
the AMF in the Value column and insert the settings with the Enter key.

Changing a reaction:

1. Select the Reaction column in the desired row. The available reactions are
displayed in the Main selection table.

2. Select the desired reaction from the Main selection table. The reaction is
applied to the safety function.

Activating/deactivating a safety function:

 Click on the Active column in the desired row. The check mark is set / re-
moved.

13.8.4.7 Deactivating the ESM mechanism

Use of the ESM mechanism is optional. It can be deactivated.

Procedure Delete all ESM states.

13.8.4.8 Switching between ESM states

Description The setESMState(…) method can be used to activate an ESM state and
switch between the different ESM states. The method belongs to the LBR
class and can be used in robot applications or background tasks.

Syntax robot.setESMState(state);

Explanation of

the syntax
Element Description

robot Type: LBR

Name of the robot for which the ESM state is activated

state Type: String

Number of the ESM state which is activated

 1 … 10

If a non-configured ESM state is specified, the robot stops
with a safety stop 1.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Example In an application, the LBR iiwa is to be guided by hand. For this purpose, a
suitable start position is addressed. In order to address the start position, ESM
state 3 must be activated. ESM state 3 ensures sensitive collision detection
and monitors the Cartesian velocity.

Manual guidance is to begin once the start point has been reached. ESM
state 8 must be activated for manual guidance. ESM state 8 requires enabling
on the hand guiding device but permits a higher Cartesian velocity than ESM
state 3.

13.8.5 Mapping safety-oriented tools

Description Each kinematic system can be assigned a maximum of one fixed safety-ori-
ented tool that is always active and one or more safety-oriented tools that can
be activated via an input.

 Assignment of a fixed tool (always active)

A fixed tool is coupled to the flange of the configured kinematic system and
cannot be uncoupled or changed. The fixed tool can be a machining tool,
a tool for picking up workpieces or a tool that can pick up other tools, e.g.
a tool changer.

The assignment of multiple fixed tools to a kinematic system is not al-
lowed. In this case, all tool-dependent monitoring functions of this kinemat-
ic system enter the safe state.

 Assignment of tools that can be activated (via an input)

The tool is activated when the configured input signal is HIGH.

If a fixed tool is configured for this kinematic system, the activatable tool is
coupled to the pickup frame of the fixed tool (standard frame for motions).
If no fixed tool is configured for a kinematic system, it is coupled to the
flange of the kinematic system.

If an activatable tool is configured for a kinematic system, exactly one ac-
tivatable tool must always be active for this kinematic system. This means
that exactly one of the input signals configured for this kinematic system
must be HIGH.

If multiple activatable tools are active simultaneously, or if none of the ac-
tivatable tools is active, all tool-dependent monitoring functions of this ki-
nematic system enter the safe state. For this reason, the tool No tool must
be activated if the activatable tool is uncoupled.

Procedure 1. Open the safety configuration.

2. Select the Tool selection table tab from the list of tables. Map the tools as
desired.

3. Save the safety configuration.

@Inject

private LBR robot;
// ...

public void run() {
// ...

robot.setESMState("3");

robot.move(lin(getFrame("Start")).setCartVelocity(300));

robot.setESMState("8");

robot.move(handGuiding());

// ...

}

231 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

232 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Overview

The following buttons are available:

Fig. 13-8: Tool selection table table

Item Description

1 State of the mapped tool

 Check box active: The tool is always active or activatable.

 Check box not active: The tool is deactivated.

2 Kinematic system to which the tool is assigned

 First kinematic system: Robot

 Second kinematic system: Mobile platform

 Third kinematic system: No function

 Fourth kinematic system: No function

3 Tool assigned to the kinematic system

 No tool: No tool is assigned to the kinematic system.

 All safety-oriented tools defined in the object templates are
available for selection.

4 Activation of the tool

 Always active: The tool is always active.

A maximum of 1 fixed tool can be assigned to each kinematic
system.

 The tool can be activated via a safe input

The safe inputs of the Ethernet safety interface used are avail-
able.

5 Number of tools currently mapped

A total of 50 rows are available for mapping.

6 Buttons for editing the table

7 Information display

Information about the selected parameter

8 Selection table

The table contains the values available for the parameter selected
in the configuration line.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.9 Activating the safety configuration

Description The safety configuration on the robot controller must be activated. If no safety
configuration is active, the robot cannot be moved.

When it is activated, the safety configuration is assigned a unique ID (= check-
sum of the safety configuration) and displayed under Safety config ID:. With
this ID, the safety maintenance technician can clearly identify the safety con-
figuration activated on the robot controller.

A modified safety configuration can be transferred to the robot controller by
means of an installation of the system software or a project synchronization.
After a reboot of the robot controller, the old safety configuration is no longer
active and the new safety configuration is not yet active.

 The new safety configuration must be activated.

 If the new safety configuration is not to be activated, the old safety config-
uration can be restored.

 (>>> 13.9.2 "Restoring the safety configuration" Page 234)

Precondition User group “Safety maintenance”

Procedure 1. Select Safety > Activation at the Station level.

2. Press Activate.

13.9.1 Deactivating the safety configuration

Description An active safety configuration can be deactivated again.

Precondition User group “Safety maintenance”

Procedure 1. Select Safety > Activation at the Station level.

Button Description

Add row

Adds a new row to the table (only possible when the
non-configured blank rows are hidden). The new row
has the standard configuration and is activated auto-
matically.

Reset row

Resets the configuration of the selected row to the
standard configuration. The mapped tool is activated.

Show empty rows/Hide empty rows

All empty rows which are not configured are deacti-
vated and preset with the standard configuration.

 Assigned kinematic system: First kinematic system

 Selected tool: No tool

 Activation signal: Always active

The empty rows can be shown or hidden. The empty
rows are hidden by default.

If the activated safety configuration contains deactivated rows, i.e. if
safety functions in the PSM table or in an ESM state are deactivated,
a warning message is displayed on the Safety tile. Before using the

safety configuration, it is advisable to check whether the deactivation of the
safety functions is desirable and permissible.
233 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

234 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
2. Press Deactivate.

3. Check whether the safety configuration has been deactivated successful-
ly.

Following successful deactivation, the robot can no longer be moved. A
corresponding message is displayed under the Safety tile.

13.9.2 Restoring the safety configuration

Description If a new safety configuration is transferred to the robot controller, but is not to
be activated, the most recently active safety configuration can be restored.

Precondition User group “Safety maintenance”

Procedure 1. Select Safety > Activation at the Station level.

2. Press Reset.

13.10 Using and parameterizing the AMFs

Up to 100 instances are available for each parameterizable AMF. As the pro-
cessing power of the safety controller is limited, this quantity cannot be used
to the full in practice.

 Each instance of the AMF used in the safety configuration requires part of
the available processing power. The processing time required by an AMF
instance depends, for example, on the number of parameters and the
complexity of the corresponding calculations.

 How often an AMF instance is used in the safety configuration, how many
lines are used in the Customer PSM table and how many ESM states are
used are not relevant for the processing power.

Response if the processing power of the safety controller is exceeded:

 The required processing time of a safety configuration is calculated auto-
matically on saving the safety configuration. If it is too great, a warning is
displayed. It is nonetheless saved.

 The transfer of an excessively large safety configuration to the robot con-
troller is prevented. Project synchronization and installation of the system
software are canceled in this case with a corresponding error message.

13.10.1 Evaluating the safety equipment on the KUKA smartPAD

The smartPAD has an EMERGENCY STOP device and an enabling device.
The corresponding safety-oriented functions are preconfigured in the KUKA
PSM table and cannot be changed.

Further safety functions evaluated by the safety equipment on the smartPAD
can be configured. The following standard AMFs are available for this pur-
pose:

AMF Description

smartPAD Emergency Stop The AMF is violated if the EMERGENCY STOP device on the
smartPAD is pressed.

smartPAD enabling switch
inactive

The AMF is violated if no enabling signal is issued on the smart-
PAD (no enabling switch is pressed on the smartPAD or an
enabling switch is fully pressed).

smartPAD enabling switch
panic active

The AMF is violated if an enabling switch on the smartPAD is
fully pressed (panic position).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.10.2 Evaluating the operating mode

The set operating mode has a powerful effect on the behavior of the industrial
robot and determines which safety precautions are required.

The following standard AMFs are available for configuring a safety function to
evaluate the set operating mode:

13.10.3 Evaluating the motion enable

Description The robot cannot be moved without the motion enable. The motion enable can
be cancelled for various reasons, e.g. if enabling is not issued in Test mode or
if the EMERGENCY STOP is pressed on the smartPAD.

The AMF for motion enable functions like a group signal for all configured stop
conditions. In particular, it can be be used for switching off peripheral devices.
For safety functions which receive the evaluation of the motion enable, a safe
output should therefore be configured as the reaction. If a safety stop is set as
the reaction, the robot cannot be moved.

Example Switching off a tool (category: Output)

A tool (e.g. a laser) which is connected to an output is to be switched off when
the motion enable is canceled. It is only to be switched off if the operator safety
is violated.

13.10.4 Monitoring safe inputs

Description The inputs of the discrete safety interface and of the Ethernet safety interface
can be used as safe inputs as long as they are configured in WorkVisual.

 (>>> "Safety interfaces" Page 204)

Safety equipment can be connected to the safe inputs, e.g. external EMER-
GENCY STOP devices or safety gates. The AMF Input signal is used to eval-
uate the associated input signal.

AMF Description

Test mode The AMF is violated if a test operating mode is active (T1, T2 ,
CRR).

Automatic mode The AMF is violated if the active operating mode is an automatic
mode (AUT).

Reduced-velocity mode The AMF is violated if an operating mode is active whose veloc-
ity is reduced to a maximum of 250 mm/s (T1, CRR).

Note: In the case of a mobile platform, the velocity is not
reduced in T1 and CRR mode.

High-velocity mode The AMF is violated if an operating mode is active in which the
robot is moved with a programmed velocity (T2, AUT).

AMF Description

Motion enable The AMF is violated if the motion enable is not issued due to a
stop request.

Note: This AMF is only suitable for use with an output as a
reaction.

AMF1 AMF2 AMF3 Reaction

Input signal (operator
safety)

- Motion enable Output (tool)
235 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

236 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example 1 Operator safety (category: Operator safety)

A safety gate is connected to a safe input. If the safety gate is opened in Au-
tomatic or T2 mode, a safety stop 1 (path-maintaining) is to be triggered.

Example 2 External E-STOP (category: External EMERGENCY STOP)

An external EMERGENCY STOP device is connected to a safe input. If the ex-
ternal EMERGENCY STOP device is pressed, a safety stop 1 (path-maintain-
ing) is triggered.

13.10.5 Manual guidance with enabling device and velocity monitoring

An application of human-robot collaboration involves manually guiding the ro-
bot, e.g. to teach points on a path. This requires a hand guiding device with a
safety-oriented enabling device.

For manual guidance, safety-oriented velocity monitoring with a maximum
permissible velocity of 250 mm/s is preconfigured. The maximum permissible
velocity can be adapted.

The maximum permissible velocity during manual guidance must be defined
in a risk assessment.

 (>>> 13.10.5.3 "Velocity monitoring during manual guidance" Page 238)

13.10.5.1Monitoring of enabling switches on hand guiding devices

Description The AMF Hand guiding device enabling inactive serves to evaluate 3-step en-
abling devices. Up to 3 enabling switches and 3 panic switches can be config-
ured. 3-step enabling devices with only one output which process the panic
signal internally can also be evaluated.

The AMF fulfils the following normative requirements and measures against
predictable misuse:

 If the enabling switch has been fully pressed down, the signal will not be
issued if the switch is released to the center position.

AMF Description

Input signal The AMF is violated if the safe input used is low (state “0”).

If a robot with a media flange Touch is used, the safe inputs at which
enabling and panic switches for the media flange are connected can
be used in the AMF.

Parameter Description

Input for safety signal Safe input to be monitored

AMF1 AMF2 AMF3 Reaction

Input signal High-velocity mode - Stop 1 (path-main-
taining)

AMF1 AMF2 AMF3 Reaction

Input signal - - Stop 1 (path-main-
taining)

If the robot is manually guided, an EMERGENCY STOP device must
be installed. It must always be within reach of the operator.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 The signal is cancelled in case of a stop request. To issue the signal again,
the enabling switch must be released and pressed again.

 The signal is only issued 100 ms after the enabling switch has been
pressed.

The following applies if several enabling switches are used:

 If all 3 enabling switches of an enabling device are held simultaneously in
the center position, a safety stop 1 is triggered.

 It is possible to hold 2 enabling switches of an enabling device in the center
position simultaneously for up to 15 seconds. This makes it possible to ad-
just grip from one enabling switch to another one. If the enabling switches
are held simultaneously in the center position for longer than 15 seconds,
this triggers a safety stop 1.

 If the enabling switches of different enabling devices are pressed simulta-
neously, e.g. an enabling switch on the smartPAD and an enabling switch
on the hand guiding device, a safety stop 1 (path-maintaining) is triggered.

Example Manual guidance with signal (category: Enabling device)

A robot equipped with a hand guiding device is to be manually guided in a de-
fined area in order to teach the points on a path. The area for manual guidance

AMF Description

Hand guiding device enabling
inactive

The AMF is violated in the following cases:

 All safe inputs to which an enabling switch is connected have
the signal level LOW (state “0”)

 At least one of the safe inputs to which a panic switch is con-
nected has the signal level LOW (state “0”)

If a robot with a media flange Touch is used, the safe inputs at which
enabling and panic switches for the media flange are connected can
be used in the AMF.

Parameter Description

Enabling switch 1 used Indicates whether the enabling switch is connected to a safe
input

 true: An input is connected.

 false: No input is connected.

Default: False

Enabling switch 2 used

Enabling switch 3 used

Enabling switch 1 input signal Safe input to which the enabling switch is connected

The inputs of the discrete safety interface or the safe inputs of
the Ethernet safety interface can be used as safe inputs as long
as they are configured in WorkVisual.

 (>>> "Safety interfaces" Page 204)

Enabling switch 2 input signal

Enabling switch 3 input signal

Panic switch 1 used Indicates whether the panic switch is connected to a safe input

 true: An input is connected.

 false: No input is connected.

Default: False

Panic switch 2 used

Panic switch 3 used

Panic switch 1 input signal Safe input to which the panic switch is connected

The inputs of the discrete safety interface or the safe inputs of
the Ethernet safety interface can be used as safe inputs as long
as they are configured in WorkVisual.

 (>>> "Safety interfaces" Page 204)

Panic switch 2 input signal

Panic switch 3 input signal
237 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

238 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
is defined by a Cartesian protected space. In this protected space, a Cartesian
velocity of 250 mm/s must only be exceeded if the enabling signal is issued via
the hand guiding device. If no enabling signal is issued, a safety stop 1 (path-
maintaining) is triggered.

13.10.5.2Monitoring functions during manual guidance

Description The standard AMF Hand guiding device enabling active makes it possible to
implement safety functions that activate other monitoring functions during
manual guidance with the enabling device, e.g. Cartesian velocity monitoring.

Example Space and velocity monitoring during manual guidance with enabling device
(category: Workspace monitoring, Velocity monitoring)

During manual guidance of a robot with an enabling device, the robot must not
leave a defined workspace. Furthermore, the robot is to move with a maximum
velocity during manual guidance of 600 mm/s. If the workspace is left while en-
abling is active, or if the velocity limit is exceeded, a safety stop 1 (path-main-
taining) is to be executed.

13.10.5.3Velocity monitoring during manual guidance

For manual guidance of the robot, a maximum permissible velocity must be
defined that may not be exceeded during manual guidance. The value for this
velocity must be defined in a risk assessment.

A safety function for safe velocity monitoring during manual guidance is con-
figured in line 3 of the KUKA PSM table. The safety function takes into account
the enabling device configured for the AMF Hand guiding device enabling in-
active. Once the enabling signal has been issued, a safety stop 1 (path-main-
taining) is carried out if the velocity limit is exceeded.

AMF1 AMF2 AMF3 Reaction

Hand guiding device
enabling inactive

Cartesian protected
space monitoring

Cartesian velocity
monitoring

Stop 1 (path-main-
taining)

AMF Description

Hand guiding device enabling
active

This AMF is violated if the enabling signal for manual guidance
is issued.

The AMF Hand guiding device enabling active represents the
inverse state of the AMF Hand guiding device enabling inactive:

 The AMF Hand guiding device enabling active is violated if
the AMF Hand guiding device enabling inactive is not violat-
ed.

 The AMF Hand guiding device enabling active is not violated
as long as the AMF Hand guiding device enabling inactive is
violated.

The AMF Hand guiding device enabling active takes into
account the enabling device configured for the AMF Hand guid-
ing device enabling inactive.

AMF1 AMF2 AMF3 Reaction

Hand guiding device
enabling active

Cartesian workspace
monitoring

- Stop 1 (path-main-
taining)

Hand guiding device
enabling active

Cartesian velocity
monitoring

- Stop 1 (path-main-
taining)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The instance of the AMF Cartesian velocity monitoring that is used has the fol-
lowing preset parameter values:

 Monitored kinematic system: First kinematic system

 Maximum velocity: 250 mm/s

The parameter values can be modified. (>>> 13.10.8.2 "Defining Cartesian
velocity monitoring" Page 241)

13.10.6 Evaluating the position referencing

Description Position referencing checks whether the saved zero position of the motor of
an axis (= saved mastering position) corresponds to the actual mechanical
zero position.

The safety integrity of the safety functions based upon this is limited until the
position referencing test has been performed. This includes, for example,
safely monitored Cartesian and axis-specific robot positions, safely monitored
Cartesian velocities, TCP force monitoring and collision detection.

The AMF Position referencing can be used to check whether the position val-
ues of all axes are referenced.

Example Monitoring the position referencing status (category: Safety stop)

A robot with non-referenced axes may only be moved at a reduced velocity of
maximum 250 mm/s. The reduced velocity is intended to prevent hazards aris-
ing as a result of position referencing not having been performed or having
failed.

To ensure this, the referencing status of all axes is monitored in the operating
modes with high velocity (T2 and AUT). As soon as the position of at least one
axis is not successfully referenced, a safety stop 1 (path-maintaining) is trig-
gered.

13.10.7 Evaluating the torque referencing

Description The referencing test of the joint torque sensors checks whether the expected
external torque, which can be calculated for an axis based on the robot model
and the given load data, corresponds to the value determined on the basis of
the measured value of the joint torque sensor. If the difference between these

AMF Description

Position referencing The AMF is violated in the following cases:

 The position of at least one axis of the monitored kinematic
system is not referenced.

 The position referencing of at least one axis has failed.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

AMF1 AMF2 AMF3 Reaction

High-velocity mode - Position referencing Stop 1 (path-main-
taining)
239 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

240 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
values exceeds a certain tolerance value, the referencing of the torque sen-
sors has failed.

The safety integrity of the safety functions based upon this is limited until the
torque referencing test has been performed successfully. This includes, for ex-
ample, axis torque and TCP force monitoring as well as collision detection.

The AMF Torque referencing can be used to check whether the joint torque
sensors of all axes are referenced.

Example Monitoring the referencing status (category: Safety stop)

A safe collision detection is configured for a station. If a torque of more than
20 Nm is detected in at least one axis of the robot, a safety stop 0 is triggered.
Since the safety integrity of this function is only ensured for successfully refer-
enced joint torque sensors, the referencing status of the sensors must be mon-
itored simultaneously. As soon as at least one joint torque sensor has not been
referenced or referencing has failed, a safety stop 1 (path-maintaining) is to be
triggered in high-velocity operating modes (T2 and AUT).

13.10.8 Velocity monitoring functions

A moving kinematic system always presents a danger to persons in its vicinity.
In order to protect persons, it may be necessary to impose a defined maximum
velocity, for example to give persons time to move out of the way of the robot.
This means that the velocity must be monitored continuously.

Velocity monitoring functions are available for the robot and for mobile plat-
forms. The axis velocities and the Cartesian velocity of a kinematic system can
be monitored.

13.10.8.1Defining axis-specific velocity monitoring

The AMF Axis velocity monitoring is used to define an axis-specific velocity
monitoring function.

AMF Description

Torque referencing The AMF is violated in the following cases:

 The joint torque sensor of at least one axis of the monitored
kinematic system is not referenced.

 The referencing of at least one joint torque sensor has failed.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

AMF1 AMF2 AMF3 Reaction

Collision detection - - Stop 0

High-velocity mode - Torque referencing Stop 1 (path-main-
taining)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.10.8.2Defining Cartesian velocity monitoring

Description The AMF Cartesian velocity monitoring is used to define a Cartesian velocity
monitoring function.

 In the case of a robot, the translational Cartesian velocity can be moni-
tored at all axis center points as well as at the robot flange.

If a safety-oriented tool is active on the robot controller, the velocity at the
center points of the spheres which are used to configure the safety-orient-
ed tool can also be monitored.

 (>>> 9.3.9 "Safety-oriented tools" Page 154)

AMF Description

Axis velocity monitoring The AMF is violated if the absolute velocity of the monitored
axis of the monitored kinematic system exceeds the configured
limit.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: Mobile platform

 Third kinematic system: No function

 Fourth kinematic system: No function

Monitored axis Axis of the kinematic system to be monitored

 Axis1 … Axis16

Axis1 … Axis7 are used for an LBR iiwa.

In the case of a mobile platform, the axes are assigned as fol-
lows:

 Axis 1: front left drive

 Axis 2: front right drive

 Axis 3: rear left drive

 Axis 4: rear right drive

Maximum velocity [°/s] Maximum permissible velocity at which the monitored axis may
move in the positive and negative direction of rotation

 1 … 500°/s

The system does not monitor the entire structure of the robot and tool
against the violation of a velocity limit, but rather only the center
points of the monitoring spheres. In particular with protruding tools

and workpieces, the monitoring spheres of the safety-oriented tool must be
planned and configured in such a way as to assure the safety integrity of the
velocity monitoring.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be taken into consid-
eration that the Cartesian velocity of the monitoring spheres relative

to the carrier kinematic system is monitored and not the absolute velocity of
the monitoring spheres in space.
241 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

242 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 In the case of a mobile platform, the translational Cartesian velocity can be
monitored at 4 defined points near the corners of the platform.

If a safety-oriented tool is active on the robot controller, the velocity at the
center points of the spheres which are used to configure the safety-orient-
ed tool can be monitored additionally or as an alternative.

Only velocity components within the plane of the platform are taken into
consideration.

Fig. 13-9: Velocity monitoring for platforms (monitored structure)

1 Monitored structure: Robot and tool

2 Monitored structure: Robot

3 Monitored structure: Tool

4 Monitored structure: Tool (no safety-oriented tool active)

AMF Description

Cartesian velocity monitoring The AMF is violated if the Cartesian translational velocity at at
least one point of the monitored kinematic system exceeds the
defined limit.

The AMF is additionally violated in the following cases:

 An axis is not mastered.

 The referencing of a mastered axis has failed.

Note: If an AMF is violated due to loss of mastering, the robot
can only be moved and mastered again by switching to CRR
mode.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: Mobile platform

 Third kinematic system: No function

 Fourth kinematic system: No function

Monitored structure Structure to be monitored
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Example Category: Velocity monitoring

If a Cartesian workspace is violated, the Cartesian velocity of the robot must
not exceed 300 mm/s. If this velocity is exceeded, a safety stop 1 is triggered.

13.10.8.3Direction-specific monitoring of Cartesian velocity

Description The AMF Tool-related velocity component is used to check whether the Car-
tesian translational velocity in a specific direction is below the configurable lim-
it value.

The AMF can be used, for example, to ensure that the velocity in the working
direction of a sharp-pointed tool is not too high. The AMF can also be used to
monitor the motion direction.

The AMF monitors the velocity on a reference frame of the last active safety-
oriented tool of the kinematic chain. The position and orientation of the refer-
ence frame are defined in the properties of the tool by means of safety-orient-
ed frames. The following safety parameters are available for this in the
properties of the safety-oriented tool:

 Point for tool-related velocity: The safety-oriented frame set here deter-
mines the position of the reference frame.

If no point is defined for the tool-related velocity, the reference frame is the
pickup frame of the active safety-oriented tool.

Kinematic system to be monitored is a robot

 Robot and tool: The center points of the axes on the robot
and the center points of the spheres used to configure the
active safety-oriented tool are monitored (default).

 Robot: The center points of the axes on the robot are moni-
tored.

 Tool: The center points of the spheres used to configure the
active safety-oriented tool are monitored.

Note: If no safety-oriented tool is active and the tool is selected
as the structure to be monitored, the center point of the robot
flange is monitored.

 (>>> "Spheres on the robot" Page 248)

Kinematic system to be monitored is a mobile platform

 Robot and tool: The 4 corner points of the platform and the
center points of the spheres used to configure the active
safety-oriented tool are monitored (default).

 Robot: The 4 corner points of the platform are monitored.

 Tool: The center points of the spheres used to configure the
active safety-oriented tool are monitored.

Note: If no safety-oriented tool is active and the tool is selected
as the structure to be monitored, the frame at the center point of
the platform is monitored.

Maximum velocity [mm/s] Maximum permissible Cartesian velocity which must not be
exceeded at any monitored point

 1 … 10,000 mm/s

Parameter Description

AMF1 AMF2 AMF3 Reaction

Cartesian workspace
monitoring

- Cartesian velocity
monitoring

Stop 1
243 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

244 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 If only one safety-oriented tool is active, the reference frame is the
flange coordinate system. The velocity is monitored at the origin of the
flange coordinate system.

 If a safety-oriented tool is active and coupled to the fixed tool, the ref-
erence frame is the standard frame for motions of the fixed tool. The
velocity is monitored at the origin of the standard frame for motions.

 Orientation for tool-related velocity: The safety-oriented frame set here
determines the orientation of the reference frame.

If no orientation is defined for the tool-related velocity, the reference frame
is the pickup frame of the active safety-oriented tool.

 If only one safety-oriented tool is active, the reference frame is the
flange coordinate system. The orientation of the flange coordinate sys-
tem determines the monitoring direction.

 If a safety-oriented tool is active and coupled to the fixed tool, the ref-
erence frame is the standard frame for motions of the fixed tool. The
orientation of the standard frame for motions determines the monitor-
ing direction.

 (>>> 9.3.9 "Safety-oriented tools" Page 154)

If the monitored kinematic system is a mobile platform, it is assumed, when de-
fining the reference frame, that the safety-oriented tool is fastened at the cen-
ter point of the platform.

If no safety-oriented tool is active, the following reference frame is used de-
pending on the monitored kinematic system:

Fig. 13-10: Reference frame for tool-specific velocity

1 Point for the tool-specific velocity

2 Orientation for the tool-specific velocity

3 Position and orientation of the reference frame for the tool-specific ve-
locity (combination of 1 and 2)

Fig. 13-11: Reference frame at the center point of the mobile platform
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 For a robot: frame at the center point of the robot flange

 For a mobile platform: frame at the center point of the platform

The component of the velocity vector in a specific direction of the reference
frame is monitored. During configuration of the AMF, this direction is specified
as a component of the velocity vector in the coordinate system of the reference
frame. One of the total of 6 components of the coordinate system (X, Y and Z
components, each in the positive and negative direction) can be selected.

Furthermore, the maximum velocity that the selected component of the veloc-
ity vector must not exceed is also defined.

Example 1 A sharp-pointed tool may be moved in its working direction at a maximum of
25 mm/s. For this, the tool is marked as safety-oriented and the tool tip is cre-
ated as a safety-oriented frame. This frame is used to define the position and
orientation of the reference frame in the properties of the safety-oriented tool.

An instance of the AMF Tool-related velocity component is configured in such
a way that the positive Z component of the velocity vector in the coordinate

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be taken into consid-
eration that the velocity of the monitored point relative to the carrier

kinematic system is monitored and not the absolute velocity in space.

AMF Description

Tool-related velocity compo-
nent

The AMF is violated if the configured component of the velocity
vector in the coordinate system of the reference frame of the
monitored kinematic system exceeds the maximum defined
value.

In the case of an LBR iiwa, the AMF is additionally violated in
the following cases:

 An axis is not mastered.

 The referencing of a mastered axis has failed.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: Mobile platform

 Third kinematic system: No function

 Fourth kinematic system: No function

Maximum velocity [mm/s] Maximum Cartesian velocity for the monitored component of
the velocity vector

 1 … 10000 mm/s

Note: When selecting the maximum velocity, it must be noted
that, particularly in the case of highly dynamic motions, low
velocities against the commanded direction of motion may
occur due to overshoot. For this reason, it is recommended that
the maximum velocity should not be set too low.

Component of the velocity
vector

Monitored component of the velocity vector (direction of moni-
toring)

 X positive or X negative

 Y positive or Y negative

 Z positive or Z negative
245 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

246 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
system of the tool tip may not exceed a value of 25 mm/s. For this, the follow-
ing parameters are set for the instance used:

 Monitored kinematic system: First kinematic system

 Maximum velocity [mm/s]: 25

 Component of the velocity vector: Z positive

The safety function configured with the AMF monitors the positive Z compo-
nent of the velocity vector. If the maximum velocity of 25 mm/s is exceeded by
the monitored component in Automatic mode, a safety stop 1 (path-maintain-
ing) is to be executed.

Category: Velocity monitoring

Example 2 In order to keep the dimensions of the protected space of a mobile platform to
the rear and to both sides as small as possible, the direction of motion of the
platform must be monitored in such a way that only forward motions can be
carried out at high velocity.

Configuration:

 3 instances of the AMF Tool-related velocity component are required. Ref-
erence frame is the center point of the platform in all cases.

 The motion to the left and right is to be carried out with a maximum velocity
of 50 mm/s. For this, the positive and negative Y components of the veloc-
ity vector are limited to 50 mm/s.

Fig. 13-12: Velocity monitoring in the tool direction

Item Description

1 Reference frame for the tool-specific velocity component

2 Velocity vector of the translational Cartesian velocity

3 Maximum permissible velocity for the positive Z component of the
velocity vector

4 Positive Z component of the velocity vector

The velocity is below the maximum permissible velocity; the AMF
is not violated.

5 Positive Z component of the velocity vector

The velocity is above the maximum permissible velocity; the AMF
is violated.

AMF1 AMF2 AMF3 Reaction

Automatic mode Tool-related velocity
component(1)
First kinematic system

- Stop 1 (path-main-
taining)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 The backward motion is to be carried out with a maximum velocity of
20 mm/s. For this, the negative X component of the velocity vector is lim-
ited to 20 mm/s.

Parameterization of the configured instances:

 Instance 1:

 Monitored kinematic system: Second kinematic system

 Maximum velocity [mm/s]: 50

 Component of the velocity vector: Y positive

 Instance 2:

 Monitored kinematic system: Second kinematic system

 Maximum velocity [mm/s]: 50

 Component of the velocity vector: Y negative

 Instance 3:

 Monitored kinematic system: Second kinematic system

 Maximum velocity [mm/s]: 20

 Component of the velocity vector: X negative

Fig. 13-13: Protected space limitation by means of velocity monitoring in
the direction of motion

Item Description

1 Approximate dimensions of the desired protected space

2 Reference frame for the tool-specific velocity component

3 Velocity vector of the translational Cartesian velocity

4 Maximum permissible velocity for the negative Y component of the
velocity vector

5 Maximum permissible velocity for the negative X component of the
velocity vector

6 Maximum permissible velocity for the positive Y component of the
velocity vector
247 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

248 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3 safety functions are configured, each of which uses one of the 3 instances.
If the configured maximum velocity of is exceeded in at least one of the 3 mon-
itored components in Automatic mode, a safety stop 1 (path-maintaining) is to
be executed.

Category: Velocity monitoring

13.10.9 Monitoring spaces

Description The robot environment can be divided into areas in which it must remain for
execution of the application, and areas which it must not enter or may only en-
ter under certain conditions. The system must then continuously monitor
whether the robot is within or outside of such a monitoring space.

A monitoring space can be defined as a Cartesian cuboid or by means of indi-
vidual axis ranges.

A Cartesian monitoring space can be configured as a workspace in which the
robot must remain, or as a protected space which it must not enter.

Via the link to other safety monitoring functions, it is possible to define further
conditions which must be met when a monitoring space is violated. For exam-
ple, a monitoring space can be activated by a safe input or applicable in Auto-
matic mode only.

Spheres on the

robot

Spheres are modeled around selected points on the robot, enclosing and mov-
ing with the robot. These spheres are predefined and are monitored against
the limits of activated Cartesian monitoring spaces by default.

The centers and radii of the monitored spheres are defined in the machine
data of the robot. A sphere is defined for each robot axis, for the robot base
and for the robot flange. The sphere center lies on the center point of each ax-
is, of the robot base and of the robot flange.

7 Positive Y component of the velocity vector

The velocity is above the maximum permissible velocity of instance
1; the AMF is violated.

8 Negative Y component of the velocity vector

The velocity is below the maximum permissible velocity of instance
3; none of the 3 instances of the AMF is violated.

Item Description

AMF1 AMF2 AMF3 Reaction

Automatic mode Tool-related velocity
component (1)
Second kinematic sys-
tem

- Stop 1 (path-main-
taining)

Automatic mode Tool-related velocity
component (2)
Second kinematic sys-
tem

- Stop 1 (path-main-
taining)

Automatic mode Tool-related velocity
component (3)
Second kinematic sys-
tem

- Stop 1 (path-main-
taining)

If the robot has violated a monitoring space and been stopped by the
safety controller, the robot can be moved out of the violated area in
CRR mode.

 (>>> 6.6 "CRR mode – controlled robot retraction" Page 77)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The dimensions of the monitored spheres vary according to robot type and the
media flange used:

 r = sphere radius

 z, y = sphere center point relative to the robot base coordinate system

Variant 1: LBR iiwa 7 R800 with media flange Touch

Variant 2: LBR iiwa 7 R800 with media flange (all variants except media
flange Touch)

Variant 3: LBR iiwa 14 R820 with media flange Touch

Variant 4: LBR iiwa 14 R820 with media flange (all variants except media
flange Touch)

Base A1 A2 A3 A4 A5 A6 A7 Flange

r [mm] 135 90 125 90 125 90 80 85 65

z [mm] 50 90 340 538 740 935 1140 1130 1240

y [mm] -30

Base A1 A2 A3 A4 A5 A6 A7 Flange

r [mm] 135 90 125 90 125 90 80 85 65

z [mm] 50 90 340 538 740 935 1140 1130 1220

y [mm] -30

Fig. 13-14: Spheres on the LBR iiwa 7 R800 (variant 2)

Base A1 A2 A3 A4 A5 A6 A7 Flange

r [mm] 150 100 140 90 131 90 80 85 65

z [mm] 50 160 360 580 780 980 1180 1170 1280

y [mm] -30

Base A1 A2 A3 A4 A5 A6 A7 Flange

r [mm] 150 100 140 90 131 90 80 85 65
249 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

250 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Spheres on tool If a safety-oriented tool is active on the robot controller, the spheres on the ro-
bot are monitored by default, as are the spheres used to configure the safety-
oriented tool.

 (>>> 9.3.9 "Safety-oriented tools" Page 154)

Selecting

monitoring

spheres

It is not necessary or appropriate to include all robot and tool spheres in the
Cartesian workspace monitoring of every application.

Example: If the entry of a tool into a protected space is programmed to acti-
vate further monitoring functions, only the tool spheres must be monitored.

The structure to be monitored can be selected when configuring Cartesian
monitoring spaces:

 Robot and tool (default)

 Only tool

 Only robot

Stopping

distance

If the robot is stopped by a monitoring function, it requires a certain stopping
distance before coming to a standstill.

The stopping distance depends primarily on the following factors:

 Robot type

 Velocity of the robot

 Position of the robot axes

 Payload

13.10.9.1Defining Cartesian workspaces

Description A Cartesian workspace is defined as a cuboid whose position and orientation
in space are defined relative to the world coordinate system.

These monitoring spheres are monitored against the limits of activated Carte-
sian workspaces and must move within these workspaces.

The AMF Cartesian workspace monitoring is used to define a Cartesian work-
space. The AMF is violated as soon as one of the monitored spheres is no lon-
ger completely within the defined workspace.

The AMF is additionally violated in the following cases:

z [mm] 50 160 360 580 780 980 1180 1170 1260

y [mm] -30

Base A1 A2 A3 A4 A5 A6 A7 Flange

The system does not monitor the entire structure of the robot and tool
against the violation of a space, but rather only the monitoring
spheres. In particular with protruding tools and workpieces, the mon-

itoring spheres of the safety-oriented tool must be planned and configured in
such a way as to assure the safety integrity of workspaces and protected
spaces.

The stopping distance when a monitoring function is triggered varies
according to the specific robot type. This aspect must be taken into
account by the system integrator during parameterization of the mon-

itoring functions as part of the safety assessment.

Further information about the stopping distances and stopping times
can be found in the assembly or operating instructions of the relevant
robot.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 An axis is not mastered.

 The referencing of a mastered axis has failed.

One corner of the cuboid is defined relative to the world coordinate system.
This is the origin of the workspace and is defined by the following parameters:

Based on this defined origin, the size of the workspace is determined along the
coordinate axes:

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be taken into consid-
eration that the position and orientation of the monitoring space are

relative to the world coordinate system and are thus defined relative to the
alignment of the base of the monitored kinematic system. For this reason, the
monitoring space is also moved in the event of a change in position or incli-
nation of the carrier kinematic system.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Monitored structure Structure to be monitored

 Robot and tool: The spheres on the robot and the spheres
used to configure the safety-oriented tool are monitored.
(Default)

 Robot: The spheres on the robot are monitored.

 Tool: The spheres used to configure the safety-oriented tool
are monitored.

Note: If no safety-oriented tool is configured and the tool is
selected as the structure to be monitored, the sphere on the
robot flange is monitored. (>>> "Spheres on the robot"
Page 248)

Parameter Description

X, Y, Z [mm] Offset of the origin of the workspace along the X, Y and Z axes
of the world coordinate system

 -100,000 mm … +100,000 mm

A, B, C [°] Orientation of the origin of the workspace about the axes of the
world coordinate system, specified by the rotational angles A, B,
C

 0° … 359°

Parameter Description

Length [mm] Length of the workspace (= distance along the positive X axis of
the origin)

 0 mm … 100,000 mm
251 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

252 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example The diagram shows an example of a Cartesian workspace. Its origin is offset
in the negative X and Y directions with reference to the world coordinate sys-
tem.

13.10.9.2Defining Cartesian protected spaces

Description A Cartesian protected space is defined as a cuboid whose position and orien-
tation in space are defined relative to the world coordinate system.

These monitoring spheres are monitored against the limits of activated pro-
tected spaces and must move outside of these protected spaces.

The AMF Cartesian protected space monitoring is used to define a Cartesian
protected space. The AMF is violated as soon as one of the monitored spheres
is no longer completely outside of the defined protected space.

The AMF is additionally violated in the following cases:

 An axis is not mastered.

 The referencing of a mastered axis has failed.

Width [mm] Width of the workspace (= distance along the positive Y axis of
the origin)

 0 mm … 100,000 mm

Height [mm] Height of the workspace (= distance along the positive Z axis of
the origin)

 0 mm … 100,000 mm

Parameter Description

The violation of a Cartesian workspace is only rectified when all mon-
itored spheres have returned to within the workspace limits with a
minimum distance of 1 mm to these limits.

Fig. 13-15: Example of a Cartesian workspace

1 Origin of the workspace
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
If a very narrow protected space is configured, the robot may be able to move
into and out of the protected space without the space violation being detected.
Possible cause: Due to a very high tool velocity, the protected space is only
violated during a very short interval.

Assuming that the following minimum values are configured:

 Radius of tool sphere: 25 mm

 Thickness of protected space: 0 mm

In this case, tool velocities of over 4 m/s are required for the robot to pass
through the protected space without detection.

The following measures are recommended in order to prevent robots from
passing through protected spaces undetected:

 Configure Cartesian velocity monitoring (do not allow a value greater than
4 m/s).

 OR: When configuring the protected space, select sufficient values for the
length, width and height of the protected space.

 OR: When configuring the tool spheres, select sufficient values for the ra-
dius.

One corner of the cuboid is defined relative to the world coordinate system.
This is the origin of the protected space and is defined by the following param-
eters:

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be taken into consid-
eration that the position and orientation of the monitoring space are

relative to the world coordinate system and are thus defined relative to the
alignment of the base of the monitored kinematic system. For this reason, the
monitoring space is also moved in the event of a change in position or incli-
nation of the carrier kinematic system.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Monitored structure Structure to be monitored

 Robot and tool: The spheres on the robot and the spheres
used to configure the safety-oriented tool are monitored.
(Default)

 Robot: The spheres on the robot are monitored.

 Tool: The spheres used to configure the safety-oriented tool
are monitored.

Note: If no safety-oriented tool is configured and the tool is
selected as the structure to be monitored, the sphere on the
robot flange is monitored. (>>> "Spheres on the robot"
Page 248)
253 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

254 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Based on this defined origin, the size of the protected space is determined
along the coordinate axes:

Example The diagram shows an example of a Cartesian protected space. Its origin is
offset in the negative X and positive Y directions with reference to the world
coordinate system.

Parameter Description

X, Y, Z [mm] Offset of the origin of the protected space along the X, Y and Z
axes of the world coordinate system

 -100,000 mm … +100,000 mm

A, B, C [°] Orientation of the origin of the protected space about the axes
of the world coordinate system, specified by the rotational
angles A, B, C

 0° … 359°

Parameter Description

Length [mm] Length of the protected space (= distance along the positive X
axis of the origin)

 0 mm … 100,000 mm

Width [mm] Width of the protected space (= distance along the positive Y
axis of the origin)

 0 mm … 100,000 mm

Height [mm] Height of the protected space (= distance along the positive Z
axis of the origin)

 0 mm … 100,000 mm

The violation of a Cartesian protected space is only rectified when all
monitored spheres have returned to outside the protected space lim-
its with a minimum distance of 1 mm to these limits.

Fig. 13-16: Example of a Cartesian protected space

1 Origin of the protected space
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.10.9.3Defining axis-specific monitoring spaces

Description The axis limits can be defined individually and safely monitored for each axis.
The axis angle must lie within the defined axis range.

The AMF Axis range monitoring is used to define an axis-specific monitoring
space. The AMF is violated if an axis is not inside the defined axis range.

The AMF is additionally violated in the following cases:

 An axis is not mastered.

 The referencing of a mastered axis has failed.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Monitored axis Axis to be monitored

 Axis1 … Axis16

Note: Axis1 … Axis7 are used for an LBR iiwa.

Lower limit [°] Lower limit of the allowed axis range in which the monitored
axis may move

 -180° … +180°

Upper limit [°] Upper limit of the allowed axis range in which the monitored
axis may move

 -180° … +180°

The permissible axis range runs in the positive direction of rotation of
the axis from the upper to the lower limit.
If the axis position at ±180° lies within the permissible angle range,

the lower limit must be greater than the upper limit.

Fig. 13-17: Examples of axis-specific workspaces

1 Lower limit: -90°; upper limit: +90°

2 Lower limit: +90°; upper limit: -90°
255 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

256 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example Axes A1, A2 and A4 are to be monitored so that the robot may only be moved
in a limited space. The monitoring is activated by a safe input. The permitted
range of each axis is defined by an upper and lower limit, and is shown in
green in the corresponding chart in the PSM table.

As soon as one of the monitored axis ranges is violated, a safety stop 1 (path-
maintaining) is triggered. For this purpose, an individual table row must be
used for each axis.

13.10.10 Monitoring the tool orientation

The AMF Tool orientation can be used to monitor the orientation of a safety-
oriented tool. It checks whether a specific axis of the tool orientation frame is
within a permissible direction range.

This function can for example be used to prevent dangerous parts of the
mounted tool, e.g. sharp edges, from pointing towards humans in HRC appli-
cations.

The following tool orientations are monitored, depending on the tool configu-
ration:

 By default, the orientation of the Z axis of the tool orientation frame of the
last active safety-oriented tool of the kinematic chain is monitored.

 (>>> 9.3.9 "Safety-oriented tools" Page 154)

 If no tool orientation frame is defined, the Z axis of the pickup frame of the
last active safety-oriented tool of the kinematic chain is monitored.

 If only one fixed safety-oriented tool is active, the pickup frame is the
flange coordinate system. The Z axis of the flange coordinate system
is monitored.

 If a safety-oriented tool is active and coupled to the fixed tool, the pick-
up frame is the standard frame for motions of the fixed tool. The Z axis
of the standard frame for motions of the fixed tool is monitored.

 If no safety-oriented tool is active, the Z axis of the flange coordinate sys-
tem is monitored.

The permissible range for the orientation angle is defined by a reference vec-
tor with a fixed orientation relative to the world coordinate system and a per-
missible deviation angle of this reference vector.

The reference vector is defined by the rotation of the unit vector of the Z axis
of the world coordinate system about the 3 Euler angles A, B and C relative to
the world coordinate system. A monitoring cone is extended around the refer-
ence vector. The opening of the cone is defined by a configurable deviation
angle. The deviation angle defines the permissible angle between the tool ori-
entation and reference vector. The values of the angle of the reference vector
and the deviation angle are defined in the parameterization of the AMF.

For personnel protection, only the position of the axis is relevant. For
this reason, the positions are converted to the axis range -180° …
+180°, even for axes which can rotate more than 360°.

Fig. 13-18: PSM table – simultaneous monitoring of 3 axes
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The monitoring sphere defines the permissible range for the tool orientation.

Fig. 13-19: Monitoring cone for tool orientation

Item Description

1 Axes of the world coordinate system

2 Reference vector

The reference vector defines a fixed orientation relative to the
world coordinate system.

3 Monitoring cone

Defines the permissible range for the tool orientation.

4 Deviation angle

The deviation angle determines the opening of the monitoring
cone.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform), it must be taken into consideration that
the orientation of the reference vector is relative to the world coordi-

nate system. This means that the reference orientation is defined relative to
the alignment of the base of the monitored kinematic system. For this reason,
the reference orientation is also moved in the event of a change in inclination
of the carrier kinematic system (e.g. due to driving up a ramp).

AMF Description

Tool orientation The AMF is violated if the angle between the reference vector
and Z axis of the tool orientation frame is greater than the con-
figured deviation angle.

The AMF is additionally violated in the following cases:

 An axis is not mastered.

 The position referencing of a mastered axis has failed.
257 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

258 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

A [°] Rotation of the reference vector about the Z axis of the world
coordinate system

 0° … 359°

B [°] Rotation of the reference vector about the Y axis of the world
coordinate system

 0° … 359°

C [°] Rotation of the reference vector about the X axis of the world
coordinate system

 0° … 359°

Operating angle [°] Workspace of the tool orientation

Defines the maximum permissible deviation angle between the
reference vector and the Z axis of the tool orientation frame.

 1° … 179°

Fig. 13-20: Tool orientation (not violated and violated)

Item Description

1 Robot is not violating the AMF Tool orientation.

The Z axis of the tool orientation frame is within the range defined
by the monitoring cone.

2 Origin of the tool orientation frame

3 Monitoring cone
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.10.11 Standstill monitoring (safe operational stop)

Description If, under certain conditions, the robot must not move but must remain under
servo-control, the standstill of all axes must be safely monitored. The AMF
Standstill monitoring of all axes is used for this purpose.

This AMF is an extended AMF, meaning that the monitoring only begins when
all other AMFs of the safety function are violated.

Standstill is defined as retaining the axis positions. At the start of standstill
monitoring, the axis positions are saved and compared to the current joint val-
ues for as long as the monitoring is active.

Since standstill monitoring is monitored in a narrow tolerance range, monitor-
ing can also be violated if the motion of the robot is caused by an outside force,
e.g. if the robot is jolted.

Example Category: Safe operational stop

If the robot is situated outside of its workspace, it must be assured that the ro-
bot is no longer moving as soon as persons are in its vicinity. The workspace
is configured by means of a Cartesian workspace. There is a sensor connect-
ed to a safe input which detects persons at risk. If both the workspace and the
input signal are violated, the standstill monitoring is activated.

13.10.12 Activation delay for safety function

Description The AMF Time delay can be used to delay the triggering of the reaction of a
safety function for a defined time.

4 Z axis of the tool orientation frame

5 Robot is violating the AMF Tool orientation.

The Z axis of the tool orientation frame is outside of the range de-
fined by the monitoring cone.

Item Description

Extended AMFs are not available for the safety functions of the ESM
mechanism.

AMF Description

Standstill monitoring of all
axes

The AMF is violated as soon as the joint value of an axis is out-
side of a tolerance range of +/- 0.1° of the value saved when
standstill monitoring was activated, or if one of the axes moves
at an absolute value of more than 1 °/s.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

AMF1 AMF2 AMF3 Reaction

Input signal Cartesian workspace
monitoring

Standstill monitoring
of all axes

Stop 1
259 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

260 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
This AMF is an extended AMF, meaning that the delay time only starts running
when all other AMFs of the safety function are violated.

Example Category: Safety stop

A robot whose axes are not referenced is to be allowed to be moved in Auto-
matic mode for a limited time. Once this time has elapsed, e.g. after 2 hours,
a safety stop 1 (path-maintaining) is triggered.

13.10.13 Monitoring of forces and torques

The LBR iiwa is fitted with position and joint torque sensors in all axes. These
make it possible to measure and react to external forces and torques.

13.10.13.1Axis torque monitoring

Axis torque monitoring can limit and monitor the torques of individual axes.

The following points must be observed when using axis torque monitoring:

 Successful torque referencing is a precondition.

Extended AMFs are not available for the safety functions of the ESM
mechanism.

AMF Description

Time delay This AMF is violated if the set time has expired.

If the same instance of the AMF is used for several safety functions,
the delay time begins running from the first activation.

Parameter Description

Delay time Amount of time by which the triggering of the reaction of a
safety function is delayed.

 12 ms … 24 h

The time can be entered in milliseconds (ms), seconds (s), min-
utes (min) and hours (h). Each delay is a multiple of 12 ms,
meaning that it is rounded up to the next multiple of 12.

AMF1 AMF2 AMF3 Reaction

Automatic mode Position referencing Time delay Stop 1 (path-main-
taining)

If the permissible forces or torques are exceeded continuously due to
jamming, it is possible to move the robot free by changing to CRR
mode.

AMF Description

Axis torque monitoring The AMF is violated if the torque of the monitored axis exceeds
or falls below the configured torque limit.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.10.13.2Collision detection

Collision detection monitors the external axis torques against a definable limit
value.

The external axis torque is that part of the torque of an axis which is generated
from the forces and torques occurring as the robot interacts with its environ-
ment. The external axis torque is not measured directly but is rather calculated
using the dynamic robot model. The accuracy of the calculated values de-
pends on the dynamics of the robot motion and of the interaction forces of the
robot with its environment.

The following points must be observed when using collision detection:

 Successful position and torque referencing are preconditions.

 The load data of safety-oriented tools are taken into consideration (if ac-
tive).

 If a safety-oriented fixed tool is configured, it must also be mounted on the
robot flange.

 The load data of safety-oriented workpieces (if configured) are only taken
into consideration if the currently active safety-oriented workpiece is com-
municated to the safety controller.

 (>>> 15.10.5 "Commanding load changes to the safety controller"
Page 365)

If the AMF is violated and a safety stop triggered, the interaction forc-
es may continue to increase due to the stopping distances of the ro-
bot. For this reason, the AMF may only be used in collaborative

operation at reduced velocity. For this, the AMF can be combined with the
AMF Cartesian velocity monitoring, Axis velocity monitoring or Tool-related
velocity component.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Monitored axis Axis to be monitored

 Axis1 … Axis16

Note: Axis1 … Axis7 are used for an LBR iiwa.

Minimum torque [Nm] Minimum permissible torque for the given axis

 -500 … 500 Nm

Maximum torque [Nm] Maximum permissible torque for the given axis

 -500 … 500 Nm

In the AMF Collision detection, possible errors when activating the
safety-oriented workpiece are not automatically taken into consider-
ation.

When configuring the collision detection, it is therefore necessary to set the
lowest possible values for the maximum permissible external torque. In this
way, significant deviations in the load data are interpreted as a collision and
cause a violation of the AMF.
261 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

262 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.10.13.3TCP force monitoring

Description In TCP force monitoring, the external force acting on the tool or robot flange is
monitored against a definable limit value.

The external force on the TCP is not measured directly but is rather calculated
using the dynamic robot model. The accuracy of the calculated external force

Workpieces that have been picked up must not come loose uninten-
tionally and fall down while the monitoring is active. The user must en-
sure this when using the AMF.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be ensured that the
carrier kinematic system does not move while the AMF is being used.

As long as the robot base of the monitored kinematic system is being accel-
erated, the safety integrity of the AMF is not assured.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be ensured, during
use of the AMF, that the mounting direction of the monitored kinemat-

ic system does not differ from the configured mounting direction (e.g. due to
tilting of the mobile platform). Otherwise, the safety integrity of the AMF is not
assured.

AMF Description

Collision detection This AMF is violated if the external torque of at least one axis
exceeds the configured limit value.

If the AMF is violated and a safety stop triggered, the interaction forc-
es may continue to increase due to the stopping distances of the ro-
bot. For this reason, the AMF may only be used in collaborative

operation at reduced velocity. For this, the AMF can be combined with the
AMF Cartesian velocity monitoring, Axis velocity monitoring or Tool-related
velocity component.

External forces on the robot or tool with short distances to the robot
axes can only cause slight external torques in the robot axes under
certain circumstances. If the AMFs are used, this can pose a safety

risk, particularly in potential crushing situations during collaborative opera-
tion. Critical crushing situations can arise on the robot itself, between the ro-
bot and the surroundings or between the tool and the surroundings.
It is therefore advisable to avoid potentially critical incidents of crushing by
using suitable equipment for the robot cell and/or by using one of the follow-
ing AMFs: Cartesian workspace monitoring, Cartesian protected space mon-
itoring, Axis range monitoring or Tool orientation.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Maximum external torque [Nm] Maximum permissible external torque

 0 … 30 Nm
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
depends on the dynamics of the robot motion and of the actual force, among
other things.

The following points must be observed when using TCP force monitoring:

 Successful position and torque referencing are preconditions.

 The load data of the safety-oriented tools are taken into consideration (if
active).

 If a safety-oriented fixed tool is configured, it must also be mounted on the
robot flange.

 The load data of the heaviest safety-oriented workpiece are taken into
consideration (if configured).

In the AMF, possible errors when activating a safety-oriented work-
piece are not automatically taken into consideration.
For this reason, when configuring the monitoring, it is necessary to

set a value for the maximum permissible external force at the TCP which is
greater than the weight of the heaviest workpiece to be picked up.

Workpieces that have been picked up must not come loose uninten-
tionally and fall down while the monitoring is active. The user must en-
sure this when using the AMF.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be ensured that the
carrier kinematic system does not move while the AMF is being used.

As long as the robot base of the monitored kinematic system is being accel-
erated, the safety integrity of the AMF is not assured.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be ensured, during
use of the AMF, that the mounting direction of the monitored kinemat-

ic system does not differ from the configured mounting direction (e.g. due to
tilting of the mobile platform). Otherwise, the safety integrity of the AMF is not
assured.

AMF Description

TCP force monitoring This AMF is violated if the external force acting on the tool or
robot flange exceeds the configured limit value.

If the AMF is violated and a safety stop triggered, the interaction forc-
es may continue to increase due to the stopping distances of the ro-
bot. For this reason, the AMF may only be used in collaborative

operation at reduced velocity. For this, the AMF can be combined with the
AMF Cartesian velocity monitoring, Axis velocity monitoring or Tool-related
velocity component.

External forces on the robot with short distances to the robot axes can
only cause slight external torques in the robot axes under certain cir-
cumstances. If the AMFs are used, this can pose a safety risk, partic-

ularly in potential crushing situations during collaborative operation. Critical
crushing situations can arise on the robot itself or between the robot and the
surroundings.
It is therefore advisable to avoid potentially critical incidents of crushing by
using suitable equipment for the robot cell and/or by using one of the follow-
ing AMFs: Cartesian workspace monitoring, Cartesian protected space mon-
itoring, Axis range monitoring or Tool orientation.
263 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

264 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Accuracy of force

detection

 The accuracy of TCP force detection is dependent on the robot pose. The
safety controller recognizes non-permissible poses and sets the AMF TCP
force monitoring to “violated” with a corresponding error message.

Non-permissible poses are those in which it is possible for TCP forces to
have a short distance to all robot axes. This applies to singularity poses
and poses near singularities.

 (>>> 14.11 "Singularities" Page 321)

 External forces on the robot reduce the accuracy of TCP force detection.
In many cases, the safety controller can automatically detect the external
forces acting on the robot. The AMF TCP force monitoring is violated in
this case.

13.10.13.4Direction-specific monitoring of the external force on the TCP

Description The AMF Base-related TCP force component is used to monitor the external
force acting in a specific direction on the tool or on the robot flange relative to
a base coordinate system against a definable limit value.

By default, the world coordinate system is used as the base coordinate sys-
tem. No other base coordinate system can currently be defined for this moni-
toring function.

The AMF monitors the force along the component of a reference coordinate
system. The orientation of the reference coordinate system corresponds by
default to the orientation of the base coordinate system. The orientation of the
reference coordinate system relative to the base coordinate system can be
modified in the AMF.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Maximum TCP force [N] Maximum permissible external force on the TCP

 50 … 1,000 N

It is not possible to guarantee that the safety controller will always au-
tomatically detect external forces acting on the robot. The user must
ensure that the external forces act exclusively on the TCP in order to

assure the safety integrity of the AMF TCP force monitoring.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The external force on the TCP is not measured directly but is rather calculated
using the dynamic robot model. The accuracy of the calculated external force
depends on the dynamics of the robot motion and of the actual force, among
other things.

The following points must be observed when monitoring base-related TCP
force components:

 Successful position and torque referencing are preconditions.

 The load data of the safety-oriented tools are taken into consideration (if
active).

 If a safety-oriented fixed tool is configured, it must also be mounted on the
robot flange.

 The load data of the heaviest safety-oriented workpiece are taken into
consideration (if configured).

The monitoring of individual force components has advantages over TCP
force monitoring:

 The monitoring function can be used in a larger workspace.

 Workpieces have no influence on horizontal monitoring functions.

Possible errors when activating a safety-oriented workpiece are automat-
ically taken into consideration. This results in additional external forces in

Fig. 13-21: Base-related TCP force monitoring

1 World coordinate system (= base coordinate system for the monitor-
ing function)

2 World coordinate system is located by default in the base of the robot.

3 Negative X component of the TCP force vector

4 Negative Y component of the TCP force vector

5 Positive Z component of the TCP force vector

6 TCP force vector

In the AMF, possible errors when activating a safety-oriented work-
piece are not automatically taken into consideration.
For this reason, when configuring the monitoring, it is necessary to

set a value for the maximum permissible external force at the TCP which is
greater than the weight component of the heaviest safety-oriented workpiece
in the monitored direction.
265 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

266 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
the vertical direction. In the case of a monitoring function in the horizontal
direction, possible activation errors have no effect.

The AMF Base-related TCP force component may only be used if the
direction in which hazardous forces can arise is known. At the same
time, it must be ensured that no hazardous forces can arise in the

non-monitored directions. If this is not the case, either the AMF TCP force
monitoring must be used, or the other directions must also be monitored us-
ing the AMF Base-related TCP force component.

Workpieces that have been picked up must not come loose uninten-
tionally and fall down while the monitoring is active. The user must en-
sure this when using the AMF.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be ensured that the
carrier kinematic system does not move while the AMF is being used.

As long as the robot base of the monitored kinematic system is being accel-
erated, the safety integrity of the AMF is not assured.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be ensured, during
use of the AMF, that the mounting direction of the monitored kinemat-

ic system does not differ from the configured mounting direction (e.g. due to
tilting of the mobile platform). Otherwise, the safety integrity of the AMF is not
assured.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), it must be taken into consid-
eration that the reference coordinate system for the configured force

component is defined relative to the robot base. The monitored direction of
the force component moves with the carrier kinematic system.

AMF Description

Base-related TCP force com-
ponent

The AMF is violated if the external force acting along the moni-
tored component of the TCP force vector exceeds the config-
ured limit value.

If the AMF is violated and a safety stop triggered, the interaction forc-
es may continue to increase due to the stopping distances of the ro-
bot. For this reason, the AMF may only be used in collaborative

operation at reduced velocity. For this, the AMF can be combined with the
AMF Cartesian velocity monitoring, Axis velocity monitoring or Tool-related
velocity component.

External forces on the robot with short distances to the robot axes can
only cause slight external torques in the robot axes under certain cir-
cumstances. If the AMFs are used, this can pose a safety risk, partic-

ularly in potential crushing situations during collaborative operation. Critical
crushing situations can arise on the robot itself or between the robot and the
surroundings.
It is therefore advisable to avoid potentially critical incidents of crushing by
using suitable equipment for the robot cell and/or by using one of the follow-
ing AMFs: Cartesian workspace monitoring, Cartesian protected space mon-
itoring, Axis range monitoring or Tool orientation.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Accuracy of force

detection

 The accuracy of TCP force detection is also dependent on the robot pose.
The safety controller recognizes non-permissible poses and sets the AMF
Base-related TCP force component to “violated” with a corresponding error
message.

Non-permissible poses are those in which it is possible for TCP forces to
have a short distance to all robot axes. This applies to singularity poses
and poses near singularities.

 (>>> 14.11 "Singularities" Page 321)

Depending on the direction of the monitored force component, the AMF
Base-related TCP force component can be used closer to singularities
than the AMF TCP force monitoring. This can result in a larger workspace.

 External forces on the robot reduce the accuracy of TCP force detection.
In many cases, the safety controller can automatically detect the external
forces acting on the robot. The AMF Base-related TCP force component
is violated in this case.

Example A workpiece is to be set down on a table. In order to be able to detect possible
high crushing forces between the workpiece and the setdown surface, the
force acting on the workpiece in the positive Z direction must be monitored. If
the force in this direction exceeds a value of 50 N, a safety stop 1 (path-main-
taining) is to be triggered.

Parameter Description

Monitored kinematic system Kinematic system to be monitored

 First kinematic system: Robot

 Second kinematic system: No function

 Third kinematic system: No function

 Fourth kinematic system: No function

Maximum TCP force [N] Maximum external force acting along the monitored component
of the TCP force vector

 50 … 1,000 N

A [°] Rotation of the TCP force vector about the Z axis of the base
coordinate system

 0° … 359°

B [°] Rotation of the TCP force vector about the Y axis of the base
coordinate system

 0° … 359°

C [°] Rotation of the TCP force vector about the X axis of the base
coordinate system

 0° … 359°

Component of the TCP force
vector

Component of the TCP force vector that is monitored (direction
of monitoring)

 X positive or X negative

 Y positive or Y negative

 Z positive or Z negative

It is not possible to guarantee that the safety controller will always au-
tomatically detect external forces acting on the robot. The user must
ensure that the external forces act exclusively on the TCP in order to

assure the safety integrity of the AMF Base-related TCP force component.
267 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

268 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Category: Collision detection

The AMF Base-related TCP force component has the following parameters:

 Monitored kinematic system: First kinematic system

 Maximum TCP force: 50 N

 Component of the TCP force vector: Z positive

 A = B = C: 0°

13.11 Example of a safety configuration

13.11.1 Task

The LBR iiwa is used in an application in which it collaborates with a human.
The tool installed on the robot is set as safety-oriented.

The operator places a workpiece in a workpiece pick-up position at regular in-
tervals. One task of the robot is to check that the workpiece is present. It pro-
ceeds as follows: from a start position, it moves through the area accessible
to humans (collaboration space) with a transfer motion. The purpose of this
transfer motion is to achieve a pre-position of 20 cm above the waiting work-
piece. It then moves toward the workpiece.

This lowering motion is parameterized with a force break condition (process
limit value: 20 N). After reaching the process limit value, the robot uses its cur-
rent position to determine whether the workpiece is present or not. The work-
piece is not present if the robot can move all the way to the workpiece pick-up
position. After it has finished checking, the robot moves back to the pre-posi-
tion and out of the collaboration space.

Fig. 13-22: Base-related TCP force monitoring in Z positive

AMF1 AMF2 AMF3 Reaction

Base-related TCP
force component

- - Stop 1 (path-main-
taining)

The sole purpose of this example is to illustrate the safety configura-
tion with KUKA Sunrise.Workbench.

The basis for a system’s safety configuration is always a risk analysis
carried out by the user. The safety configuration displayed below
serves only as an example and does not claim to be comprehensive.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.11.2 Requirement

The following safety functions are required as part of the risk assessment for
the above-described process:

1. It must be possible to stop the robot by pressing an external EMERGEN-
CY STOP switch within reach of the operator.

2. The robot must not leave a defined workspace. The collaboration space is
part of the workspace.

3. A transfer motion between the start position and pre-position can cause
unintentional collisions with the operator. However, the space is designed
in such a way that the human cannot be crushed. For this reason, the max-
imum permissible robot velocity for this space has been defined as
500 mm/s.

4. Collisions must be safely recognized during the transfer motion and cause
the robot to come to a standstill if a torque of 15 Nm is exceeded on at
least one axis.

5. Motions between the pre-position and the workpiece pick-up position can
cause the hand and arm of the operator to be crushed. In order to ensure
that the operator can respond appropriately to a robot motion and that the
braking distances are sufficiently short, the robot velocity must not exceed
100 mm/s.

6. Furthermore, the robot must be brought to a standstill if crushing forces of
more than 50 N arise during motions between the pre-position and the
workpiece pick-up position. Force values of 20 N or more cause the low-
ering motion in the process to be aborted and are thus sufficiently below
the latter limit.

13.11.3 Suggested solution for the task

In order for the requirements to be implemented, permanent and switchable
safety monitoring functions must be configured:

 Permanent monitoring of the external EMERGENCY STOP device and
workspace

 ESM state for the transfer motion between the start position and the pre-
position

 ESM state for the motion between the pre-position and the workpiece pick-
up position

To ensure a stable and smooth process sequence, the application must be de-
signed in such a way that the defined limit values for the safety functions (ve-
locity and workspace) are maintained.

The robot application implemented in the process described is not mentioned
here.

Permanent safety

monitoring

The EMERGENCY STOP function must be active throughout operation and
the robot must not leave the workspace. Corresponding safety functions are
configured in the Customer PSM table.

Fig. 13-23: Permanent safety monitoring
269 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

270 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
ESM state for

transfer motion

An ESM state is defined for the transfer motion through the collaboration
space between the start and pre-position. This is activated in the application
before the transfer motion begins.

Velocity monitoring and collision detection must be active during the transfer
motion in order to sufficiently reduce the danger of a collision between human
and robot.

In order to avoid crushing at all times, an additional protected space is defined.
This brings the robot to a standstill as soon as the distance between the robot
or tool and the workpiece pick-up position becomes less than 15 cm.

Line Description

1 External EMERGENCY STOP

Implements requirement 1

An external EMERGENCY STOP is connected to a safe
input. If the operator actuates the EMERGENCY STOP, a
safety stop 1 (path-maintaining) is executed.

2 Cartesian workspace monitoring 2

Implements requirement 2

The workspace is represented by a safely monitored Carte-
sian workspace. If the robot leaves the configured space, a
safety stop 1 (path-maintaining) is executed.

Fig. 13-24: ESM state for transfer motion

Line Description

1 Cartesian velocity monitoring

Implements requirement 3

If a Cartesian velocity exceeds 500 mm/s, a safety stop 1
(path-maintaining) is executed.

2 Collision detection

Implements requirement 4

If a collision causes an external torque of more than 15 Nm in
at least one robot axis, a safety stop 1 (path-maintaining) is
executed.

3 Protected space monitoring

Implements the safety of the state regardless of the time and
place of activation

The safely monitored protected space encompasses the
space above the workpiece pick-up position. As soon as the
robot or the safely monitored tool enters this space, a safety
stop 1 (path-maintaining) is executed.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
ESM state for

workpiece pick-

up position

A specific ESM state is defined for the motions between the pre-position and
the workpiece pick-up position. This is activated in the application before the
lowering motion begins.

Velocity monitoring and force monitoring must be active during the motion in
order to sufficiently reduce the danger of crushing the operator’s hand or lower
arm.

The state must ensure a sufficient degree of safety, regardless of the time or
place of activation. The low permissible velocity and the active force monitor-
ing mean that no further measures are necessary.

13.12 Position and torque referencing

13.12.1 Position referencing

Description Position referencing checks whether the saved zero position of the motor of
an axis (= saved mastering position) corresponds to the actual mechanical
zero position.

In the case of an LBR iiwa, referencing is carried out continuously by the sys-
tem when an axis moves at less than 30 °/s. Referencing is successful when
the mastering sensor detects the mechanical zero position of the axis in a nar-
row range around the saved zero position of the motor.

Referencing fails in the following cases:

 The mastering sensor does not detect the mechanical zero position of the
axis in the range around the saved zero position of the motor.

 The mastering sensor detects the mechanical zero position of the axis at
an unexpected point.

For other robots, the axis positions can only be referenced via an external sys-
tem. The interface for external position referencing must be configured.

 (>>> 13.12.4 "External position referencing" Page 275)

Fig. 13-25: ESM state for workpiece pick-up position

Line Description

1 Cartesian velocity monitoring

Implements requirement 5

If a Cartesian velocity exceeds 100 mm/s, a safety stop 1
(path-maintaining) is executed.

2 Force monitoring

Implements requirement 6

If a contact situation causes a force of more than 50 N to be
exerted at the TCP, a stop 0 is executed.
271 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

272 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The safety integrity of the safety functions based upon this is limited until the
position referencing test has been performed. This includes, for example,
safely monitored Cartesian and axis-specific robot positions, safely monitored
Cartesian velocities, TCP force monitoring and collision detection.

If position referencing fails on at least one axis, all AMFs based on safe axis
positions are violated. (>>> "Position-based AMFs" Page 279)

Requirement The position of an axis is not referenced after the following events:

 Robot controller is rebooted.

 The axis is remastered.

 Torque referencing of the axis fails.

 The maximum torque of the joint torque sensor of the axis has been ex-
ceeded.

These events do not lead to a violation of the safe position-based safety func-
tions. The robot can be moved, but the safety integrity of the safety functions
is no longer assured.

The safety functions based on safe positions are only violated after these
events if the position referencing of an axis fails. Referencing must be suc-
cessfully carried out before safety-critical applications can be executed.

The position referencing status can be used as an AMF in the safety configu-
ration. (>>> 13.10.6 "Evaluating the position referencing" Page 239)

Precondition The position of an axis is referenced when the axis is moved over the saved
zero position of the motor and the mastering sensor detects the zero position
of the axis in a range of 0° +/- 0.5°.

Preconditions for this:

 The velocity at which the axis is moved over the zero position must be
< 30 °/s.

 At the very least, a defined axis-specific range before and after the zero
position must be passed through. The motion direction is not relevant.

The axis-specific range of motion is robot-specific:

Execution Position referencing of all axes is continuously performed by the system when
the above conditions are met. Position referencing can be carried out in a tar-
geted manner the following ways:

 Automatically while the program is running, when an axis moves over the
zero position at less than 30 °/s.

 Jogging each axis individually over the zero position.

 Executing the application prepared by KUKA. The axes are moved over
the zero position from the vertical stretch position.

An application for position and torque referencing of the LBR iiwa is avail-
able from Sunrise.Workbench. Position and torque referencing can be car-
ried out simultaneously with this application.

 (>>> 13.12.3 "Creating an application for position and torque referencing"
Page 274)

If the maximum torque of a joint torque sensor is exceeded for longer
than 3 seconds, the brake of the corresponding axis is opened auto-
matically for a few milliseconds. The opening of the brakes is repeat-

ed every 3 seconds until the maximum torque is no longer exceeded.

Robot variant A1 A2 A3 A4 A5 A6 A7

LBR iiwa 7 R800 ±10.5° ±10.5° ±10.5° ±10.5° ±10.5° ±14° ±14°

LBR iiwa 14 R820 ±9.5° ±9.5° ±10.5° ±10.5° ±10.5° ±14° ±14°
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.12.2 Torque referencing

Description The LBR iiwa has a joint torque sensor in each axis which reliably determines
the torque currently acting on the axis. These data are used for calculating and
monitoring externally acting torques or Cartesian forces, for example.

During referencing of the joint torque sensors, the system checks whether the
expected external torque of an axis matches the actual external torque of the
axis:

 The expected torque is calculated using the robot model and the specified
load data for each axis.

 The actual torque is determined on the basis of the measured value of the
joint torque sensor for each axis.

If the difference between the expected torque and the actual torque exceeds
a certain tolerance value, the referencing of the torque sensors has failed.

The safety integrity of the safety functions based upon this is limited until the
torque referencing test has been performed successfully. This includes, for ex-
ample, axis torque and TCP force monitoring as well as collision detection.

If torque referencing fails on at least one axis, all AMFs based on safe torque
values are violated. (>>> "Axis torque-based AMFs" Page 280)

Requirement The joint torque sensor of an axis is not referenced after the following events:

 Robot controller is rebooted.

 Position referencing of the axis fails.

 The maximum torque of the joint torque sensor of the axis has been ex-
ceeded.

These events do not lead to a violation of the safety functions based on safe
torque values. The robot can be moved, but the safety integrity of the safety
functions is no longer assured.

The safety functions based on safe torque values are only violated after these
events if torque referencing of one axis fails. Referencing must be successfully
carried out before safety-critical applications can be executed.

The torque referencing status can be used as an AMF in the safety configura-
tion. (>>> 13.10.7 "Evaluating the torque referencing" Page 239)

Execution An application for position and torque referencing of the LBR iiwa is available
from Sunrise.Workbench. Position and torque referencing can be carried out
simultaneously with this application.

 (>>> 13.12.3 "Creating an application for position and torque referencing"
Page 274)

A total of 10 measured joint torque values must be given for each axis. For this
purpose, 5 measurement poses are defined in the application, each of which
can be addressed with positive and negative directions of axis rotation. If the
poses cannot be addressed, they must be adapted in the application.

If it is not possible to reference from the vertical stretch position, a
user-specific application for position referencing must be created and
executed.

If the maximum torque of a joint torque sensor is exceeded for longer
than 3 seconds, the brake of the corresponding axis is opened auto-
matically for a few milliseconds. The opening of the brakes is repeat-

ed every 3 seconds until the maximum torque is no longer exceeded.
273 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

274 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The safety controller evaluates the external torque for all 10 measured values
and determines the mean value of the external torque for each axis. Referenc-
ing is successful if this mean value is below a defined tolerance. Otherwise,
referencing has failed.

13.12.3 Creating an application for position and torque referencing

Description The following points must be observed if the application for torque referencing
needs to be edited due to measurement poses which cannot be addressed:

 The joint torque values must be measured while the robot is stationary.

 A wait time of at least 2.5 seconds in which the robot does not move is re-
quired between the moment the measurement pose is reached and the
measurement itself. Wait times which are too short can reduce the refer-
encing accuracy due to oscillations on the robot.

 The measurement is started with the method sendSafetyCommand().

 There may be a maximum of 15 s between 2 consecutive measurements.

Procedure 1. Select the Sunrise project in the Package Explorer.

2. Select the menu sequence File > New > Other....

3. In the Sunrise folder, select the Application for position and GMS ref-
erencing of the LBR iiwa option and click on Finish.

During torque referencing, each of the measurement poses must be
addressed in sequence with positive and negative directions of axis
rotation before the next measurement pose is addressed. The safety

integrity of the referencing of the joint torque sensors is otherwise not given.

Before carrying out torque referencing, the user must ensure the fol-
lowing points:

The load data of the fixed tool mounted on the robot flange must
match the load data with which the fixed safety-oriented tool is config-
ured.

 The load data of the tool coupled with the fixed tool (if present) must
match the load data of the activated safety-oriented tool.

 The load data of the workpiece that is picked up (if present) must match
the load data of the activated safety-oriented workpiece.

 Workpieces that are not taken into consideration by the safety controller
must not be picked up.

 No supplementary loads, e.g. dress packages, may be fastened to the ro-
bot.

If one of these points is not met, the safety integrity of the referencing of the
joint torque sensors is not given.

If the monitored kinematic system is fastened to a carrier kinematic
system (e.g. mobile platform, linear unit), the user must ensure that
the following points are observed:

 The carrier kinematic system must not be moved during torque referenc-
ing.

 The mounting direction of the kinematic system to be referenced must
not differ from the configured mounting direction (e.g. due to tilting of the
mobile platform).

If any of these points is not met, the safety integrity of the referencing of the
joint torque sensors is not given.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The PositionAndGMSReferencing.java application is created in the
source folder of the project and opened in the editor area of Sunrise.Work-
bench.

4. If measurement poses cannot be addressed due to the system configura-
tion, adapt them in the application.

5. Synchronize the project in order to transfer the application to the robot
controller.

13.12.4 External position referencing

Description The user has the possibility of implementing his own test method or an exter-
nal system for position referencing, e.g. a tracker, a navigation system or an
absolute encoder. Confirmation that the external position referencing has
been successfully carried out must be communicated to the robot controller via
a safety-oriented input.

The input for external position referencing can be configured in the project set-
tings. If the external signal at this input changes from LOW to HIGH and back
to LOW within 2 seconds, the position referencing has been successfully con-
firmed.

13.12.4.1Configuring the input for external position referencing

Description The safety-oriented input that allows external position referencing is config-
ured in the project settings.

Procedure 1. Right-click on the desired project in the Package Explorer view and select
Sunrise > Change project settings from the context menu.

The Properties for [Sunrise Project] window opens.

2. Select Sunrise > Safety in the directory in the left area of the window.

3. Make the following settings in the right-hand part of the window:

 Set the check mark at Allow external position referencing.

 Select the input that is to be used for external position referencing.

The inputs of the discrete safety interface and of the Ethernet safety
interface can be used as long as they are configured in WorkVisual.

 (>>> "Safety interfaces" Page 204)

The enabling device of the hand guiding device can also be used as
an input.

4. Click on OK to save the settings and close the window.

13.13 Safety acceptance overview

The system must not be put into operation until the safety acceptance proce-
dure has been completed successfully. For successful safety acceptance, the
points in the checklists must be completed fully and confirmed in writing by the
safety maintenance technician.

External position referencing is merely an interface for setting the po-
sition referencing. The safety maintenance personnel is responsible
for the correct use of the referencing input, i.e.:

 They must provide a suitable test method for position mastering.

 The test method for position mastering must be sufficiently accurate. The
accuracy of the position-based AMFs depends on the accuracy of the
test method.

 They must ensure that the input is only set after the position mastering
has been successfully tested.
275 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

276 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Safety acceptance must be carried out in the following cases:

 Following initial start-up or recommissioning of the industrial robot

 After a change to the industrial robot

 After a change to the safety configuration

 After a software update, e.g. of the system software

Safety acceptance after a software update is only necessary if the ID of
the safety configuration (= checksum) has changed as a result of the up-
date.

The system integrator determines the required safety functions using the risk
analysis as a basis. Once the safety configuration is activated on the robot
controller, the safety functions must be tested for correct functioning.

The following checklists must be used to verify whether the configured safety
parameters have been correctly transferred.

The checklists must be processed in the following order:

1. Checklist for basic test of the safety configuration

 (>>> 13.13 "Safety acceptance overview" Page 275)

2. Checklists for checking the mapped safety-oriented tools

 (>>> 13.13.2 "Checklist for tool selection table" Page 280)

 (>>> 13.13.3 "Checklists for safety-oriented tools" Page 281)

3. Checklists for checking the safety-oriented workpieces

 (>>> 13.13.4 "Checklist for safety-oriented workpieces" Page 286)

4. Checklist for checking the rows used in the KUKA PSM table and in the
Customer PSM table

 (>>> 13.13.5 "Checklist for rows used in the PSM tables" Page 288)

5. Checklists for checking the ESM states which have been used and not
used

 (>>> 13.13.6 "Checklists for ESM states" Page 288)

6. Checklists for checking the AMFs used

 (>>> 13.13.7 "Checklists for AMFs used" Page 290)

7. Checklists for checking the general safety-oriented settings

 (>>> 13.13.8 "Checklists – General safety settings" Page 299)

It is possible to create a report of the current safety configuration.

 (>>> 13.13 "Safety acceptance overview" Page 275)

13.13.1 Checklist – System safety functions

Checklist Serial number of the robot: ____________________

 ID of the safety configuration: ____________________

 Name of safety maintenance technician: ____________________

The completed checklists, confirmed in writing, must be kept as doc-
umentary evidence.

If a test requires persons to be present in the danger zone, the test
must be conducted in T1 mode.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
No. Activity
Ye

s
Not relevant

1 Operator safety: is all operator safety equipment configured,
properly connected and tested for correct function?

2 Operator safety: a stop is triggered if AUT or T2 mode is active
with the operator safety open.

3 Operator safety: a manual reset function is present and acti-
vated.

4 Brake test: is a brake test planned and has an application
been created for this purpose?

5 Hand guiding device enabling state: is the enabling device of
the hand guiding device configured, properly connected and
tested for correct function?

6 Local EMERGENCY STOP: are all local EMERGENCY STOP
devices configured, properly connected and tested for correct
function?

7 External EMERGENCY STOP: are all external EMERGENCY
STOP devices configured, properly connected and tested for
correct function?

8 Local and external EMERGENCY STOP: are the local and
external EMERGENCY STOPs each configured as an individ-
ual AMF in a row of the PSM table?

9 If unplugging of the smartPAD is allowed in the station configu-
ration: is at least one external EMERGENCY STOP device
installed?

10 Safety stop: is all operator safety equipment configured, prop-
erly connected and tested for correct function?

11 Safe operational stop: is all equipment for the safe operational
stop configured, properly connected and tested for correct
function?

12 When using position-based AMFs: is the limited safety integ-
rity of the position-based AMFs taken into consideration in the
absence of position referencing?

 (>>> "Position-based AMFs" Page 279)

Note: Initiation of the safe state in the absence of position ref-
erencing can be configured by using the AMF Position refer-
encing.

13 When using position-based AMFs: has position referencing
been carried out successfully?

14 If external position referencing is used: has a suitable test
method for position mastering been provided?

15 If external position referencing is used: has it been ensured
that the input is only set after successful testing?

16 Velocity monitoring: have all necessary velocity monitoring
tests been configured and tested?

17 Manual guidance: has it been configured in such a way that
appropriate velocity monitoring is active in every operating
mode for manual guidance?

18 If using the enabling device of the hand guiding device as an
input for deactivating safety functions:

Has it been taken into consideration that using the enabling
device as an input may result in safety functions being deacti-
vated during manual guidance?
277 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

278 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
19 Workspace monitoring: have all necessary workspace moni-
toring tests been configured and tested?

20 Cartesian workspace monitoring functions: has it been taken
into consideration that the system does not monitor the entire
structure of the robot, tool and workpiece against the space
violation, but only the monitoring spheres on the robot and
tool?

21 Collision detection: have all necessary HRC functionalities
been configured?

22 Collision detection: has it been configured in such a way that
velocity monitoring is also always active when collision detec-
tion is active?

23 Collision detection: has it been configured in such a way that
velocity monitoring is also always active when TCP force mon-
itoring or monitoring of a base-related TCP force component is
active?

24 Collision detection: When using the AMF Base-related TCP
force component:

has it been ensured that no hazardous forces can arise in the
non-monitored directions?

25 Collision detection: is a safety stop 0 configured for all safety
monitoring functions in order to detect crushing situations?

26 When using axis torque-based AMFs: is the limited safety
integrity of the axis torque-based AMFs taken into consider-
ation in the absence of position referencing and/or torque ref-
erencing?

 (>>> "Axis torque-based AMFs" Page 280)

Note: Initiation of the safe state in the absence of position
and/or torque referencing can be configured by using the AMF
Position referencing and/or the AMF Torque referencing.

27 In the configuration of all rows in the PSM table and all ESM
states, has it been taken into account that the safe state of the
AMFs is the “violated” state (state “0”)?

Note: In the event of an error, an AMF goes into the safe state.

28 PSM configuration: in the configuration of output signals, has it
been taken into account for the safety reaction that an output
is LOW (state “0”) in the safe state?

29 ESM configuration: are all ESM states consistent, i.e. does
each individual ESM state sufficiently reduce all dangers?

30 Have torque and position referencing been carried out suc-
cessfully?

31 If the monitored kinematic system is fastened to a carrier kine-
matic system (e.g. mobile platform, linear unit):

Has the fact been taken into consideration that, with the AMF
Cartesian workspace monitoring / Cartesian protected space
monitoring, the monitoring space is defined relative to the base
of the monitored kinematic system and moves with the carrier
kinematic system?

No. Activity
Ye

s
Not relevant
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
By signing, the signatory confirms the correct and complete performance of
the safety acceptance test.

Position-based

AMFs

The safety integrity of position-based AMFs is only given without limitations
when position referencing has been carried out successfully. (Position-based
AMFs are only supported by robot types that have corresponding sensor sys-
tems, e.g. LBR iiwa.)

32 If the monitored kinematic system is fastened to a carrier kine-
matic system (e.g. mobile platform, linear unit):

Has the fact been taken into consideration that, with the AMF
Cartesian velocity monitoring, it is not the absolute velocity, but
the velocity of the monitored kinematic system relative to the
carrier kinematic system that is monitored?

33 If the monitored kinematic system is fastened to a carrier kine-
matic system (e.g. mobile platform, linear unit):

Has the fact been taken into consideration that, with the AMF
Tool-related velocity component, it is not the absolute velocity,
but the velocity of the monitored kinematic system relative to
the carrier kinematic system that is monitored?

34 If the monitored kinematic system is fastened to a carrier kine-
matic system (e.g. mobile platform):

Has the fact been taken into consideration that, with the AMF
Tool orientation, the reference orientation is defined relative to
the carrier kinematic system and moves with the carrier kine-
matic system?

35 If the monitored kinematic system is fastened to a carrier kine-
matic system (e.g. mobile platform):

Has the fact been taken into consideration that, with the AMF
Base-related TCP force component, the reference coordinate sys-
tem is defined relative to the robot base and the monitored
direction of the force component moves with the carrier kine-
matic system?

36 If the monitored kinematic system is fastened to a carrier kine-
matic system (e.g. mobile platform, linear unit):

Has the fact been taken into consideration that the safety
integrity of the AMFs Collision detection, TCP force monitoring
and Base-related TCP force component is only assured as
long as the carrier kinematic system is at a standstill?

No. Activity
Ye

s
Not relevant

Place, date

Signature

AMF Position referencing Torque referencing

Standstill monitoring of all axes

Axis range monitoring

Cartesian velocity monitoring

Tool-related velocity component

Cartesian workspace monitoring
279 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

280 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Axis torque-

based AMFs

The safety integrity of axis torque-based AMFs is only given without limitations
when position and/or torque referencing has been carried out successfully.
(Axis torque-based AMFs are only supported by robot types that have corre-
sponding sensor systems, e.g. LBR iiwa.)

13.13.2 Checklist for tool selection table

Description If one of the following AMFs is used in the safety configuration, it is necessary
to check the mapped safety-oriented tools:

 Cartesian velocity monitoring

Only if the monitoring spheres on the tool are configured as a structure to
be monitored.

 Tool-related velocity component

 Cartesian workspace monitoring / Cartesian protected space monitoring

Only if the monitoring spheres on the tool are configured as a structure to
be monitored.

 Tool orientation

 Collision detection

 TCP force monitoring

 Base-related TCP force component

 Torque referencing

For each activated row of the tool selection table, it is necessary to check
whether the selected tool has been correctly assigned to the kinematic sys-
tem. This can be checked, for example, using a suitable test for verification of
the tool parameters. A test is suitable if it checks a tool parameter whose value
differs significantly from that of the other safety-oriented tools:

 In the case of significantly different geometric dimensions, it is advisable
to check whether the geometric tool data have been specified correctly.

 (>>> 13.13.3.5 "Geometry data of the tool" Page 284)

 In the case of significantly different geometric dimensions, it is advisable
to check whether the geometric tool data have been specified correctly.

 (>>> 13.13.3.6 "Load data of the tool" Page 285)

 In the case of significantly different parameters when using the AMF Tool
orientation, it is advisable to check whether the tool orientation that is to be
monitored is correctly configured.

 (>>> 13.13.3.3 "Tool orientation" Page 283)

Cartesian protected space monitoring

Tool orientation

AMF Position referencing Torque referencing

AMF Position referencing Torque referencing

Axis torque monitoring

Collision detection

TCP force monitoring

Base-related TCP force component
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 In the case of significantly different parameters when using the AMF Tool-
related velocity component, it is advisable to check whether the velocity
component that is to be monitored is correctly configured.

 (>>> 13.13.3.4 "Tool-specific velocity component" Page 283)

Precondition If the tool is activated via an input: the configured input is HIGH.

 If the tool is always active: only the fixed tool is mounted on the kinematic
system.

Checklist Row no.: ____________________

 Assigned kinematic system: ____________________

 Selected tool: ____________________

 Activation signal (always active/name of input): ____________________

13.13.3 Checklists for safety-oriented tools

13.13.3.1Pickup frame for fixed tools

Description If the fixed tool of a kinematic system can pick up activatable tools, and if one
of the following AMFs is simultaneously used in the safety configuration, the
position and orientation of the pickup frame of the fixed tool (= standard frame
for motions of the fixed tool) must be checked:

 Cartesian velocity monitoring

Only if the monitoring spheres on the tool are configured as a structure to
be monitored.

 Tool-related velocity component

 Cartesian workspace monitoring / Cartesian protected space monitoring

Only if the monitoring spheres on the tool are configured as a structure to
be monitored.

 Tool orientation

 Collision detection

 TCP force monitoring

 Base-related TCP force component

 Torque referencing

If the fixed tool of a kinematic system can pick up workpieces, and if one of the
following AMFs is simultaneously used in the safety configuration, the position
and orientation of the pickup frame of the fixed tool must also be checked:

 Collision detection

 TCP force monitoring

 Base-related TCP force component

 Torque referencing

If the fixed tool is used for picking up workpieces (no activatable tool can be
coupled), the pickup frame of the fixed tool must be verified by checking

For each row in the tool selection table, the points in the checklist
must be executed and separately documented.

No. Activity
Ye

s
Not relevant

1 The row has been checked successfully: the correct tool has
been assigned to the kinematic system.
281 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

282 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
whether the load data of the tool have been specified correctly. The test must
be carried out with as heavy a workpiece as possible.

 (>>> 13.13.3.6 "Load data of the tool" Page 285)

If the fixed tool is used for picking up an activatable tool (e.g. in the case of a
tool changer), the pickup frame of the fixed tool must be verified by means of
a suitable test with the activatable tool coupled to the fixed tool. A test is suit-
able if the parameters of the pickup frame have a major influence on the test
result:

 In the case of large values for the position of the pickup frame and/or a pro-
truding coupled tool, it is advisable to check whether the geometric tool
data have been specified correctly.

 (>>> 13.13.3.5 "Geometry data of the tool" Page 284)

If the tool is relevant for the monitoring of a tool-specific velocity compo-
nent, it is advisable to check whether the velocity component that is to be
monitored is correctly configured.

 (>>> 13.13.3.4 "Tool-specific velocity component" Page 283)

 In the case of large values for the position of the pickup frame and a heavy
coupled tool, it is advisable to check whether the load data of the tool have
been specified correctly.

 (>>> 13.13.3.6 "Load data of the tool" Page 285)

 If only the tool orientation is monitored for a kinematic system, the orienta-
tion of the pickup frame can be verified. The test is only suitable if none of
the other aforementioned AMFs is used in the safety configuration for this
kinematic system.

 (>>> 13.13.3.3 "Tool orientation" Page 283)

Precondition If the fixed tool picks up workpieces:

 The tool has picked up the heaviest possible workpiece.

 The correct safety-oriented workpiece is active.

 If the fixed tool picks up activatable tools:

 An activatable tool is coupled to the fixed tool.

 The configured input used for activating the coupled tool is HIGH.

Checklist Name of the fixed tool: ____________________

13.13.3.2Pickup frame for activatable tools

Description If an activatable tool of a kinematic system can pick up a workpiece, and if one
of the following AMFs is simultaneously used in the safety configuration, the
position and orientation of the pickup frame of the activatable tool must be
checked:

 Collision detection

For each fixed tool in the tool selection table, the points in the check-
list must be executed and separately documented if the following pre-
conditions are met:

 The tool can pick up workpieces or activatable tools.

 AND: One of the AMFs listed here is used in the safety configuration for
the kinematic system to which the tool is assigned.

No. Activity
Ye

s
Not relevant

1 Position and orientation of the pickup frame have been
checked successfully.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 TCP force monitoring

 Base-related TCP force component

 Torque referencing

The pickup frame of the tool can be verified by means of checking whether the
load data of the tool have been specified correctly. The test must be carried
out with as heavy a workpiece as possible.

 (>>> 13.13.3.6 "Load data of the tool" Page 285)

Precondition The configured input used for activating the tool is HIGH.

 The tool has picked up the heaviest possible workpiece.

 The correct safety-oriented workpiece is active.

Checklist Name of the activatable tool: ____________________

13.13.3.3Tool orientation

Description If one of the following AMFs is used in the safety configuration, it is necessary
to check whether the tool orientation that is to be monitored has been config-
ured correctly:

 Tool orientation

 (>>> 13.13.7.24 "AMF Tool orientation" Page 297)

Precondition Position referencing has been carried out successfully.

 The correct safety-oriented tool is active.

 If a fixed tool is checked: no activatable tool is coupled.

Checklist Name of the tool: ____________________

13.13.3.4Tool-specific velocity component

Description If one of the following AMFs is used in the safety configuration, it is necessary
to check whether the tool-specific velocity component that is to be monitored
has been configured correctly:

For each activatable tool in the tool selection table, the points in the
checklist must be executed and separately documented if the follow-
ing preconditions are met:

 The tool can pick up workpieces.

 AND: One of the AMFs listed here is used in the safety configuration for
the kinematic system to which the tool is assigned.

No. Activity
Ye

s
Not relevant

1 Position and orientation of the pickup frame have been
checked successfully.

The checklist must be completed for every safety-oriented tool that is
mapped in the tool selection table to a kinematic system for which the
Tool orientation AMF is configured.

No. Activity
Ye

s
Not relevant

1 The correct configuration of the tool orientation that is to be
monitored has been successfully checked.
283 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

284 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Tool-related velocity component

 (>>> 13.13.7.25 "AMF Tool-related velocity component" Page 298)

Precondition Position referencing has been carried out successfully (not necessary in
the case of a mobile platform).

 The correct safety-oriented tool is active.

 If a fixed tool is checked: no activatable tool is coupled.

Checklist Name of the tool: ____________________

13.13.3.5Geometry data of the tool

Description If one of the following AMFs is used in the safety configuration, it is necessary
to check that the geometric tool data have been entered correctly:

 Cartesian velocity monitoring

Only if the monitoring spheres on the tool are configured as a structure to
be monitored.

 Cartesian workspace monitoring / Cartesian protected space monitoring

Only if the monitoring spheres on the tool are configured as a structure to
be monitored.

The geometric tool data can be tested by intentionally violating one of the con-
figured monitoring spaces with each tool sphere and checking the reaction.

If no space monitoring functions are used, only the position of the sphere cen-
ter points is relevant. The configured Cartesian velocity limit can be tested by
intentionally exceeding this velocity for each tool sphere and checking the re-
action.

Precondition Position referencing has been carried out successfully (not necessary in
the case of a mobile platform).

 The correct safety-oriented tool is active.

 If the geometry data of a fixed tool are checked: no activatable tool is cou-
pled.

Checklist Name of the safety-oriented tool: ____________________

The checklist must be completed for every safety-oriented tool that is
mapped in the tool selection table to a kinematic system for which the
Tool-related velocity component AMF is configured.

No. Activity
Ye

s
Not relevant

1 The correct configuration of the tool-specific velocity compo-
nent that is to be monitored has been successfully checked.

The checklist must be completed for every safety-oriented tool that is
mapped in the tool selection table to a kinematic system for which one
of the AMFs referred to above is configured.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.13.3.6Load data of the tool

Description If one of the following AMFs is used in the safety configuration, it is necessary
to check that the load data of the safety-oriented tool have been entered cor-
rectly.

 Collision detection

 TCP force monitoring

 Base-related TCP force component

 Torque referencing

It is advisable to check the load data by performing torque referencing in sev-
eral suitable poses. Suitable poses include those with similar axis angles in the
horizontal extended position which have the following characteristics:

 Axes A2, A4 and A6 are loaded.

 The poses differ in their axis value of A7 by 90°.

If the load data are correct, torque referencing must be successful.

Precondition Position and torque referencing have been carried out successfully.

 The correct safety-oriented tool is active.

 If the load data of a fixed tool are checked: no activatable tool is coupled.

 If a safety-oriented workpiece is picked up by the tool to check the load da-
ta: The correct safety-oriented workpiece is active.

Checklist Name of the tool: ____________________

 Mass: ____________________

 Center of mass:

No. Activity
Ye

s
Not relevant

1 Tool sphere (frame name) _____________

Have the radius and position of the tool sphere been correctly
entered and checked?

2 Tool sphere (frame name) _____________

Have the radius and position of the tool sphere been correctly
entered and checked?

3 Tool sphere (frame name) _____________

Have the radius and position of the tool sphere been correctly
entered and checked?

4 Tool sphere (frame name) _____________

Have the radius and position of the tool sphere been correctly
entered and checked?

5 Tool sphere (frame name) _____________

Have the radius and position of the tool sphere been correctly
entered and checked?

6 Tool sphere (frame name) _____________

Have the radius and position of the tool sphere been correctly
entered and checked?

The checklist must be completed for every safety-oriented tool that is
mapped in the tool selection table to a kinematic system for which one
of the AMFs referred to above is configured.
285 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

286 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

13.13.4 Checklist for safety-oriented workpieces

Description If one of the following AMFs is used in the safety configuration, it is necessary
to check that the load data of the safety-oriented workpieces have been en-
tered correctly.

 Collision detection

 TCP force monitoring

 Base-related TCP force component

It is advisable to check the load data by performing torque referencing in sev-
eral suitable poses. Suitable poses include those with similar axis angles in the
horizontal extended position which have the following characteristics:

 Axes A2, A4 and A6 are loaded.

 The poses differ in their axis value of A7 by 90°.

If the load data are correct, torque referencing must be successful.

Precondition Position and torque referencing have been carried out successfully.

 The correct safety-oriented workpiece is active.

Checklist

No. Activity
Ye

s
Not relevant

1 Have the load data of the tool been correctly entered and
checked?

No. Activity
Ye

s
Not relevant

1 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

2 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
3 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

4 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

5 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

6 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

7 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

No. Activity
Ye

s
Not relevant
287 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

288 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.13.5 Checklist for rows used in the PSM tables

Description Each row in the PSM table KUKA PSM and in the PSM table Customer PSM
must be tested to verify that the expected reaction is triggered. If the reaction
is to switch off an output, the test must also ensure that the output is correctly
connected.

A row in the PSM table can be tested by violating 2 of its AMFs at a time. It is
then possible to test the remaining AMF separately in a targeted manner. If
fewer than 3 AMFs are used in a row, the unassigned columns are regarded
as violated AMFs.

 (>>> 13.13.7 "Checklists for AMFs used" Page 290)

Checklist Row no.: ____________________

13.13.6 Checklists for ESM states

13.13.6.1Used ESM states

Description Each row in the ESM state must be tested to verify that the expected reaction
is triggered when the configured AMF is violated.

 (>>> 13.13.7 "Checklists for AMFs used" Page 290)

8 Name of workpiece: _____________

Have the load data of the workpiece been correctly entered
and checked?

 Mass: ____________________

 Center of mass:

 MS X: ____________________

 MS Y: ____________________

 MS Z: ____________________

No. Activity
Ye

s
Not relevant

For each row in the PSM table, the points in the checklist must be ex-
ecuted and separately documented.

No. Activity
Ye

s
Not relevant

1 AMF 1 was tested successfully. Precondition: AMF 2 and
AMF 3 are violated.

AMF 1: ______________________________________

2 AMF 2 was tested successfully. Precondition: AMF 1 and
AMF 3 are violated.

AMF 2: ______________________________________

3 AMF 3 was tested successfully. Precondition: AMF 1 and
AMF 2 are violated.

AMF 3: ______________________________________

For each ESM state, the points in the checklist must be executed and
separately documented.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Checklist ESM state: ____________________

No. Activity
Ye

s
Not relevant

1 AMF row 1 was tested successfully.

AMF row 1: _________________________________

2 AMF row 2 was tested successfully.

AMF row 2: _________________________________

3 AMF row 3 was tested successfully.

AMF row 3: _________________________________

4 AMF row 4 was tested successfully.

AMF row 4: _________________________________

5 AMF row 5 was tested successfully.

AMF row 5: _________________________________

6 AMF row 6 was tested successfully.

AMF row 6: _________________________________

7 AMF row 7 was tested successfully.

AMF row 7: _________________________________

8 AMF row 8 was tested successfully.

AMF row 8: _________________________________

9 AMF row 9 was tested successfully.

AMF row 9: _________________________________

10 AMF row 10 was tested successfully.

AMF row 10: _________________________________

11 AMF row 11 was tested successfully.

AMF row 11: _________________________________

12 AMF row 12 was tested successfully.

AMF row 12: _________________________________

13 AMF row 13 was tested successfully.

AMF row 13: _________________________________

14 AMF row 14 was tested successfully.

AMF row 14: _________________________________

15 AMF row 15 was tested successfully.

AMF row 15: _________________________________

16 AMF row 16 was tested successfully.

AMF row 16: _________________________________

17 AMF row 17 was tested successfully.

AMF row 17: _________________________________

18 AMF row 18 was tested successfully.

AMF row 18: _________________________________

19 AMF row 19 was tested successfully.

AMF row 19: _________________________________

20 AMF row 20 was tested successfully.

AMF row 20: _________________________________
289 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

290 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.13.6.2Non-used ESM states

Description All ESM states which are not used must be tested as to whether a safety stop
is triggered when the ESM state is selected.

Checklist

13.13.7 Checklists for AMFs used

An AMF which is used in more than one row in the PSM table must be sepa-
rately tested in each row.

13.13.7.1AMF smartPAD Emergency Stop

Checklist

13.13.7.2AMF smartPAD enabling switch inactive

Checklist

13.13.7.3AMF smartPAD enabling switch panic active

Checklist

13.13.7.4AMF Hand guiding device enabling inactive

All enabling switches and panic switches configured for the hand guiding de-
vice must be tested.

No. Activity
Ye

s
Not relevant

1 Selection of non-used ESM state 1 was tested successfully.

2 Selection of non-used ESM state 2 was tested successfully.

3 Selection of non-used ESM state 3 was tested successfully.

4 Selection of non-used ESM state 4 was tested successfully.

5 Selection of non-used ESM state 5 was tested successfully.

6 Selection of non-used ESM state 6 was tested successfully.

7 Selection of non-used ESM state 7 was tested successfully.

8 Selection of non-used ESM state 8 was tested successfully.

9 Selection of non-used ESM state 9 was tested successfully.

10 Selection of non-used ESM state 10 was tested successfully.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered by pressing the E-STOP
on the smartPAD.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered by releasing an enabling
switch on the smartPAD.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered by pressing an enabling
switch down fully on the smartPAD.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Checklist Used input, enabling switch 1: ____________________

 Used input, enabling switch 2: ____________________

 Used input, enabling switch 3: ____________________

 Used input, panic switch 1: ____________________

 Used input, panic switch 2: ____________________

 Used input, panic switch 2: ____________________

13.13.7.5AMF Hand guiding device enabling active

All enabling switches configured for the hand guiding device must be tested.

Checklist Used input, enabling switch 1: ____________________

 Used input, enabling switch 2: ____________________

 Used input, enabling switch 3: ____________________

13.13.7.6AMF Test mode

Checklist

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered by releasing enabling
switch 1.

2 The configured reaction is triggered by pressing fully down on
enabling switch 1 (panic position).

3 The configured reaction is triggered by releasing enabling
switch 2.

4 The configured reaction is triggered by pressing fully down on
enabling switch 2 (panic position).

5 The configured reaction is triggered by releasing enabling
switch 3.

6 The configured reaction is triggered by pressing fully down on
enabling switch 3 (panic position).

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered by pressing enabling
switch 1.

2 The configured reaction is triggered by pressing enabling
switch 2.

3 The configured reaction is triggered by pressing enabling
switch 3.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered in T1.

2 The configured reaction is triggered in T2.

3 The configured reaction is triggered in CRR.
291 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

292 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
13.13.7.7AMF Automatic mode

Checklist

13.13.7.8AMF Reduced-velocity mode

Checklist

13.13.7.9AMF High-velocity mode

Checklist

13.13.7.10AMF Motion enable

Checklist

13.13.7.11AMF Input signal

Checklist Input used: ____________________

 Instance of the input used: ____________________

13.13.7.12AMF Standstill monitoring of all axes

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered in AUT.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered in T1.

2 The configured reaction is triggered in CRR.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered in T2.

2 The configured reaction is triggered in AUT.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the E-STOP is pressed
on the smartPAD.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the input is LOW
(state “0”).

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if one axis of the moni-
tored kinematic system is moved.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.13.7.13AMF Axis torque monitoring

Description The AMF can be tested by displaying the current measured axis torques on
the smartPAD and then subjecting the monitored axis to gravitational force or
manual loading.

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Monitored axis: ____________________

 Maximum permissible axis torque: ____________________

 Minimum permissible axis torque: ____________________

13.13.7.14AMF Axis velocity monitoring

Description The AMF can be tested by moving the monitored axis at a velocity of approx.
10% over the configured velocity limit.

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Monitored axis: ____________________

 Maximum permissible axis velocity: ____________________

13.13.7.15AMF Position referencing

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

13.13.7.16AMF Torque referencing

Checklist Monitoring instance: ____________________

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the axis torque exceeds
the maximum permissible value.

2 The configured reaction is triggered if the axis torque falls
below the minimum permissible value.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the maximum permissi-
ble axis velocity is exceeded.

This AMF is violated after the robot controller is rebooted.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if one or more axes of the
monitored kinematic system is not referenced.

This AMF is violated after the robot controller is rebooted.
293 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

294 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Monitored kinematic system: ____________________

13.13.7.17AMF Axis range monitoring

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Monitored axis: ____________________

 Lower limit of the permissible axis range: ____________________

 Upper limit of the permissible axis range: ____________________

13.13.7.18AMF Cartesian velocity monitoring

Description The AMF can be tested by moving a monitored point of the monitored kinemat-
ic system at a Cartesian velocity of approx. 10% over the configured velocity
limit.

It must also be tested whether the structure to be monitored is correctly con-
figured. This involves violating the velocity monitoring, both with the monitor-
ing spheres on the robot and on the tool (if both structures are monitored), or
just with the monitoring spheres on the robot or on the tool.

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Monitored structure: ____________________

 Maximum permissible Cartesian velocity: ____________________

13.13.7.19AMF Cartesian workspace monitoring / Cartesian protected space monitoring

Description The first step is to test whether the orientation of the monitoring space is cor-
rectly configured. This involves violating 2 adjoining space surfaces at a mini-
mum of 3 different points in each case.

The second step is to test whether the size of the monitoring space is correctly
configured. This involves violating the other space surfaces at a minimum of
1 point in each case. In total, at least 10 points must be addressed.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if one or more axes of the
monitored kinematic system is not referenced.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the lower limit of the per-
missible axis range is exceeded.

2 The configured reaction is triggered if the upper limit of the
permissible axis range is exceeded.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the maximum permissi-
ble Cartesian velocity is exceeded at a monitored point.

2 The configured reaction is triggered if the velocity monitoring is
violated by the monitoring spheres on the robot.

3 The configured reaction is triggered if the velocity monitoring is
violated only by the monitoring spheres on the tool.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
The third step is to test whether the structure to be monitored is correctly con-
figured. This involves violating the space monitoring, both with the monitoring
spheres on the robot and on the tool (if both structures are to be monitored),
or just with the monitoring spheres on the robot or on the tool.

Checklist Type of monitoring space: ____________________

 Instance of the monitoring space: ____________________

 Monitored kinematic system: ____________________

 Monitored structure: ____________________

 Offset of the origin of the monitoring space:

 X: ____________________ mm

 Y: ____________________ mm

 Z: ____________________ mm

 Orientation of the origin of the monitoring space:

 A: ____________________ °

 B: ____________________ °

 C: ____________________ °

 Length of the monitoring space: ____________________ mm

 Width of the monitoring space: ____________________ mm

13.13.7.20AMF Collision detection

Description The AMF can be tested by displaying the current measured external axis
torques on the smartPAD and then loading the individual axes.

Precondition Torque referencing has been carried out successfully.

Checklist Monitoring instance: ____________________

 Monitored kinematic system:

 Maximum permissible external axis torque: ____________________

13.13.7.21AMF TCP force monitoring

Description In order to test the AMF, suitable measuring equipment is required, e.g. a
spring balance.

During the test, it must be noted that the monitoring function automatically
takes into consideration possible errors on activating safety-oriented work-
pieces. This means that the response may be triggered before the permissible
external TCP force has been reached.

No. Activity
Ye

s
Not relevant

1 The correct configuration of the monitoring space has been
tested as above and the configured reaction is triggered if the
monitoring space is violated.

2 The configured reaction is triggered if the space monitoring is
violated on the monitoring spheres on the robot.

3 The configured reaction is triggered if the space monitoring is
violated on the monitoring spheres on the tool.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the external torque of
one or more axes of the monitored kinematic system exceeds
the maximum permissible external torque.
295 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

296 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Premature triggering of the reaction can be prevented by carrying out the test
as follows:

 Tool has not picked up a workpiece.

 No workpiece is activated in the application.

 Apply the TCP force in the direction of gravitational acceleration (vertically
downwards) or perpendicular to the direction of gravitational acceleration.

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Maximum permissible external TCP force: ____________________

13.13.7.22Base-related TCP force component AMF

Description In order to test the AMF, suitable measuring equipment is required, e.g. a
spring balance.

A force just below the configured maximum permissible TCP force must be ap-
plied to the tool or robot flange in 2 different directions:

 Along the direction of the configured force component

 In a direction perpendicular to the direction of the configured force compo-
nent

This is to ensure that the AMF is only violated if an excessively high force is
applied along the direction of the configured force component.

During the test, it must be noted that the monitoring function automatically
takes into consideration possible errors on activating safety-oriented work-
pieces. This means that the response may be triggered before the permissible
external TCP force has been reached.

If, for example, a workpiece is picked up and activated during the test, this ad-
ditionally considered force corresponds to the weight of the heaviest safety-
oriented workpiece. The considered force acts against gravitational accelera-
tion (vertically upwards).

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Maximum permissible external TCP force: ____________________

 Monitored component of the force vector: ____________________

 Base-related orientation:

 A: _____________ °

 B: _____________ °

 C: _____________ °

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the external force acting
on the TCP exceeds the maximum permissible force.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the external force acting
along the direction of the monitored component of the force
vector exceeds the maximum permissible force.

2 The configured reaction is not triggered if the force applied in
one direction is perpendicular to the direction of the monitored
force component.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
13.13.7.23AMF Time delay

Checklist Instance of delay: ____________________

 Delay time: ____________________

13.13.7.24AMF Tool orientation

Description In order to test the AMF, the permissible orientation cone must be violated at
3 straight lines offset by approx. 120° to one another. This ensures that the
permissible orientation angle, the orientation of the reference vector and the
tool orientation are correctly configured.

The orientation angles of the Z axis of the tool orientation frame are defined
using 3 straight lines situated on the edge of the monitoring cone and offset at
120° to one another. These orientation angles must be set in order to test the
AMF Tool orientation. The AMF must be violated when all 3 orientation angles
are exceeded.

Procedure The procedure describes an example of how the correct configuration of the
monitoring cone can be tested.

1. Orient the Z axis of the tool orientation frame according to the reference
vector relative to the world coordinate system.

2. Exceed the permissible deviation angle by tilting the tool orientation frame
in B or C.

The configured reaction must be triggered.

3. Orient the Z axis of the tool orientation frame according to the reference
vector relative to the world coordinate system.

If a stop reaction has been configured, the robot must be switched to CRR
mode in order for it to be moved.

4. Rotate the tool orientation frame by 120° in A.

5. Exceed the permissible deviation angle by tilting the tool orientation frame
in B or C.

The configured reaction must be triggered.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered after the configured time.

Fig. 13-26: Position of the straight lines on the monitoring cone
297 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

298 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
6. Orient the Z axis of the tool orientation frame according to the reference
vector relative to the world coordinate system.

If a stop reaction has been configured, the robot must be switched to CRR
mode in order for it to be moved.

7. Rotate the tool orientation frame by 120° in A.

8. Exceed the permissible deviation angle by tilting the tool orientation frame
in B or C.

The configured reaction must be triggered.

Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Safety-oriented tool used: ____________________

 Orientation of the reference vector relative to the world coordinate system:

 A: _____________ °

 B: _____________ °

 C: _____________ °

 Permissible workspace (deviation angle): _____________ °

13.13.7.25AMF Tool-related velocity component

Description For the test, a motion with the configured point for the tool-specific velocity
component must be programmed. The test motion must include a reorienta-
tion of the tool in order to check the correct configuration of the monitored
point.

The test must be performed twice:

 Once at a velocity slightly above the maximum permissible velocity.

 Once at a velocity slightly below the maximum permissible velocity.

This is to ensure that the velocity limit is only violated by the configured mon-
itored point.

The test must be carried out for every instance of the AMF and for ev-
ery tool that is mapped in the tool selection table to a kinematic sys-
tem for which the AMF Tool orientation is configured.

 (>>> 13.13.3.3 "Tool orientation" Page 283)

If a fixed tool that can pick up activatable tools is configured, the fixed
tool must be checked in addition to the activatable tools without an ac-
tivatable tool being coupled.

Example: 4 instances of the AMF are configured, with 5 different tools that
can be selected for fastening to the fixed tool. At least 6 tests are required for
verification of all AMF instances and tool orientations. If, on the other hand,
only 2 different tools are available for selection for fastening on the fixed tool,
4 tests are sufficient.

No. Activity
Ye

s
Not relevant

1 The correct configuration of the monitoring cone has been
checked and the configured reaction is triggered when the per-
missible angle for all 3 straight lines has been exceeded.

The test must be carried out for every instance of the AMF and for ev-
ery tool that is mapped in the tool selection table to a kinematic sys-
tem for which the AMF Tool-related velocity component is configured.

 (>>> 13.13.3.4 "Tool-specific velocity component" Page 283)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
Checklist Monitoring instance: ____________________

 Monitored kinematic system: ____________________

 Safety-oriented tool used: ____________________

 Monitored component of the velocity vector: ____________________

 Maximum permissible Cartesian velocity of the monitored component:

13.13.8 Checklists – General safety settings

13.13.8.1smartPAD unplugging allowed

Description The safety parameter smartPAD unplugging allowed in the station configu-
ration determines whether it is possible to move the robot with the smartPAD
unplugged. The configured response must be tested while the robot is moving
in Automatic mode.

 Disconnection not allowed:

If the smartPAD is disconnected, the robot is stopped with a safety stop.

 Disconnection allowed:

If the smartPAD is disconnected, the robot continues moving.

Checklist smartPAD unplugging allowed (true/false): ____________________

13.13.8.2Allow muting via input

Description If a safety-oriented input that allows the deactivation of safety functions is con-
figured in the project settings, a safety stop triggered by one of the following
AMFs can be briefly cancelled:

 Axis range monitoring

 Cartesian workspace monitoring

 Cartesian protected space monitoring

 Tool orientation

 Tool-related velocity component

If a fixed tool that can pick up activatable tools is configured, the fixed
tool must be checked in addition to the activatable tools. The fixed
tool must be tested with no activatable tool coupled.

Example: 4 instances of the AMF are configured, with 5 different tools that
can be selected for fastening to the fixed tool. At least 6 tests are required for
verification of all AMF instances and tool-related velocity components. If, on
the other hand, only 2 different tools are available for selection for fastening
on the fixed tool, 4 tests are sufficient.

No. Activity
Ye

s
Not relevant

1 The configured reaction is triggered if the motion is executed
with a velocity that exceeds the maximum permissible velocity.

2 The configured reaction is not triggered if the motion is exe-
cuted with a velocity that is below the maximum permissible
velocity.

No. Activity Yes

1 The expected response occurs if the smartPAD is unplugged while the
robot is moving in Automatic mode.
299 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

300 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Standstill monitoring of all axes

 Position referencing

 Torque referencing

 Axis torque monitoring

 Collision detection

 TCP force monitoring

 Base-related TCP force component

The configured input must be tested. For this, a safety stop must be triggered
using at least one of the above AMFs, e.g. by violating a workspace or activat-
ing a standstill monitoring function.

 Deactivation of safety functions via an input not allowed:

If the configured input is set to HIGH and retains this value, the robot can-
not be moved when the corresponding AMF is violated.

 Deactivation of safety functions via an input allowed:

If the configured input is set to HIGH and retains this value, the robot can
be moved for 5 seconds even though the corresponding AMF is violated.

Checklist Allow muting via input (true/false): ____________________

 Configured input: ____________________

13.13.8.3Allow external position referencing

Description If a safety-oriented input that allows external position referencing is configured
in the project settings, this input must be tested.

The axis positions are not referenced after a reboot of the robot controller. If
the safety configuration contains a position-based AMF, the warning "Axis not
referenced" is displayed. The warning may no longer be displayed if the input
via which the external position referencing is carried out is set to HIGH for less
than 2 seconds..

Checklist Allow external position referencing (true/false):

 Configured input: ____________________

13.13.9 Creating a safety configuration report

Description A report of the current safety configuration can be created and displayed in the
Editor. The report can be edited and printed for documentation purposes.

The safety configuration report contains the following information for the un-
ambiguous assignment of the safety configuration:

 Name of the Sunrise project to which the safety configuration belongs

 Safety version used

 Safety ID (checksum of the safety configuration)

The safety ID must match the ID of the safety configuration which is acti-
vated on the robot controller and is to be tested.

No. Activity Yes

1 The expected response occurs when the configured input is set to HIGH
and an attempt is made to move the robot.

No. Activity Yes

1 The expected response occurs if the configured input is set to HIGH for
less than 2 seconds.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

13 Safety configuration
 Date and time of the last modification to the safety configuration

Checklists The report provides the following checklists matching the safety configuration:

 Checklist for checking the rows used in the Customer PSM table

 Checklists for checking the ESM states which have been used and not
used

 Checklists for checking the AMFs used

 Checklists for checking the general safety-oriented settings

Warnings The plausibility of the safety configuration is checked. There are warnings for
the following situations:

 One row in the Customer PSM table is deactivated.

 One row in an ESM state is deactivated.

 Unplugging of the smartPAD is allowed, but no external EMERGENCY
STOP is used.

 The input for deactivating safety functions is used in the tool selection ta-
ble.

The safety maintenance technician must give reasons why a warning may be
ignored.

Procedure Right-click on the desired project in the Package Explorer view and select
Sunrise > Create safety configuration report from the context menu.

The report of the current safety configuration is created and opened in the
editor area.

The checklists provided by the safety configuration report are not suf-
ficient for a complete safety acceptance procedure. The following ad-
ditional checklists must be used for complete safety acceptance:

 Checklist for basic test of the safety configuration

 Checklists for checking the safety-oriented tool

 Checklist for checking the safety-oriented workpieces

 Checklist for checking the tool selection table
301 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

302 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
14 Basic principles of motion programming

This chapter describes the theoretical principles of motion programming.

The programming of motions in KUKA Sunrise.Workbench is described in the
following chapter: (>>> 15 "Programming" Page 325)

14.1 Overview of motion types

The following motion types can be programmed as an individual motion:

 Point-to-point motion (PTP)

 (>>> 14.2 "PTP motion type" Page 303)

 Linear motion (LIN)

 (>>> 14.3 "LIN motion type " Page 304)

 Circular motion (CIRC)

 (>>> 14.4 "CIRC motion type" Page 304)

 Manual guidance motion with hand guiding device

 (>>> 14.7 "Manual guidance motion type" Page 311)

The following types of motion can be programmed as segments of a CP spline
block:

 Linear motion (LIN)

 Circular motion (CIRC)

 Polynomial motion (SPL)

The following types of motion can be programmed as segments of a JP spline
block:

 Point-to-point motion (PTP)

 (>>> 14.6 "Spline motion type" Page 305)

The following motions are known as CP (“Continuous Path”) motions:

 LIN, CIRC, SPL, CP spline blocks

The following motions are known as JP (“Joint Path”) motions:

 PTP, JP spline blocks

14.2 PTP motion type

The robot guides the TCP along the fastest path to the end point. The fastest
path is generally not the shortest path in space and is thus not a straight line.
As the motions of the robot axes are simultaneous and rotational, curved paths
can be executed faster than straight paths.

PTP is a fast positioning motion. The exact path of the motion is not predict-
able, but is always the same, as long as the general conditons are not
changed.

4

s

The start point of a motion is always the end point of the previous mo-
tion.
303 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

304 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
14.3 LIN motion type

The robot guides the TCP at the defined velocity along a straight path in space
to the end point.

In a LIN motion, the robot configuration of the end pose is not taken into ac-
count.

14.4 CIRC motion type

The robot guides the TCP at the defined velocity along a circular path to the
end point. The circular path is defined by a start point, auxiliary point and end
point.

In a CIRC motion, the robot configuration of the end pose is not taken into ac-
count.

Fig. 14-1: PTP motion

Fig. 14-2: LIN motion
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
14.5 SPL motion type

The motion type SPL enables the generation of curved paths. SPL motions are
always grouped together in spline blocks. The resulting paths run smoothly
through the end points of the SPL motion.

In an SPL motion, the robot configuration of the end pose is not taken into ac-
count.

14.6 Spline motion type

Spline is a motion type that is particularly suitable for complex, curved paths.
With a spline motion, the robot can execute these complex paths in a contin-
uous motion. Such paths can also be generated using approximated LIN and
CIRC motions, but splines have advantages, however.

Splines are programmed in spline blocks. A spline block is used to group to-
gether several individual motions as an overall motion. The spline block is
planned and executed by the robot controller as a single motion block.

The motions contained in a spline block are called spline segments.

 A CP spline block can contain SPL, LIN and CIRC segments.

 A JP spline block can contain PTP segments.

In a Cartesian spline motion, the robot configuration of the end pose is not tak-
en into account.

The configuration of the end pose of a spline segment depends on the robot
configuration at the start of the spline segment.

Fig. 14-3: CIRC motion

Curved lines are achieved by grouping together 2 or more SPL seg-
ments. If a single SPL segment is executed, the result is the same as
for a LIN command.
305 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

306 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Path of a spline

block

 The path is defined by means of points that are located on the path. These
points are the end points of the individual spline segments.

 All points are passed through without exact positioning.

Exception: The velocity is reduced to 0.

 (>>> 14.6.1 "Velocity profile for spline motions" Page 306)

 If all points are situated in a plane, then the path is also situated in this
plane.

 If all points are situated on a straight line, then the path is also a
straight line.

 There are a few cases in which the velocity is reduced.

 (>>> 14.6.1 "Velocity profile for spline motions" Page 306)

 The path always remains the same, irrespective of the override setting, ve-
locity or acceleration.

 Circles and tight radii are executed with great precision.

14.6.1 Velocity profile for spline motions

The robot controller already takes the physical limits of the robot into consid-
eration during planning. The robot moves as fast as possible within the con-
straints of the programmed velocity, i.e. as fast as its physical limits will allow.

The path always remains the same, irrespective of the override setting, veloc-
ity or acceleration.

Only dynamic effects, such as those caused by high tool loads or the installa-
tion angle of the robot, may result in slight path deviations.

Reduction of the velocity

With spline motions, the velocity falls below the programmed velocity in the fol-
lowing cases:

 Tight corners, e.g. due to abrupt change in direction

 Major reorientation

 Motion in the vicinity of singularities

Fig. 14-4: Curved path with spline block
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
Reduction of the velocity due to major reorientation can be avoided with spline
segments by programming the orientation control SplineOrientationTy-
pe.Ignore.

 (>>> 14.9 "Orientation control with LIN, CIRC, SPL" Page 314)

Reduction of the velocity to 0

With spline motions, exact positioning is carried out in the following cases:

 Successive spline segments with the same end points

 Successive LIN and/or CIRC segments. Cause: inconstant velocity direc-
tion.

In the case of LIN-CIRC transitions, the velocity also drops to 0 if the
straight line is a tangent of the circle. This is caused by the fact that at the
transition point between the straight line (curvature equals 0) and the circle
(curvature is not equal to 0) the curvature characteristic is not constant.

Exceptions:

 In the case of successive LIN segments that result in a straight line and in
which the orientations change uniformly, the velocity is not reduced.

 In the case of a CIRC-CIRC transition, the velocity is not reduced if both
circles have the same center point and the same radius and if the orienta-
tions change uniformly. Since the required accuracy is difficult to achieve
by teaching the end point and auxiliary point, calculation of the points on
the circle is recommended.

Fig. 14-5: Exact positioning at P2

Fig. 14-6: Exact positioning at P2

Fig. 14-7: P2 is executed without exact positioning.
307 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

308 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
14.6.2 Modifications to spline blocks

Description Modification of the position of the point:

If a point within a spline block is offset, the path is modified, at most, in the
2 segments before this point and the 2 segments after it.

Small point offsets generally result in small modifications to the path. If,
however, very long segments are followed by very short segments or vice
versa, small modifications can have a very great effect.

 Modification of the segment type:

If an SPL segment is changed into an LIN segment or vice versa, the path
changes in the previous segment and the next segment.

Example 1 Original path:

A point is offset relative to the original path:

P3 is offset. This causes the path to change in segments P1 - P2, P2 - P3 and
P3 - P4. Segment P4 - P5 is not changed in this case, as it belongs to a CIRC
segment and a circular path is thus defined.

Spline mySpline = new Spline(
 spl(getApplicationData().getFrame("/P1")),

 spl(getApplicationData().getFrame("/P2")),

 spl(getApplicationData().getFrame("/P3")),

 spl(getApplicationData().getFrame("/P4")),

 circ(getApplicationData().getFrame("/P5"),

 getApplicationData().getFrame("/P6")),

 spl(getApplicationData().getFrame("/P7")),

 lin(getApplicationData().getFrame("/P8"))

);

...

robot.move(ptp(getApplicationData().getFrame("/P0")));

robot.move(mySpline);

Fig. 14-8: Original path
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
The type of a segment is changed relative to the original path:

In the original path, the segment type of P2 - P3 is changed from SPL to LIN.
The path changes in segments P1 - P2, P2 - P3 and P3 - P4.

Example 2 Original path:

Fig. 14-9: Point has been offset

Spline mySpline = new Spline(
 spl(getApplicationData().getFrame("/P1")),

 spl(getApplicationData().getFrame("/P2")),

 lin(getApplicationData().getFrame("/P3")),

 spl(getApplicationData().getFrame("/P4")),

 circ(getApplicationData().getFrame("/P5"),

 getApplicationData().getFrame("/P6")),

 spl(getApplicationData().getFrame("/P7")),

 lin(getApplicationData().getFrame("/P8"))

);

...

robot.move(ptp(getApplicationData().getFrame("/P0")));

robot.move(mySpline);

Fig. 14-10: Segment type has been changed

Spline mySpline = new Spline(
 spl(getApplicationData().getFrame("/P2")),

 spl(getApplicationData().getFrame("/P3")),

 spl(getApplicationData().getFrame("/P4")),

 spl(getApplicationData().getFrame("/P5")),
309 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

310 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The following frame coordinates were taught:

A point is offset relative to the original path:

P3 is moved slightly in the Y direction. This causes the path to change in all
the segments illustrated.

Since P2 - P3 and P3 - P4 are very short segments and P1 - P2 and P4 - P5
are long segments, the slight offset causes the path to change greatly.

Remedy:

 Distribute the points more evenly.

 Program straight lines (except very short ones) as LIN segments

14.6.3 LIN-SPL-LIN transition

In the case of a LIN-SPL-LIN segment sequence, it is usually desirable for the
SPL segment to be located within the smaller angle between the two straight
lines. Depending on the start and end point of the SPL segment, the path may
also move outside this area.

);

...

robot.move(mySpline);

Fig. 14-11: Original path

Frame X Y Z

P2 100.0 0.0 0.0

P3 102.0 0.0 0.0

P4 104.0 0.0 0.0

P5 204.0 0.0 0.0

Frame X Y Z

P3 102.0 1.0 0.0

Fig. 14-12: Point has been offset
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
The path remains inside the smaller angle if the following conditions are met:

 The extensions of the two LIN segments intersect.

 2/3 ≤ a/b ≤ 3/2

a = distance from start point of the SPL segment to intersection of the LIN
segments

b = distance from intersection of the LIN segments to end point of the SPL
segment

14.7 Manual guidance motion type

Description The robot can be guided using a hand guiding device. The hand guiding de-
vice is a device equipped with an enabling device and which is required for the
manual guidance of the robot.

Manual guidance mode can be switched on in the application using the motion
command handGuiding(). Manual guidance begins at the actual position
which was reached before the mode was switched on.

 (>>> 15.9 "Programming manual guidance" Page 352)

In Manual guidance mode, the robot reacts compliantly to outside forces and
can be manually guided to any point in the Cartesian space. The impedance
parameters are automatically set when the robot is switched to Manual guid-
ance mode. The impedance parameters for manual guidance cannot be mod-
ified.

A manual guidance motion command can only be executed by an application
in Automatic mode. If the application is paused in Manual guidance mode, e.g.
because of a safety stop triggered by an EMERGENCY STOP, the manual
guidance motion is terminated. When the application is resumed, the next mo-
tion command is executed directly.

Precondition Hand guiding device with enabling device

 Manual guidance in Automatic mode is configured as not allowed (param-
eter Enable manual guidance in Automatic mode = false)

 (>>> 10.3.2 "Manual guidance support" Page 169)

Fig. 14-13: LIN-SPL-LIN
311 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

312 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 ESM state for manual guidance motion has been configured.

The ESM state contains the AMF Hand guiding device enabling inactive,
which monitors the enabling switch on the hand guiding device.

 (>>> 13.10.5.1 "Monitoring of enabling switches on hand guiding devices"
Page 236)

The robot can be guided manually when the enabling switch on the hand
guiding device is pressed and held in the center position. If the enabling
switch is pressed down fully or released, the signal for manual guidance is
cancelled and the robot remains in its current position.

 ESM state for all motions except manual guidance motion has been con-
figured.

The ESM state does not contain the AMF Hand guiding device enabling
inactive. The signal at the hand guiding device is not evaluated.

 Automatic mode

 The safety equipment must be HRC-compliant.

14.8 Approximate positioning

Approximate positioning means that the motion does not stop exactly at the
end point of the programmed motion, allowing continuous robot motion. Dur-
ing motion programming, different parameters can influence the approximate
positioning.

The point at which the original path is left and the approximate positioning arc
begins is referred to as the approximate positioning point.

PTP motion

The TCP leaves the path that would lead directly to the end point and moves,
instead, along a path that allows it to pass the end point without exact position-
ing. The path thus goes past the point and no longer passes through it.

In Manual guidance mode, incorrectly selected parameters (e.g. in-
correct load data, incorrect tool), incorrect information (e.g. from de-
fective torque sensors) or additional overlaid forces can be

interpreted as external forces. This can result in unpredictable robot motions.

If the signal for manual guidance is issued before Manual guidance
mode is switched on in the application, Manual guidance mode will be
active as soon as it is switched on. This means that motion execution

is not paused when the mode is switched on, making for a smooth transition
between Application mode and Manual guidance mode.
Precondition for this response: the application velocity is less than the maxi-
mum permissible velocity configured for manual guidance.
 (>>> 13.10.5.3 "Velocity monitoring during manual guidance" Page 238)
If the application is executed at a higher velocity, the application is paused
before switching to manual guidance mode. (Then release the enabling
switch, press the Start key and wait until the application is paused again.)

To approximate motions without exact positioning, they must be exe-
cuted asynchronously or grouped in a MotionBatch.
 (>>> 15.6.1 "Synchronous and asynchronous motion execution"

Page 342)
 (>>> 15.6.6 "MotionBatch" Page 346)

In the case of approximate positioning of motions executed synchro-
nously, an exact positioning point is executed at the start of the ap-
proximate positioning arc. This also applies, in the case of

synchronous execution, to the last motion within a MotionBatch.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
During programming, the relative maximum distance from the end point at
which the TCP may deviate from its original path in axis space is defined. A
relative distance of 100% corresponds to the entire path from the start point to
the end point of the motion.

The approximation contour executed by the TCP is not necessarily the shorter
path in Cartesian space. The approximated point can thus also be located
within the approximate positioning arc.

LIN motion

The TCP leaves the path that would lead directly to the end point and moves
along a shorter path. During programming of the motion, the maximum dis-
tance from the end point at which the TCP may deviate from its original path
is defined.

CIRC motion

The TCP leaves the path that would lead directly to the end point and moves
along a shorter path. During programming of the motion, the maximum dis-
tance from the end point at which the TCP may deviate from its original path
is defined.

The auxiliary point may fall within the approximate positioning range and not
be passed through exactly. This is dependent on the position of the auxiliary
point and the programmed approximation parameters.

Fig. 14-14: PTP motion, P2 is approximated

Fig. 14-15: LIN motion, P2 is approximated

Fig. 14-16: CIRC motion, PEND is approximated
313 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

314 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
All spline blocks and all individual motions can be approximated with one an-
other. It makes no difference whether they are CP or JP spline blocks, nor is
the motion type of the individual motion relevant.

The motion type of the approximate positioning arc always corresponds to the
second motion. In the case of PTP-LIN approximation, for example, the ap-
proximate positioning arc is of type CP.

If a spline block is approximated, the entire last segment is approximated. If
the spline block only consists of one segment, a maximum of half the segment
is approximated (this also applies for PTP, LIN and CIRC).

Approximate positioning not possible due to time:

If approximation is not possible due to delayed motion commanding, the robot
waits at the start of the approximate positioning arc. The robot moves again as
soon as it has been possible to plan the next block. The robot then executes
the approximate positioning arc. Approximate positioning is thus technically
possible; it is merely delayed.

No approximate positioning in Step mode:

In Step mode, the robot stops exactly at the end point, even in the case of ap-
proximated motions.

In the case of approximate positioning from one spline block to another spline
block, the result of this exact positioning is that the path is different in the last
segment of the first block and in the first segment of the second block in rela-
tion to the path in standard mode.

In all other segments of both spline blocks, the path is identical in both pro-
gram run modes.

Approximated motions which were sent to the robot controller asynchronously
before Step mode was activated and which are waiting there to be executed
will stop at the approximate positioning point. For these motions, the approxi-
mate positioning arc will be executed when the program is resumed.

14.9 Orientation control with LIN, CIRC, SPL

Description The orientation of the TCP can be different at the start point and end point of
a motion. During motion programming, it is possible to define how to deal with
the different orientations.

Orientation control is set as a motion parameter by the setOrientationType(…)
method. Orientation control is a value of type Enum SplineOrientationType.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
Orientation control Description

Constant The orientation of the TCP remains constant during the motion.

The orientation of the start point is retained. The orientation of the
end point is not taken into consideration.

Ignore The orientation of the TCP changes during the motion.

This option is only available for individual spline segments, not for the
entire spline block or individual motions. The controller calculates the
orientation control on the basis of the orientation of the surrounding
control points, unless their orientation is also ignored.

Ignore is used if no specific orientation is required for a spline seg-
ment.

 (>>> "Ignore" Page 316)

Note: In the case of Ignore, the orientation of the end point is not
taken into consideration. If it is important for the taught orientation to
be maintained at the end point, e.g. to avoid collisions, Ignore must
not be used.

OriJoint The orientation of the TCP changes continuously during the motion.
This is done by linear transformation (axis-specific motion) of the
wrist axis angles.

Note: Use OriJoint if, with VariableOrientation, the robot passes
through a wrist axis singularity. The orientation of the TCP changes
continuously during the motion, but not uniformly. OriJoint is thus not
suitable if a specific orientation must be maintained exactly, e.g. in
the case of laser welding.

VariableOrientation During the motion, a continuous transition of the orientation of the
TCP occurs from the orientation of the start point to the orientation of
the end point.

If the orientation control is not set, this orientation control applies as
the default.

Fig. 14-17: Constant orientation (constant)
315 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

316 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
CIRC motion It is possible to define for CIRC motions whether the orientation control is to
be space-related or path-related.

 (>>> 14.9.1 "CIRC – reference system for the orientation control" Page 316)

During CIRC motions, the robot controller only takes the orientation of the end
point into consideration. It is possible to define whether, and to what extent,
the orientation of the auxiliary point is to be taken into consideration. The ori-
entation behavior at the end point can also be defined.

Ignore The orientation type SplineOrientationType.Ignore is used if no specific orien-
tation is required at a point. The robot controller ignores the taught or pro-
grammed orientation of the point. Instead, it calculates the optimal orientation
for this point on the basis of the orientations of the surrounding points. This re-
duces the cycle time.

Example:

The taught or programmed orientation of P3 and P4 is ignored.

SplineOrientationType.Ignore is not allowed for the following spline segments:

 The first and last segment in a spline block

 CIRC segments with OrientationReferenceSystem.Path

 Segments followed by a CIRC segment with OrientationReferenceSys-
tem.Path

 Segments followed by a segment with SplineOrientationType.Constant

 Successive segments in a spline block with the same end point

14.9.1 CIRC – reference system for the orientation control

Description It is possible to define for CIRC motions whether the orientation control is to
be space-related or path-related.

Fig. 14-18: Variable orientation (VariableOrientation or OriJoint)

robot.move(P0);

Spline path6 = new Spline(
 spl(P1),

 spl(P2),

 spl(P3).setOrientationType(SplineOrientationType.Ignore),

 spl(P4).setOrientationType(SplineOrientationType.Ignore),

 spl(P5),

 spl(P6)

),

...

robot.move(path6);
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
The reference system of the orientation control is set as a motion parameter
by the setOrientationReferenceSystem(…) method. Orientation control is a
value of type Enum OrientationReferenceSystem.

The reference system of the orientation control can only be specified before
the orientation type.

Example Path-related circular motion with constant orientation:

Restriction OrientationReferenceSystem.Path is not allowed for the following spline seg-
ments:

 CIRC segments with SplineOrientationType.Ignore

 CIRC segments preceded by a segment with SplineOrientationType.Ig-
nore

14.9.2 CIRC – combinations of reference system and type for the orientation control

Path-related circular motion with constant orientation:

 OrientationReferenceSystem.Path

 SplineOrientationType.Constant

Path-related circular motion with variable orientation:

 OrientationReferenceSystem.Path

 SplineOrientationType.VariableOrientation

Reference sys-

tem
Description

Base Base-related orientation control during the circular
motion

Path Path-related orientation control during the circular
motion

robot.move(circ(P6, P7)

.setOrientationReferenceSystem(OrientationReferenceSystem.Path)

.setOrientationType(SplineOrientationType.Constant));

If the reference system of the orientation control is combined with
SplineOrientationType.OriJoint, the reference system has no influ-
ence on the orientation control.

Fig. 14-19: Constant orientation, path-related
317 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

318 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Base-related circular motion with constant orientation:

 OrientationReferenceSystem.Base

 SplineOrientationType.Constant

Base-related circular motion with variable orientation:

 OrientationReferenceSystem.Base

 SplineOrientationType.VariableOrientation

Fig. 14-20: Variable orientation, path-related

Fig. 14-21: Constant orientation, base-related
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
14.10 Redundancy information

For a given axis position of a robot, the resulting point in Cartesian space at
which the TCP is located is unambiguously defined. Conversely, however, the
axis position of the robot cannot be unambiguously determined from the Car-
tesian position X, Y, Z and orientation A, B, C of the TCP. A Cartesian point
can be reached with multiple axis configurations. In order to determine an un-
ambiguous configuration, the Status parameter must be specified.

Robots with 6 axes already have ambiguous axis positions for a given Carte-
sian point. With its additional 7th axis, the KUKA LBR iiwa can theoretically
reach a given position and orientation with any number of axis poses. To un-
ambiguously determine the axis pose for an LBR iiwa, the redundancy angle,
in addition to the Status, must be specified.

The Turn parameter is required for axes which can exceed the angle ±180°. In
PTP motions, this helps to unambiguously define the direction of rotation of the
axes. Turn has no influence on CP motions.

Status, Turn und the redundancy angle are saved during the teaching of a
frame. They are managed as arrays of the data type AbstractFrame.

Programming The Status of a frame is only taken into account in PTP motions to this frame.
With CP motions, the Status given by the axis configuration at the start of the
motion is used.

In order to avoid an unpredictable motion at the start of an application and to
define an unambiguous axis configuration, it is advisable to program the first
motion in an application with one of the following instructions: The axis config-
uration should not be in the vicinity of a singular axis position.

 PTP motion to a specified axis configuration with specification of all axis
values:

ptp(double a1, double a2, double a3, double a4, double
a5, double a6, double a7)

 PTP motion to a specified axis configuration:

ptp(JointPosition joints)

 PTP motion to a taught frame (AbstractFrame type):

ptp(getApplicationData().getFrame(String frameName));

Fig. 14-22: Variable orientation, base-related
319 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

320 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
14.10.1 Redundancy angle

With its 7th axis, the KUKA LBR iiwa is able to reach a point in space with a
theoretically unlimited number of different axis configurations. An unambigu-
ous pose is defined via the redundancy angle.

In an LBR iiwa, the redundancy angle has the value of the 3rd axis.

The following applies for all motions:

 The redundancy angle of the end frame is taken into account when the ro-
bot that was used when teaching the frame also executes the motion com-
mand. In particular, the robot name defined in the station configuration
must match the device specified in the frame properties.

 If the robots do not match or if calculated frames are used, the redundancy
angle given at the start of motion by the axis configuration is retained.

14.10.2 Status

The Status specification prevents ambiguous axis positions. The Status is de-
scribed by a binary number with 3 bits.

Bit 0 Bit 0 specifies the position of the wrist root point (intersection of axes A5, A6,
A7) with reference to the X-axis of the coordinate system of axis A1. The align-
ment of the A1 coordinate system is identical to the robot base coordinate sys-
tem if axis A1 is at 0°. It moves with axis A1.

Bit 1 In an LBR iiwa, bit 1 specifies the position of axis A4.

Bit 2 In an LBR iiwa, bit 2 specifies the position of axis A6.

The following applies for PTP motions:

 The Status of the end frame is taken into account when the robot which
was used when teaching the frame also executes the motion command. In
particular, the robot name defined in the station configuration must match
the device specified in the frame properties.

 If the robots do not match or if calculated frames are used, the Status given
at the start of motion by the axis configuration is retained.

The following applies for CP motions:

Position Value

Overhead area

The robot is in the overhead area if the X value of the
position of the wrist root point, relative to the A1 coordi-
nate system, is negative.

Bit 0 = 1

Basic area

The robot is in the basic area if the X value of the posi-
tion of the wrist root point, relative to the A1 coordinate
system, is positive.

Bit 0 = 0

Position Value

A4 < 0° Bit 1 = 1

A4 ≥ 0° Bit 1 = 0

Position Value

A6 ≤ 0° Bit 2 = 1

A6 > 0° Bit 2 = 0
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
 The Status of the end frame is not taken into account. The Status given by
the axis configuration at the start of the motion is retained.

 Exception: A change of Status is possible if the end frame is addressed
with the SplineOrientationType.OriJoint orientation control. The
status of the end frame is not taken into consideration in this case either.
The Status at the end of the motion is determined by the path planning,
which selects the shortest route to the end frame.

14.10.3 Turn

The Turn specification makes it possible to move axes through angles greater
than +180° or less than -180° without the need for special motion strategies
(e.g. auxiliary points). The Turn is specified by a binary number with 7 bits.

With rotational axes, the individual bits determine the sign before the axis val-
ue in the following way:

Bit = 0: Angle ≥ 0°

Bit = 1: Angle < 0°

The Turn is not taken into account in an LBR iiwa because none of its axes
can rotate over ±180°.

14.11 Singularities

Due to the axis position, Cartesian motions of the robot may be limited. Due to
the combination of axis positions of the entire robot, no motions can be trans-
ferred from the drives to the flange (or to an object on the flange, e.g. a tool)
in at least one Cartesian direction. In this case, or if very slight Cartesian
changes require very large changes to the axis angles, one speaks of singu-
larity positions.

14.11.1 Kinematic singularities

The flexibility due to the redundancy of a 7-axis robot, in contrast to the 6-axis
robot, requires 2 or more kinematic conditions (e.g. extended position, 2 rota-
tional axes coincide) to be active at the same time in order reach a singularity
position. There are 4 different robot positions in which flange motion in one
Cartesian direction is no longer possible. Here only the position of 1 or 2 axes
is important in each case. The other axes can take any position.

A4 singularity This kinematic singularity is given when A4 = 0°. It is called the extended po-
sition.

Value Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 A7 ≥ 0° A6 ≥ 0° A5 ≥ 0° A4 ≥ 0° A3 ≥ 0° A2 ≥ 0° A1 ≥ 0°

1 A7 < 0° A6 < 0° A5 < 0° A4 < 0° A3 < 0° A2 < 0° A1 < 0°

It is advisable to move the robot as slowly as possible near singular-
ities.
321 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

322 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Motion is blocked in the direction of the robot base or parallel to axis A3 or A5.
An additional kinematic condition for this singularity is reaching the workspace
limit. It is automatically met through A4 = 0°.

An extended robot arm causes a degree of freedom for the motion of the wrist
root point to be lost (it can no longer be moved along the axis of the robot arm).
The position of axes A3 and A5 can no longer be resolved.

A4/A6 singularity This kinematic singularity is given when A4 = 90° and A6 = 0°.

Motion parallel to axis A6 or A2 is blocked.

A2/A3 singularity This kinematic singularity is given when A2 = 0° and A3 = ±90° (π/2).

Fig. 14-23: Extended position A4 = 0°

Fig. 14-24: A4 = 90° and A6 = 0°
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

14 Basic principles of motion programm...
Motion is blocked in the direction of the robot or parallel to axis A2 or A5.

A5/A6 singularity This kinematic singularity is given when A5 = ±90° (π/2) and A6 = 0°.

Motion parallel to axis A6 is blocked.

14.11.2 System-dependent singularities

The redundant configuration of the LBR with its 7th axis allows the robot arm
to move without the flange moving. In this null space motion, all axes move ex-
cept A4, the “elbow axis”. In addition to the normal redundancy, it is possible,
under certain circumstances, that only subchains of the robot can move and
not all axes.

All of the robot positions in this category have in common that slight Cartesian
changes result in very large changes to the axis angles. They are very similar
to the singularities in 6-axis robots since, in the LBR too, a division is made
into the position part and orientation part of the wrist root point.

Fig. 14-25: A2 = 0° and A3 = ±90° (π/2).

Fig. 14-26: A5 = ±90° (π/2) and A6 = 0°
323 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

324 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Wrist axis singu-

larity

Wrist axis singularity means the axis position A6 = 0°. The position of axes A5
and A7 can thus no longer be resolved. There are an infinite number of ways
to position these two axes to generate the same position on the flange.

A1 singularity If the wrist root point is directly over A1, no reference value can be specified
for the redundancy circle according to the definition above. The reason for this
is that any A1 value is permissible here for A3 = 0°.

Every axis position of A1 can be compensated for with a combination of A5,
A6 and A7 so that the flange position remains unchanged.

A2 singularity With an extended “shoulder”, the position of axes A1 and A3 can no longer be
resolved according to the pattern above.

A2/A4 singularity If A1 and A7 coincide, the position of axes A1 and A7 can no longer be re-
solved according to the pattern above.

System-dependent singularities can be avoided in most cases by a
suitable elbow position.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15 Programming

15.1 Java Editor

15.1.1 Opening a robot application in the Java Editor

Description The Java Editor allows more than one file to be open simultaneously. If re-
quired, they can be displayed side by side or one above the other. This pro-
vides a convenient way of comparing contents, for example.

Precondition Robot application has been created.

 (>>> 5.4 "Creating a new robot application" Page 54)

Procedure Double-click on a Java file in the Package Explorer view.

Alternative

procedure

 Right-click on the Java file and select Open or Open With > Java Editor
from the context menu.

15.1.2 Structure of a robot application

Fig. 15-1: Structure of a robot application

Item Description

1 This line contains the name of the package in which the robot ap-
plication is located.

2 The import section contains the imported classes which are re-
quired for programming the robot application.

Note: Clicking on the “+” icon opens the section, displaying the im-
ported classes.

3 Header of the robot application (contains the class name of the
robot application)

 (>>> "Header" Page 326)
325 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

326 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Header In a robot application, this is the special form of Java class:

15.1.3 Edit functions

15.1.3.1 Renaming a variable

Description A variable name can be changed in a single action at all points where it occurs.

Procedure 1. Select the desired variable at any point.

2. Right-click and select Refactor > Rename… from the context menu.

OR: Press the keyboard shortcut ALT + SHIFT +R.

3. The variable is framed in blue and can now be edited. Change the name
and confirm with the Enter key.

15.1.3.2 Auto-complete

Description An auto-complete function is available in the Java Editor.

When entering code, it is possible to display an “Auto-complete” list containing
entries which are compatible with characters which have already been en-
tered. These entries are prioritized according to their frequency of use, i.e. the
selection is dynamically adapted to the user’s actions.

An entry from the “Auto-complete” list can be inserted into the program code
as needed. This makes it unnecessary to retype the complex syntax of meth-

4 Declaration section

The data arrays of the classes required in the robot application
are declared here.

When the robot application is created, instances of the necessary
classes are automatically integrated by means of dependency
injection. By default, this is the instance of the robot used, here an
LBR.

 (>>> 15.3.3 "Dependency Injection" Page 336)

5 initialize() method

In this method, initial values are assigned to data arrays that have
been created in the declaration section and are not integrated us-
ing dependency injection.

6 run() method

The programming of the robot application begins in this method.

When the robot application is created, a motion instruction which
moves the robot to the HOME position is automatically inserted.

 (>>> 15.15 "HOME position" Page 379)

Item Description

public class RobotApplication extends RoboticsAPIApplication

Element Description

public The keyword public designates a class which is publically
visible. Public classes can be used across all packages.

class The keyword class designates a Java class. The name of
the class is derived from the name of the application.

extends The application is subordinate to the RoboticsAPIAppli-
cation class.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
ods, for example. All that is then required is to enter the variable elements in
the syntax manually.

Procedure 1. Begin typing the code.

2. Press CTRL + space bar. The “Auto-complete” list containing the available
entries is displayed.

3. Select the appropriate entry from the list and press the Enter key. The en-
try is inserted in the program code.

If an entry is selected, the Javadoc information on this entry is displayed
automatically.

 (>>> 15.1.4 "Displaying Javadoc information" Page 329)

4. Complete the syntax if necessary.

Navigating and

filtering

There are various ways to navigate to the “Auto-complete” list and to filter the
available entries:

 Use the arrow keys on the keyboard to move from one entry to the next
(up or down)

 Scrolling

 Complete the entered code with additional characters. The list is filtered
and only the entries which correspond to the characters are displayed.

 Press CTRL + space bar. Only the available template suggestions are dis-
played.

15.1.3.3 Templates – Fast entry of Java statements

Description Templates for fast entry are available for common Java statements, e.g. FOR
loops.

Procedure 1. Begin typing the code.

2. Press CTRL + space bar (twice). A list of the template suggestions that are
compatible with the characters already entered is displayed.

3. Accept the instruction with the Enter key. Or double-click on a different in-
struction.

4. Complete the syntax.

Alternative

procedure

Selecting templates in the Templates view:

1. Select the menu sequence Window > Show View > Other.... The Show
View window opens.

2. In the General folder, select Templates. Confirm with OK. The Tem-
plates view opens.

3. Position the cursor in the line in which the code template is to be inserted.

4. Double-click on the desired Java instruction in the Templates view. The
code is inserted in the editor.

5. Complete the syntax.

When entering a dot operator for a data array or enum, the “Auto-
complete” list is automatically displayed. The list contains the follow-
ing entries:

 Available methods of the corresponding class (only for data arrays)

 Available constants of the corresponding class

If the list contains only one matching entry, this can automatically be
inserted into the program code by pressing CTRL + space bar.
327 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

328 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.1.3.4 Creating user-specific templates

Description Users can create their own templates, e.g. templates for motion blocks with
specific motion parameters which are used frequently during programming.

Procedure 1. In the Templates view, select the context in which the template is to be in-
serted.

2. Right-click on the context and select New... from the context menu.

Or: Click on the Create a New Template icon.

The New Template window opens.

3. Enter a name for the template in the Name box.

4. Enter a description in the Description box (optional).

5. In the Pattern box, enter the desired code.

6. Confirm the template properties with OK. The template is created and in-
serted into the Templates view.

15.1.3.5 Extracting methods

Description Parts of the program code can be extracted from the robot application and
made available as a separate method. This makes particular sense for fre-
quently recurring tasks, as it increases clarity within the robot application.

Procedure 1. Select the desired program code.

2. Right-click in the editor area.

3. Select Refactor > Extract Method… from the context menu.

OR: Press the keyboard shortcut ALT + SHIFT +M.

The Extract method window opens.

4. Enter a unique method name and select the desired Access modifier.
Confirm with OK.

The method is generated and the selected program code is inserted into
this method. At all other points within the class where the extracted code
excerpt additionally occurs, it is likewise replaced with the method call.

Access modifier This option defines which classes can call the extracted method.

Option Description

private This method can only be called by the corre-
sponding class itself.

default The following classes can call the method:

 The corresponding class

 The inner classes of the corresponding class

 All classes of the package in which the corre-
sponding class is located

protected The following classes can call the method:

 The corresponding class

 The subclasses of the corresponding class
(inheritance)

 The inner classes of the corresponding class

 All classes of the package in which the corre-
sponding class is located

public All classes can call the method, regardless of the
relationship to the corresponding class and of
the package assignment.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.1.4 Displaying Javadoc information

Description Javadoc is a documentation generated from specific Java comments. The
functionalities and use of classes, methods and libraries are described in Ja-
vadoc.

The Javadoc information can be displayed during programming. The informa-
tion is only available in English.

The various display functions are described using the example of the LBR
class.

Procedure Displaying Javadoc information in auto-complete:

1. In auto-complete (CTRL + space bar), select an entry in the “Auto-com-
plete” list. The associated Javadoc information is displayed in a separate
window in the editor area.

2. In order to pin the window in the editor area, press the tab key or click in-
side the window.

Pinning the window makes it possible to navigate to the Javadoc descrip-
tion, e.g. by scrolling.

Displaying Javadoc information using the mouse pointer:

 Move the mouse pointer to the desired element name in the program code.
The associated Javadoc information is automatically displayed in a win-
dow in the editor area.

The following elements react to the mouse pointer:

 Methods

 Classes (data types, not user-defined data arrays)

 Interfaces

 ENUM arrays

Fig. 15-2: Javadoc information in auto-complete

1 “Auto-complete” list 2 Javadoc information

Fig. 15-3: Javadoc information using the mouse pointer
329 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

330 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Further display options are available from here:

 In order to be able to navigate to the Javadoc description, e.g. by
scrolling, move the mouse pointer in the window.

The window is not pinned. If the mouse pointer is moved out of the win-
dow, the window closes.

 In order to pin the window in the editor area, press the F2 key or click
inside the window.

It is also possible to navigate to the Javadoc description in the pinned
window.

 To additionally display the Javadoc information in the Javadoc view,
left-click on the selected element.

If the window is not pinned in the editor area, it is closed.

Navigation

15.1.4.1 Configuration of the Javadoc browser

The configuration of the Javadoc browser is described briefly using the exam-
ple of the LBR class.

Fig. 15-4: Navigating to the Javadoc description

Item Description

1 Linked class

Left-clicking on the linked class displays the complete Javadoc in-
formation relating to this class in the Javadoc browser.

Note: If the corresponding link in the Javadoc view is selected, the
complete Javadoc information is displayed in the view itself.

2 Show in Javadoc View button

The window in the editor section closes and the Javadoc informa-
tion is displayed in the Javadoc view.

3 Open Attached Javadoc Browser button

The window in the editor section closes and the complete Java-
doc information relating to the corresponding class is displayed in
the Javadoc browser.

There is a further option for displaying the complete Javadoc informa-
tion on a specific element in the Javadoc browser: Select the desired
element in the program code and press SHIFT + F2.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Fig. 15-5: Configuration of the Javadoc browser
331 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

332 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Item Description

1 Navigation

2 Class hierarchy

 (>>> Fig. 15-6)

The inheritance relationships of the class are displayed here.

3 Description of the class

The task of the class and its functionality is described here. Special
aspects of using the class are normally indicated in this area. It
may also contain short examples for using the class.

The earliest library version in which the class is available is normal-
ly specified at the end of the description. The description may ad-
ditionally contain a list of references to further classes or methods
which may be of interest.

4 Overviews

 Field Summary

Overview of the data fields which belong to the class

The data fields inherited from a parent class are listed here.

 Constructor Summary

Overview of the constructors which belong to the class

 Method Summary

Overview of the methods which belong to the class

The methods inherited from a parent class are listed here.

The overviews contain short descriptions of the data fields, con-
structors and methods of the class, provided that these were spec-
ified during the creation of Javadoc. Inherited data fields and
methods are only listed.

Detailed descriptions on the data fields, constructors and methods
can be found in the Details area. Click on the respective name to
directly access the detailed description.

5 Details

 Field Detail

Detailed description of the data fields which belong to the class

 Constructor Detail

Detailed description of the constructors which belong to the
class

 Method Detail

Detailed description of the methods which belong to the class

The detailed description may, for example, contain a list and de-
scription of the transferred parameters and return value. Provided
there are any, the exceptions which may occur when executing a
method or constructor are also named here.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.2 Symbols and fonts

The following symbols and fonts are used in the syntax descriptions:

15.3 Data types

Overview There are 2 kinds of data type in Java:

 Primitive data types

Fig. 15-6: Class hierarchy

Item Description

1 Name of the package to which the class belongs

2 Name of the class

3 Class hierarchy (parentage of the class)

4 List of interfaces implemented by the class

5 List of subclasses derived from the class

Syntax element Appearance

Java code Courier font

 Upper/lower-case letters

Examples: private; new; linRel; Tool

Elements that must be
replaced by program-spe-
cific entries

 Italics

 Upper/lower-case letters

Examples: endpoint; name; mode

Optional elements In angle brackets

Example: <.setVelocity(value)>

Elements that are mutually
exclusive

 Separated by the “|” symbol

Example: ++ |--
333 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

334 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Complex data types

Complex data types are defined in Java by classes.

Data types that are frequently required for robot programming are pre-
defined in the KUKA RoboticsAPI.

Overview of important data types:

15.3.1 Declaration

Description To allow programming in Java, the necessary objects must first be created
(declared), i.e. the data type and identifier must be defined.

Syntax Data type Name;

Explanation of

the syntax

Examples

15.3.2 Initialization

Before an object can be used in the program, it must be assigned an initial val-
ue.

Data type Description

int Integer

 -2³¹ … +2³¹-1

Examples: -1; 32; 8000

double Double-precision floating-point number

 -1.7E+308 … +1.7E+308

Examples: 1.25; -98.76; 123.456

boolean Logic state

 true

 false

char Character (1 character)

 ASCII character

Examples: ‘A’; ‘1’; ‘q’

String Character string

 ASCII character

Examples: “KUKA”; “tool”

The names of the primitive data types are displayed in violet in the
Java Editor.

Element Description

Data type Data type of the variable

Name Name of the variable

int counter;
double value;
Controller kuka_Sunrise_Cabinet;

ForceCondition contactForceReached;

Primitive data types are automatically assigned a default value when
they are created. The initial value depends on the data type.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.3.2.1 Primitive data types

Description In the case of primitive data types, the assignment is done by the operator =
followed by the desired value.

Primitive data types can be created and used in the run() method of an appli-
cation, for example.

Example The variables a and b are created in an application and assigned an initial val-
ue. Subsequently, the variable c is created and assigned the sum of the vari-
ables a and b.

15.3.2.2 Complex data types

Description Complex data types are always instanced by the call of a constructor in con-
junction with the keyword new. The instancing can take place either directly or
within a method that supplies an object of the data type as the return value.

Depending on the specific implementation of the associated class, parameters
for the first instancing can be transferred to the constructor if required.

Further values are assigned to the properties by the methods provided by the
class.

In robot applications, complex data types are usually created after the header
and initialized in the initialize() method.

Example In an application, data arrays for a Cartesian impedance mode and a force
break condition are created and initialized.

@Override

public void run() {
 // ...

 int a = 3;
 int b = 5;
 // ...

 int c = a + b;
 // ...

}

public class ExampleApplication extends RoboticsAPIApplication {
 // ...

 private CartesianImpedanceControlMode softInToolX;
 private ForceCondition contactForceReached;

 @Override

 public void initialize() {
 softInToolX = new CartesianImpedanceControlMode();
 softInToolX.setDampingToDefaultValue();

 // ...

 contactForceReached =

 ForceCondition.createSpatialForceCondition(…);

 }

 @Override

 public void run() {
 // ...

 robot.move(ptp(getFrame("/P20")).

 breakWhen(contactForceReached));
335 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

336 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.3.3 Dependency Injection

Description With the aid of dependency injection, it is no longer necessary to actually gen-
erate instances of certain object types. It is sufficient to provide the points
where the objects are to be used with an appropriate annotation so that the
runtime system performs the generation. This allows an application that is
based on multiple Java classes to access common objects without having to
transfer the objects to the classes in each case.

Dependency injection can only be used in classes that are themselves gener-
ated by dependency injection. If such a class is instanced with new, the corre-
sponding points remain non-initialized (“null”). As the runtime system
generates robot applications and background tasks with dependency injec-
tion, the function can be used there.

Syntax @Inject

<Modifier> Data type Name;

Explanation of

the syntax

Example Injection and use of an array

15.3.3.1 Dependency injection for Sunrise types

Description The most important types in Sunrise can be integrated using dependency in-
jection. This applies to the following types, among others:

 Controller

 Robot

 LBR

 Tool

 Workpiece

 ITaskLogger

 }

}

Element Description

@Inject Annotation for initializing the array of type Data type with
dependency injection.

Modifier If required, valid modifiers can be used here for the array
declaration, e.g.:

 public, private, protected, etc.

The modifier static cannot be used for arrays with
@Inject and final should also be avoided.

Data type Data type of the array

Name Name of the array

@Inject

private InjectableClass myField;

public void myMethod() {
 myField.doSomething();

}

Constructor and method injection are also possible in addition to ar-
ray injection. These are described in greater detail in the documenta-
tion of the Guice injection library, for example.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
 IApplicationData

 All generated I/O groups

 All classes created in Sunrise.Workbench which are derived from Tool or
Workpiece and have been configured as Class of Template in the prop-
erties of an object template.

Procedure To call Javadoc of UseRoboticsAPIContext:

1. Move the mouse pointer over RoboticsAPIApplication in the header of an
application.

2. A window opens. In it, click on the link Available type for Dependency
Injection.

3. The Javadoc file is displayed in the editor area.

Examples An LBR iiwa and a gripper are integrated in a robot application by means of
dependency injection. An object template with the name “Gripper” has been
created for the gripper. The gripper is attached to the robot during initialization.
Motions with both devices are executed in the application.

In addition, a logger object is integrated which is used to display LOG informa-
tion of the smartHMI.

Other classes and interfaces in addition to those described here can
also be integrated using dependency injection. A list of these objects
can be found in the Javadoc of UseRoboticsAPIContext.

If object templates are to be integrated using dependency injection,
the annotation @Named("TemplateName") must additionally be used.
The name of the object template as configured in the Object tem-

plates view must be entered as the TemplateName.

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private ITaskLogger logger;
 @Inject

 private IApplicationData data;

 @Inject

 private LBR robot;

 @Inject

 @Named("Gripper")

 private Tool gripper;

 @Override

 public void initialize() {
 // initialize your application here

 gripper.attachTo(robot.getFlange());

 logger.info("Application initialized!");

 }

 @Override

 public void run() {
 // your application execution starts here

 robot.move(ptpHome());

 robot.move(ptp(data.getFrame("/Start")));

 // ...

 logger.info("Move gripper");

 gripper.move(linRel().setXOffset(25.0));

 // ...
337 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

338 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The signals of an I/O group are to be used in both the robot application and a
background task.

Use in robot application:

Use in background task:

 }

}

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;

 @Inject

 private LEDsIOGroup appLEDs;

 @Override

 public void initialize() {
 // initialize your application here

 }

 @Override

 public void run() {
 // your application execution starts here

 // ...

 appLEDs.setBlueLight(true);
 robot.move(handGuiding());

 appLEDs.setBlueLight(false);
 // ...

 }

}

public class MonitoringTask extends RoboticsAPICyclicBackgroundTask {
 // ...

 private boolean appRunning;
 @Inject

 private LEDsIOGroup bgtLEDs;

 @Override

 public void initialize() {
 // initialize your task here

 initializeCyclic(0, 500, TimeUnit.MILLISECONDS,

 CycleBehavior.BestEffort);

 }

 @Override

 public void runCyclic() {
 // ...

 if (appRunning) {
 // If application is running,

 // LED changes its state continuously

 bgtLEDs.setYellowLight(!bgtLEDs.getYellowLight());

 }

 else {
 // If application is not running, LED remains off

 bgtLEDs.setYellowLight(false);
 }

 // ...

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.3.3.2 Dependency injection for dedicated types

Description A class can be used via dependency injection if it meets one of the following
conditions:

 The class has a public constructor without parameters. An @Inject anno-
tation on the constructor is not absolutely essential in this case.

 The class has a public constructor with an @Inject annotation which either
contains no parameters or for which all parameters can be obtained via
dependency injection.

All classes that are present in an application and meet the specified conditions
can be integrated in all constituent parts of the application using @Inject. A
new instance of the class is generated by default for each integration using
@Inject.

Singletons If a dedicated class is provided with the annotation @Singleton in addition to
dependency injection, this results in only one instance of this class being used
in the application. This means that all objects of this class generated via de-
pendency injection refer to the same instance.

State variables, e.g. of tool and workpiece classes, can be used by various
program sections through this mechanism.

 (>>> 15.10.4 "Integrating dedicated object classes with dependency injec-
tion" Page 362)

Example The classes Vehicle, Motor and Wheel are used in a project. The classes
Motor and Wheel are to be available in the Vehicle class via dependency
injection. As a vehicle usually only has one motor (or engine), the Motor class
is to be defined as a singleton.

2 objects of each of the classes Motor and Wheel are integrated in the Ve-
hicle class. Comparison of the objects is then intended to show that the ob-
jects of the Motor class refer to the same instance whereas the objects of the
Wheel class refer to different instances.

The Vehicle class is likewise integrated in a robot application using depen-
dency injection. An object of the ITaskLogger class is integrated in both the
robot application and the Vehicle class by means of dependency injection.
Integrating the ITaskLogger interface via dependency injection also enables
information from the Vehicle class to be displayed on the smartHMI.

Wheel class:

Motor class:

Use of the annotation @Singleton enables an application to be sub-
divided into multiple classes which can be called from the main appli-
cation.

This procedure represents an alternative to the process data, though
the state variables are not automatically saved.

public class Wheel
{

 @Inject

 public Wheel() {}
 // ...

}

@Singleton

public class Motor
{

339 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

340 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Vehicle class:

Robot application (CarApplication class):

 @Inject

 public Motor() {}
 // ...

}

public class Vehicle {
 @Inject

 private ITaskLogger logger;
 @Inject

 private Wheel frontWheel;
 @Inject

 private Wheel rearWheel;

 @Inject

 private Motor motor;
 @Inject

 private Motor additionalMotor;

 // ...

 @Inject

 private Vehicle() {
 }

 public void setCarStatus() {
 frontWheel.setName("FrontWheel");

 rearWheel.setName("RearWheel");

 motor.setName("Motor");

 additionalMotor.setName("AdditionalMotor");

 // ...

 }

 public void printCarStatus() {
 logger.info("**************************");

 logger.info("Comparing the instances of Wheel:");

 if (frontWheel == rearWheel {
 logger.info(frontWheel + " and " +

 rearWheel + " are equal.");

 }

 else {
 logger.info(frontWheel + " and " +

 rearWheel + " are NOT equal.");

 }

 logger.info("Comparing the instances of Motor:");

 if (motor == additionalMotor {
 logger.info(motor + " and " + additionalMotor +

 " are equal.");

 }

 else {
 logger.info(motor + " and " + additionalMotor +

 " are NOT equal.");

 }

 logger.info("**************************");

 }

 // ...

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
The screenshot (>>> Fig. 15-7) shows the information displayed on the sm-
artHMI when the robot application is executed. Besides the displays relating
to the robot application it also contains information from the Vehicle class.
This was made possible through integration of the ITaskLogger interface by
means of dependency injection.

 Instances of Wheel

The compared objects are not identical. The result of the ELSE branch
was displayed on the smartHMI and the names of the 2 objects are differ-
ent.

 Instances of Motor

The result of the IF branch was displayed on the smartHMI. As both ob-
jects refer to the same instance due to the @Singleton annotation, the
name is changed twice and corresponds to the one last set (here “Addi-
tionalMotor”).

15.4 Polling individual values of a vector

Methods which poll data from a frame generally return an object of the Vector
class (package: com.kuka.roboticsAPI.geometricModel.math). The compo-
nents of the vector can be polled individually.

public class CarApplication extends RoboticsAPIApplication {
 @Inject

 private ITaskLogger logger;

 @Inject

 private Vehicle myNewCar;

 @Override

 public void initialize() {
 myNewCar.setName("Isolde")

 // ...

 }

 @Override

 public void run() {
 logger.info("Name of vehicle:" + myNewCar.getName());

 myNewCar.setCarStatus();

 myNewCar.printCarStatus();

 }

}

Fig. 15-7: CarApplication – Display on smartHMI
341 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

342 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Overview The following methods of the Vector class are available:

15.5 Network communication via UDP and TCP/IP

Certain ports are enabled on the robot controller for communication with ex-
ternal devices via UDP or TCP/IP.

The following port numbers (client or server socket) can be used in a robot ap-
plication:

 30,000 to 30,010

15.6 Motion programming: PTP, LIN, CIRC

15.6.1 Synchronous and asynchronous motion execution

Description In Sunrise, motion commands can be used for all movable objects of a station.
A movable object can be a robot, for example, but also a tool which is attached
to the robot flange or a workpiece held by a tool (e.g. a gripper).

Motion commands can be executed synchronously and asynchronously. The
following methods are available for this:

 move(…) for synchronous execution

Synchronous means that the motion commands are sent in steps to the
real-time controller and executed. The further execution of the program is
interrupted until the motion has been executed. Only then is the next com-
mand sent.

 moveAsync(…) for asynchronous execution

Asynchronous means that the next program line is executed directly after
the motion command is sent. The asynchronous execution of motions is
required for approximating motions, for example.

Method Description

getX() Return value type: double

Polls for the X component of the vector

getY() Return value type: double

Polls for the Y component of the vector

getZ() Return value type: double

Polls for the Z component of the vector

get(index) Return value type: double

Polls for the components determined by the index parame-
ter

Values of index (type: int):

 0: X component of the vector

 1: Y component of the vector

 2: Z component of the vector

In the case of complex program structures and asynchro-
nous motion execution, the exact motion sequence is not

predictable. If asynchronous motions are approximated, this can result in the
robot performing an approximate positioning motion at an unexpected point.
Such unexpected approximate positioning motions can be avoided by group-
ing together approximated individual motions in a MotionBatch.
(>>> 15.6.6 "MotionBatch" Page 346)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
The way in which the different motion types are programmed is shown by way
of example for the object “robot”.

Motion programming for tools and workpieces is described here:
(>>> 15.10.3 "Moving tools and workpieces" Page 361)

Syntax Executing a motion synchronously:

Object.move(Motion);

Executing a motion asynchronously:

Object.moveAsync(Motion);

Explanation of

the syntax

15.6.2 PTP

Description Executes a point-to-point motion to the end point. The coordinates of the end
point are absolute.

The end point can be programmed in the following ways:

 Insert a frame from the application data in a motion instruction.

 Create a frame in the program and use it in the motion instruction.

 Specify the angles of axes A1 … A7. All axis values must always be spec-
ified.

Syntax PTP motion with a specified frame:

ptp(getApplicationData().getFrame("/End point"))<.Motion
parameters>

PTP motion with specified axis angles:

ptp(A1, A2, … A7)<.Motion parameters>

During programming, it is possible to specify values with a higher ac-
curacy than the robot can achieve. For example, it is possible to spec-
ify position data in the nanometer range, but it is not possible to

achieve this accuracy.

Element Description

Object Object of the station which is being moved

The variable name of the object declared and initialized in
the application is specified here.

Motion Motion which is being executed

The motion to be executed is defined by the following ele-
ments:

 Motion type or block: ptp, lin, circ, spl or spline,
splineJP, batch

 Target position

 Further optional motion parameters

The redundancy information for the end point – Status, Turn and re-
dundancy angle – must be correctly specified. Otherwise, the end
point cannot be correctly addressed.
343 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

344 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Explanation of

the syntax

Examples PTP motion to the “StartPos” frame:

PTP motion into the vertical stretch position:

PTP motion to the “StartPos” frame with a specified relative velocity:

15.6.3 LIN

Description Executes a linear motion to the end point. The coordinates of the end point are
Cartesian and absolute.

The end point can be programmed in the following ways:

 Insert a frame from the application data in a motion instruction.

 Create a frame in the program and use it in the motion instruction.

Syntax lin(getApplicationData().getFrame("/End point"))<.Motion
parameters>

Explanation of

the syntax

Examples LIN motion to the “/Table/P1” frame:

LIN motion with the Cartesian velocity specified:

15.6.4 CIRC

Description Executes a circular motion. An auxiliary point and an end point must be spec-
ified in order for the controller to be able to calculate the circular motion. The
coordinates of the auxiliary point and end point are Cartesian and absolute.

The auxiliary point and end point can be programmed in the following ways:

 Insert a frame from the application data in a motion instruction.

 Create a frame in the program and use it in the motion instruction.

Element Description

End point Path of the frame in the frame tree or variable name of the
frame (if created in the program)

A1 … A7 Axis angles of axes A1 … A7 (type: double; unit: rad)

Motion
parameters

Further motion parameters, e.g. velocity or acceleration

robot.move(ptp(getApplicationData().getFrame("/StartPos")));

robot.move(ptp(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));

robot.move(ptp(getApplicationData().getFrame("/StartPos"))

.setJointVelocityRel(0.25));

Element Description

End point Path of the frame in the frame tree or variable name of the
frame (if created in the program)

The redundancy information for the end point – Status and
Turn – are ignored in the case of LIN (and CIRC) motions.
Only the redundancy angle is taken into account.

Motion
parameters

Further motion parameters, e.g. velocity or acceleration

robot.move(lin(getApplicationData().getFrame("/Table/P1")));

robot.move(lin(getApplicationData().getFrame("/Table/P1"))

.setCartVelocity(150.0));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Syntax circ(getApplicationData().getFrame("/Auxiliary point"),
getApplicationData().getFrame("/End point"))
<.Motion parameters>

Explanation of

the syntax

Examples CIRC motion to the end frame “/Table/P4” via the auxiliary frame “/Table/P3”:

CIRC motion with the absolute acceleration specified:

15.6.5 LIN REL

Description Executes a linear motion to the end point. The coordinates of the end point are
relative to the end position of the previous motion, unless this previous motion
is terminated by a break condition. In this case, the coordinates of the end
point are relative to the position at which the motion was interrupted.

In a relative motion, the end point is by default offset in the coordinate system
of the moved frame. Another reference coordinate system in which to execute
the relative motion can optionally be specified. The coordinates of the end
point then refer to this reference coordinate system. This can for example be
a frame created in the application data or a calibrated base.

The end point can be programmed in the following ways:

 Enter the Cartesian offset values individually.

 Use a frame transformation of type Transformation. The frame transforma-
tion has the advantage that the rotation can also be specified in degrees.

Syntax LinRel motion with offset values:

linRel(x, y, z<, a, b, c>

<, Reference system>)

LinRel motion with frame transformation:

linRel(Transformation.ofDeg|ofRad(x, y, z, a, b, c)

<, Reference system>)

Element Description

Auxiliary point Path of the frame in the frame tree or variable name of the
frame (if created in the program)

The redundancy information for the end point – Status,
Turn and redundancy angle – are ignored.

End point Path of the frame in the frame tree or variable name of the
frame (if created in the program)

The redundancy information for the end point – Status and
Turn – are ignored in the case of CIRC (and LIN)
motions. Only the redundancy angle is taken into account.

Motion
parameters

Further motion parameters, e.g. velocity or acceleration

robot.move(circ(getApplicationData().getFrame("/Table/P3"),
getApplicationData().getFrame("/Table/P4")));

robot.move(circ(getApplicationData().getFrame("/Table/P3"),
getApplicationData().getFrame("/Table/P4")).setCartAcceleration(25));
345 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

346 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Explanation of

the syntax

Examples The moving frame is the TCP of a gripper. This TCP moves 100 mm in the X
direction and 200 mm in the negative Z direction in the tool coordinate system
from the current position. The orientation of the TCP does not change.

The robot moves 10 mm from the current position in the coordinate system of
the P1 frame. The robot additionally rotates 30° about the Z and Y axes of the
coordinate system of the P1 frame.

15.6.6 MotionBatch

Description Several individual motions can be grouped in a MotionBatch and thus trans-
mitted to the robot controller at the same time. As a result, motions can be ap-
proximated within the MotionBatch.

The motion parameters, e.g. velocity, acceleration, orientation control, etc.
can be programmed for the entire batch or per motion.

Both variants can appear together, e.g. to assign another parameter value to
an individual motion than to the batch.

Syntax Object.move(batch(

Motion,

Motion,

…

Motion,

Motion

)<.Motion parameter>);

Element Description

x, y, z Offset in the X, Y and Z directions (type: double, unit: mm)

a, b, c Rotation about the Z, Y and X axes (type: double)

The unit depends on the method used:

 Offset values and Transformation.ofRad: rad

 Transformation.ofDeg: degrees

Reference
system

Type: AbstractFrame

Reference coordinate system in which the motion is exe-
cuted

gripper.getFrame("/TCP2").move(linRel(100, 0, -200));

robot.move(linRel(Transformation.ofDeg(10, 10, 10, 30, 30, 0),
getApplicationData().getFrame("/P1")));

Only axis-specific motion parameters, e.g. setJoint…Rel(…), can be
specified for the entire batch. Cartesian motion parameters, e.g. set-
Cart…(…), must be specified in the individual block.

The individual block parameter overwrites the batch parameter. This
also applies if a lower parameter value is specified for the batch than
for the individual block.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

15.7 Motion programming: spline

15.7.1 Programming tips for spline motions

 The number of spline segments in a spline block is only limited by the
available memory.

 The planning of a spline motion with many small segments and small dis-
tances between points can take a very long time. To avoid excessively
long planning times:

 Program a maximum of 500 segments per spline block.

 If possible, program distances between points > 5 mm.

 Spline motions (with many segments) can be programmed using an array
of spline segments.

 A spline block should cover only 1 process (e.g. 1 adhesive seam). More
than one process in a spline block leads to a loss of structural clarity within
the program and makes changes more difficult.

 Use LIN and CIRC segments in cases where the workpiece necessitates
straight lines and arcs. (Exception: use SPL segments for very short
straight lines.) Otherwise, use SPL segments, particularly if the points are
close together.

 Procedure for defining the path:

a. First teach or calculate a few characteristic points. Example: points at
which the curve changes direction.

b. Test the path. At points where the accuracy is still insufficient, add
more SPL points.

 Avoid successive LIN and/or CIRC segments, as this often reduces the ve-
locity to 0. To avoid this:

 Program SPL segments between LIN and CIRC segments. The length
of the SPL segments must be at least > 0.5 mm. Depending on the ac-
tual path, significantly larger SPL segments may be required.

 Replace a LIN segment with several SPL segments in a straight line.
In this way, the path becomes a straight line.

 Avoid successive points with identical Cartesian coordinates, as this re-
duces the velocity to 0.

 If the robot executes points which lie on a work surface, a collision with the
work surface is possible when approaching the first point.

Element Description

Object Object of the station which is being moved

The variable name of the object declared and initialized in
the application is specified here.

Motion Motion with or without motion parameters

 ptp, lin, circ or spline

Motion
parameters

Motion parameters which are programmed at the end of
the batch apply to the entire batch.

Only axis-specific motion parameters can be programmed!
347 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

348 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
A collision can be avoided by inserting a LIN segment before the work sur-
face. Observe the recommendations for the LIN-SPL-LIN transition.

 (>>> 14.6.3 "LIN-SPL-LIN transition" Page 310)

 Avoid using SPL segments if the robot moves near the workspace limit. It
is possible to exceed the workspace limit with SPL, even though the robot
can reach the end frame in another motion type or by means of jogging.

15.7.2 Creating a CP spline block

Description A CP spline block can be used to group together several SPL, LIN and/or
CIRC segments to an overall motion.

A spline block must not include any other instructions, e.g. variable assign-
ments or logic statements.

The motion parameters, e.g. velocity, acceleration, orientation control, etc.
can be programmed for the entire spline block or per segment. Both variants
can appear together, e.g. to assign a different parameter value to an individual
segment than to the block.

Syntax Spline Name = new Spline(

Segment,

Segment,

…

Segment,

Segment

)<.Motion parameter>;

Fig. 15-8: Collision with work surface

Fig. 15-9: Avoiding a collision with the work surface

The individual block parameter overwrites the block parameter. This
also applies if a lower parameter value is specified for the block than
for the individual block.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example

15.7.3 Creating a JP spline block

Description A JP spline block can be used to group together several PTP segments as an
overall motion.

A spline block must not include any other instructions, e.g. variable assign-
ments or logic statements.

The motion parameters, e.g. velocity, acceleration, etc. can be programmed
for the entire spline block or per segment. Both variants can appear together,
e.g. to assign a different parameter value to an individual segment than to the
block.

Syntax SplineJP Name = new SplineJP(

Segment,

Segment,

…

Segment,

Segment

)<.Motion parameter>;

Explanation of

the syntax

Example

Element Description

Name Name of the spline block

Segment Motion with or without motion parameters

 spl, lin or circ

Motion
parameters

Motion parameters which are programmed at the end of
the spline block apply to the entire spline block.

Spline mySpline = new Spline(
 spl(getApplicationData().getFrame("/P1")),

 circ(getApplicationData().getFrame("/P2"),

 getApplicationData().getFrame("/P3")),

 spl(getApplicationData().getFrame("/P4")).setCartVelocity(150),

 lin(getApplicationData().getFrame("/P5"))

).setCartVelocity(250);

The individual block parameter overwrites the block parameter. This
also applies if a lower parameter value is specified for the block than
for the individual block.

Element Description

Name Name of the spline block

Segment PTP motion with or without motion parameters

Motion
parameters

Motion parameters which are programmed at the end of
the spline block apply to the entire spline block.

SplineJP mySpline = new SplineJP(
 ptp(getApplicationData().getFrame("/P1")),

 ptp(getApplicationData().getFrame("/P2"))

).setJointVelocityRel(0.75);
349 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

350 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.7.4 Using spline in a motion instruction

Description The spline motion programmed in a spline block is used as the motion type in
the motion instruction.

Syntax Object.move(spline block);

Explanation of

the syntax

Example

15.8 Motion parameters

The required motion parameters can be added in any order to the motion in-
struction. Dot separators and “set” methods are used for this purpose.

Overview

Element Description

Object Object of the station which is being moved

The variable name of the object declared and initialized in
the application is specified here.

Spline block Name of the spline block

robot.move(mySpline);

Method Description

setCartVelocity(…) Absolute Cartesian velocity (type: double, unit: mm/s)

 > 0.0

This value specifies the maximum Cartesian velocity at which the robot
may move during the motion. Due to limitations in path planning, the
maximum velocity may not be reached and the actual velocity may be
lower.

If no velocity is specified, the motion is executed with the fastest possi-
ble velocity.

Note: This parameter cannot be set for PTP motions.

setJointVelocity-
Rel(…)

Axis-specific relative velocity (type: double, unit: %)

 0.0 … 1.0

Refers to the maximum value of the axis velocity in the machine data.

 (>>> 15.8.1 "Programming axis-specific motion parameters" Page 352)

setCartAccelera-
tion(…)

Absolute Cartesian velocity (type: double, unit: mm/s2)

 > 0.0

If no acceleration is specified, the motion is executed with the fastest
possible acceleration.

Note: This parameter cannot be set for PTP motions.

setJointAcceleration-
Rel(…)

Axis-specific relative acceleration (type: double, unit: %)

 0.0 … 1.0

Refers to the maximum value of the axis acceleration in the machine
data.

 (>>> 15.8.1 "Programming axis-specific motion parameters" Page 352)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
setCartJerk(…) Absolute Cartesian jerk (type: double, unit: mm/s3)

 > 0.0

If no jerk is specified, the motion is executed with the fastest possible
change in acceleration.

Note: This parameter cannot be set for PTP motions.

setJointJerkRel(…) Axis-specific relative jerk (type: double, unit: %)

 0.0 … 1.0

Refers to the maximum value of the axis-specific change in acceleration
in the machine data.

 (>>> 15.8.1 "Programming axis-specific motion parameters" Page 352)

setBlendingRel(…) Relative approximation distance (type: double)

 0.0 … 1.0

The relative approximation distance is the furthest distance before the
end point at which approximate positioning can begin. If “0.0” is set, the
approximation parameter does not have any effect.

The maximum distance (= 1.0) is always the length of the individual
motion or the length of the last segment in the case of splines. For
motions which are not commanded within a spline, only the range
between 0% and 50% is available for approximate positioning. In this
case, if a value greater than 50% is parameterized, approximate posi-
tioning nevertheless begins at 50% of the block length.

setBlendingCart(…) Absolute approximation distance (type: double, unit: mm)

 ≥ 0.0

The absolute approximation distance is the furthest distance before the
end point at which approximate positioning can begin. If “0.0” is set, the
approximation parameter does not have any effect.

setBlendingOri(…) Orientation parameter for approximate positioning (type: double, unit:
rad)

 ≥ 0.0

Approximation starts, at the earliest, when the absolute difference of the
dominant orientation angle for the end orientation falls below the value
set here. If “0.0” is set, the approximation parameter does not have any
effect.

setOrientation-
Type(…)

Orientation control (type: Enum)

 Constant

 Ignore

 OriJoint

 VariableOrientation (default)

 (>>> 14.9 "Orientation control with LIN, CIRC, SPL" Page 314)

setOrientationRefer-
enceSystem(…)

Only relevant for CIRC motions: Reference system of orientation control
(type: Enum)

 Base

 Path

 (>>> 14.9.1 "CIRC – reference system for the orientation control"
Page 316)

Method Description
351 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

352 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.8.1 Programming axis-specific motion parameters

Description The following axis-specific motion parameters can be programmed:

 Relative velocity setJointVelocityRel(…)

 Relative acceleration setJointAccelerationRel(…)

 Relative jerk setJointJerkRel(…)

There are various ways of specifying these axis-specific relative values. A val-
id value for all axes, different values for each individual axis or a value for an
individual axis.

By way of example, these possibilities are described using the relative veloci-
ty:

 setJointVelocityRel(Value)

If a value of type double is transferred, the relative velocity applies to all
axes.

 setJointVelocityRel(Array_variable)

In order to assign each axis its own relative velocity, a double array is
transferred with the corresponding axis values. In an array, the axis values
of up to 12 axes can be defined, beginning with axis A1.

 setJointVelocityRel(Axis, Value)

To specify the relative velocity of an individual axis, this axis is transferred
as JointEnum.

Examples All axes move at 50% of maximum velocity:

Axis A5 moves at 50%, all other axes move at 20% of maximum velocity:

Axis A4 moves at 50% of maximum velocity, all other axes move at maximum
velocity:

15.9 Programming manual guidance

Description The robot can be guided using a hand guiding device. Manual guidance mode
can be switched on in the application using the motion command handGuid-
ing(). Manual guidance begins at the actual position which was reached before
the mode was switched on.

If Manual guidance mode is used in the application, at least 2 ESM states must
be configured:

 ESM state for manual guidance motion

The ESM state contains the AMF Hand guiding device enabling inactive,
which checks whether the enabling signal has not been issued on the
hand guiding device.

 (>>> 13.10.5 "Manual guidance with enabling device and velocity moni-
toring" Page 236)

It is advisable to configure a safety stop 1 (path-maintaining) as the stop
reaction for the AMF Hand guiding device enabling inactive. Following a

robot.move(ptp(getApplicationData().getFrame("/P1"))

.setJointVelocityRel(0.5));

double[] velRelJoints = {0.2, 0.2, 0.2, 0.2, 0.5, 0.2, 0.2};
robot.move(ptp(getApplicationData().getFrame("/P1"))

.setJointVelocityRel(velRelJoints));

robot.move(ptp(getApplicationData().getFrame("/P1"))

.setJointVelocityRel(JointEnum.J4, 0.5));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
path-maintaining stop, the application can be resumed directly by pressing
the Start key.

If a non-path-maintaining stop reaction is configured for the AMF Hand
guiding device enabling inactive, the robot must first be repositioned fol-
lowing manual guidance before the application can be resumed.

 ESM state for all motions except manual guidance motion

The ESM state does not contain the AMF Hand guiding device enabling
inactive. The signal at the hand guiding device is not evaluated.

In the application, motions before and after manual guidance are generally re-
quired. It is advisable to monitor each of these motions using an ESM state
which does not evaluate the signal on the hand guiding device, and to only
switch to the ESM state for the manual guidance motion directly before switch-
ing to Manual guidance mode. If this is carried out in the application in this
manner, the response is as follows:

 If the signal for manual guidance is issued before Manual guidance mode
is switched on in the application, Manual guidance mode will be active as
soon as it is switched on. This means that the application is not paused
when the mode is switched on, making for a smooth transition between
Application mode and Manual guidance mode.

Precondition for this response: the application velocity is less than the
maximum permissible velocity configured for manual guidance.

 (>>> 13.10.5.3 "Velocity monitoring during manual guidance" Page 238)

If the application is executed at a higher velocity, the application is paused
before switching to manual guidance mode. (Then release the enabling
switch, press the Start key and wait until the application is paused again.)

 If the signal for manual guidance is first issued when Manual guidance
mode is already switched on in the application, the Start key must be
pressed in order to manually guide the robot. The pause in the application
allows the operator to move his hand to the hand guiding device.

 Manual guidance mode has ended when the signal for manual guidance
has been cancelled, e.g. by releasing the enabling switch. The application
is paused and can only be resumed by pressing the Start key. The pause
in the application allows the operator to remove his hand from the hand
guiding device.

A risk assessment must determine whether it is permissible to config-
ure a path-maintaining stop reaction for the EMS state which monitors
the enabling switch on the hand guiding device.

If, when switching to Manual guidance mode, the appli-
cation is in an ESM state which does not contain a Hand

guiding device enabling inactive AMF, the robot can nevertheless be manu-
ally guided in one situation: the enabling switch on the hand guiding device
is pressed and a Hand guiding device enabling inactive AMF is configured in
any other ESM state or in the PSM table.
This combination must be avoided under all circumstances: in a situation like
this, the application is not paused when manual guidance is terminated and
the enabling switch on the hand guiding device is released. Instead, the ap-
plication is resumed without any further operator actions. If further motions
follow manual guidance, these are executed directly while the operator’s
hand is still on the hand guiding device and thus within the robot’s motion
range.

Switching between ESM states is effected via non-safety-oriented
signals. For this reason, it must be ensured that the defined ESM
state always assures a sufficient degree of safety, regardless of the

time or place of activation. (>>> 13.2 "Safety concept" Page 203)
353 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

354 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Preparation The handGuiding() motion command belongs to the HRCMotions class. The
class must be manually inserted into the import section of the robot applica-
tion. The following line must be programmed:

Syntax Object.move(handGuiding());

Explanation of

the syntax

Example

15.9.1 Axis-specific limits for manual guidance

Description The axis range of each axis is limited by means of software limit switches. For
manual guidance, user-specific axis limits can additionally be defined in the ro-
bot application.

Defining a lower and an upper axis limit results in a permissible axis range, in
which manual guidance is freely possible, and 2 non-permissible axis ranges
between the upper/lower axis limit and the respective software limit switch.

import static com.kuka.roboticsAPI.motionModel.HRCMotions.*;

To enable the HRCMotions class to be integrated, the catalog ele-
ment Manual guidance support must be selected in the station con-
figuration (Software tab).

Element Description

Object Object of the station which is being moved

The variable name of the object declared and initialized in
the application is specified here.

1 robot.setESMState("1");

2 robot.move(ptp(getApplicationData().getFrame("/P1")));

3 robot.setESMState("2");

4 robot.move(handGuiding());

5 robot.setESMState("1");

6 robot.move(ptp(getApplicationData().getFrame("/P2")));

Line Description

1 ESM state 1 is activated for the robot. In this example, ESM
state 1 monitors the operator safety.

2 Frame "/P1" is addressed with a PTP motion.

3 ESM state 2 is activated for the robot. ESM state 2 monitors
the enabling switch on the hand guiding device.

If a signal has not yet been issued via the switch, the config-
ured stop reaction is triggered and the application is paused.

4 Manual guidance mode is activated.

The robot can be guided manually as soon as the enabling
switch on the hand guiding device is pressed and held in the
center position.

When the signal for manual guidance has been cancelled, e.g.
by releasing the enabling switch, Manual guidance mode has
ended. The stop reaction configured for ESM state 2 is trig-
gered and motion execution is paused.

5 ESM state 1 is activated for the robot. In this example, ESM
state 1 monitors the operator safety.

Motion execution remains paused. The Start key must be
pressed in order to resume the application.

6 Frame "/P2" is addressed with a PTP motion.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
If a user-defined axis limit is reached during manual guidance, a virtual spring
damper system is tensioned. This generates a resistance against any further
motion towards the limit switch, with the resistance becoming greater the near-
er an axis comes to the limit switch.

The axis space limits for manual guidance must be set and activated individu-
ally for each axis.

The following applies by default:

 If an axis limit is reached, all axes involved in the motion work against a
further motion towards the limit switch.

It is possible to define that only the axis that has reached the limit works
against a further motion towards the limit switch.

 If an axis limit is already exceeded at the start of manual guidance, the af-
fected axis must be moved manually out of the non-permissible range.

It is possible to define that the axis is to move automatically out of the non-
permissible range.

In addition to the axis space limits, a velocity limit that may not be exceeded
by any axis can be programmed for manual guidance. As soon as the operator
reaches this maximum axis velocity in manual guidance, increasing torque
acts against the motion and cushions it.

In the vicinity of the axis space limits, the programmed maximum axis velocity
in manual guidance is continuously reduced to an axis velocity specified by
KUKA. This ensures that the manual guidance motion is decelerated and the
operator can only approach the axis limits at reduced velocity.

Overview The required motion parameters can be added in any order to the motion com-
mand handGuiding(). Dot operators and “set” methods are used for this pur-
pose.

Fig. 15-10: Axis-specific limits for manual guidance (examples)

1 Position of software limit switch

2 Lower limit of the axis range

3 Upper limit of the axis range
355 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

356 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example

Method Description

setAxisLimits
Enabled(…)

Activation of the user-specific axis limits for manual guidance (type:
boolean[])

 true: Axis limit active

 false: Axis limit not active

Note: This method refers to the limits that the user can set using the
methods setAxisLimitsMax(…) and setAxisLimitsMin(…). The outermost
axis limits of the robot (software limit switches) are always monitored.

setAxisLimitsMax(…) Upper axis limits (type: double[]; unit: rad)

setAxisLimitsMin(…) Lower axis limits (type: double[]; unit: rad)

Note: The lower axis limit must always be lower than the corresponding
upper axis limit.

setAxisLimitViolation
FreezesAll(…)

Response if an axis limit is reached (type: boolean)

 true: If an axis limit is reached, all axes involved in the motion work
against a further motion towards the limit switch.

 false: If an axis limit is reached, only the affected axis works against
a further motion towards the limit switch.

Default: true

If this value is not set, the default value is automatically applied.

setAxisSpeed
Limit(…)

Velocity limitation for all axes (type: double; unit: rad/s)

 ≥ 0.0

setPermanentPullOn
ViolationAtStart(…)

Response if an axis limit is already exceeded at the start of manual guid-
ance (type: boolean)

 true: When the enabling signal for manual guidance is issued, the
axis is moved automatically out of the non-permissible range. When
the permissible range is reached, the motion is stopped automatical-
ly.

 false: When the enabling signal for manual guidance is issued, the
axis does not move. It must be moved out of the non-permissible
range manually.

Default: false

If this value is not set, the default value is automatically applied.

@Inject

private LBR robot;
private HandGuidingMotion motion;
// ...

motion = handGuiding()

 .setAxisLimitsMax(+1.407, +0.872, +0.087, -0.785, +0.087,

 +1.571, +0.087)

 .setAxisLimitsMin(-1.407, +0.175, -0.087, -1.571, -0.087,

 -1.571, -0.087)

 .setAxisLimitsEnabled(false, true, false, true, false,
 true, false)
 .setAxisSpeedLimit(0.5)

 .setAxisLimitViolationFreezesAll(true)
 .setPermanentPullOnViolationAtStart(true);

robot.move(motion);
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.10 Using tools and workpieces in the program

An application consitutes a programmed model of a real station and must
therefore contain all movable objects and fixed geometric objects in the sta-
tion. Examples of movable objects for a station are robots, tools and workpiec-
es. Examples of fixed objects are support tables or conveyors.

Robots are automatically declared and initialized when the robot application is
created. Tools and workpieces used in the robot application must be integrat-
ed using dependency injection.

Tools and workpieces with load data and geometric data are created and man-
aged in the Object templates view.

 (>>> 9.3 "Object management" Page 148)

Data types The data types for the objects in a station are predefined in the RoboticsAPI,
e.g.:

15.10.1 Integrating tools and workpieces

Description Tools and workpieces created in the object templates can be integrated into
robot applications and background tasks using dependency injection. The
name of the template is specified by means of an additional annotation.

Syntax @Inject

@Named("Template name")

private Data type Object name;

Explanation of

the syntax

Example Tools and workpieces in the object templates:

Data type Object

Controller Robot controller

LBR Lightweight robot

Tool Tool

Workpiece Workpiece

Element Description

@Inject Annotation for integrating resources by means of depen-
dency injection

@Named Annotation for specifying the object template to be used

Template
name

Name of the object template as specified in the Object
templates view

private The keyword designates locally valid variables. Locally
valid means that the data array can only be used by the
corresponding class.

Data type Class of the resource (Tool or Workpiece) that is to be inte-
grated

Object name Name of the identifier, as it is to be used in the application

The annotation @Named may be omitted for tools if there is only one
single object template for a tool. The annotation is always required for
workpieces.
357 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

358 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Declaration of the objects in the robot application:

15.10.2 Attaching tools and workpieces to the robot

In order to be able to use tools and workpieces as movable objects in motion
instructions, they must be attached to the robot in the application via the meth-
od attachTo(…).

 Tools are directly or indirectly attached to the robot flange.

 Workpieces are indirectly attached to the robot via a tool or another work-
piece.

As soon as a tool or workpiece is attached to the robot via the method attach-
To(…), the load data from the robot controller are taken into account. In addi-
tion, all frames of the attached object can be used for the motion programming.

 (>>> 9.3.8 "Load data" Page 153)

15.10.2.1Attaching a tool to the robot flange

Description Via the method attachTo(…), the origin frame of a tool is attached to the flange
of a robot used in the application. The robot flange is accessed via the method
getFlange().

Syntax Tool.attachTo(Robot.getFlange());

Fig. 15-11: Object templates

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 @Named("Gripper")

 private Tool gripper;

 @Inject

 @Named("GuidingTool")

 private Tool guidingTool;

 @Inject

 @Named("Pen")

 private Workpiece pen;

 @Override

 public void initialize() {
 // initialize your application here

 }

 @Override

 public void run() {
 // your application execution starts here

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example A guiding tool is attached to the robot flange.

15.10.2.2Attaching a workpiece to other objects

Description By default the origin frame of the workpiece is used to attach it to the frame of
another object.

However, every other frame created for a workpiece can also be used as a ref-
erence point for attaching to another object.

Frames for tools and workpieces are created in the Object templates view. In
order to use a frame in the program, the object frame is polled with the method
getFrame(…). As an input parameter, this contains the path of the frame as a
string.

 (>>> 9.3.4 "Creating a frame for a tool or workpiece" Page 150)

Syntax To use the origin frame for the attachment:

Workpiece.attachTo(Object.getFrame("End frame"));

To use another reference frame for the attachment:

Workpiece.getFrame("Reference frame").attachTo(Object.get-
Frame("End frame"));

Element Description

Tool Name of the tool variable

Robot Name of the robot variable

Fig. 15-12: Attaching the guiding tool to the flange.

@Inject

private LBR robot;
@Inject

private Tool guidingTool;
// ...

@Override

public void initialize() {
 // ...

 guidingTool.attachTo(robot.getFlange());

 // ...

}

359 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

360 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Explanation of

the syntax

Example 1 A pen is attached to the gripper frame via its origin frame.

Example 2 A 2nd frame is defined at the tip of the gripper. If this is to be used to grip the
pen, attachment via the origin frame of the pen is not possible. For this pur-
pose, a grip point was created on the pen. This is used as the reference frame
for the attachment to the gripper.

Element Description

Workpiece Name of the workpiece variable

Reference
frame

Reference frame of the workpiece which is used for the
attachment to the other object

End frame Frame of the object to which the reference frame of the
workpiece is attached

After the attach, the reference frame of the workpiece and the end
frame of the object attached to it match.

Fig. 15-13: Pen in gripper (attachment via origin frame)

@Inject

private LBR robot;
@Inject

private Tool gripper;

@Inject

@Named("Pen")

private Workpiece pen;
// ...

@Override

public void run() {

 // ...

 pen.attachTo(gripper.getFrame("/TCP1"));

 // ...

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.10.2.3Detaching objects

Description If a tool is removed or a workpiece is set down, the object must also be de-
tached in the application. The method detach() is used for this purpose.

Syntax Object.detach();

Explanation of

the syntax

Example The guidance tool is detached.

15.10.3 Moving tools and workpieces

Description Every movable object in a station can be moved with move(…) and move-
Async(…). The reference point of the motion is dependent on the object type:

 If a robot is moved, the reference point is always the robot flange center
point.

Fig. 15-14: Pen in gripper (connection via grip frame)

@Inject

private LBR robot;
@Inject

private Tool gripper;

@Inject

@Named("Pen")

private Workpiece pen;
// ...

@Override

public void run() {

 // ...

 pen.getFrame("/Grip").attachTo(gripper.getFrame("/TCP2"));

 // ...

}

Element Description

Object Name of the object variable

guidingTool.detach();
361 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

362 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 If a tool or workpiece is moved, the reference point is by default the default
motion frame which was defined for this object in the Object templates
view.

 (>>> 9.3.7 "Defining a default motion frame" Page 152)

In this case, the tool or workpiece is linked directly to the motion command
via the variable name declared in the application.

 However, any other frame created for a tool or workpiece can also be pro-
grammed as a reference point of the motion.

In this case, using the method getFrame(…), the path to the frame of the
object used for the motion must be specified (on the basis of the origin
frame of the object).

Syntax To use the default frame of the object for the motion:

Object.move(Motion);

To use a different frame of the object for the motion:

Object.getFrame("Moved frame").move(Motion));

Explanation of

the syntax

Examples The PTP motion to point P1 is executed with the default frame of the gripper.

The PTP motion to point P1 is executed with a different frame than the default
frame of the gripper, here TCP1:

A pen is gripped. The next motion is a PTP motion to point P20. This point is
executed with the default frame of the workpiece “pen”.

15.10.4 Integrating dedicated object classes with dependency injection

Description Tools and workpieces created in the object templates are based on the class-
es Tool and Workpiece. Specific properties or functions that tools and work-
pieces generally have are not considered by these basic classes. For a
gripper, examples might include functions for opening and closing.

Such specific object properties and functions can be defined in separate object
classes. The following steps are required in order to be able to use the user-
defined object classes in the same way as the basic classes in applications:

Element Description

Object Object of the station which is being moved

The variable name of the object declared and initialized in
the application is specified here.

Moved frame Path to the frame of the object which is used for the motion

Motion Motion which is being executed

gripper.attachTo(robot.getFlange());

gripper.move(ptp(getApplicationData().getFrame("/P1")));

gripper.attachTo(robot.getFlange());

gripper.getFrame("/TCP1").move(ptp(getApplicationData().getFrame("/P1
")));

gripper.attachTo(robot.getFlange());

// ...

pen.attachTo(gripper.getFrame("/TCP1"));

pen.move(ptp(getApplicationData().getFrame("/P20"));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Singletons Object classes that are derived from Tool and used in a Sunrise project as de-
scribed here are always integrated as singletons. This means that each object
annotated with the type of the object class refers to the same instance.

By default, object classes that are derived from Workpiece are not singletons.
When annotating, a new instance is therefore created every time. Workpieces
can be made singletons by placing the annotation @Singleton before the
header of the class.

Procedure Derive a new object class from a basic class:

1. Select the desired Sunrise project in the Package Explorer.

2. Select the menu sequence File > New > Class. The New Java class win-
dow opens.

3. In the Package: box, enter a name for the Java package in which the new
class is to be created.

4. Enter a name for the new class in the Name box.

5. To the right of the Superclass: box, click on Browse.... The Superclass
selection window is opened.

6. Enter the name of the basic class in the Select type box (Tool or Work-
piece).

Step Description

1 Derive a new object class from a suitable basic class:

 Basic class for tools:

com.kuka.roboticsAPI.geometricModel.Tool

 Basic class for workpieces:

com.kuka.roboticsAPI.geometricModel.Workpiece

The constructor of the created object class must have the fol-
lowing properties:

 Visibility level public

 Transfer parameter of type String (name of the object tem-
plate is transferred)

 Must not be annotated with @Inject

2 Define object properties and functions in the new object class.

3 In the object templates, assign the new object class to the
desired objects. For this, enter the full identifier (Package
name.Class name) of the object class under Template class
in the Properties view.

Note: Object templates that use an object class derived from
a basic class are integrated into an application such as this by
means of dependency injection.

Entering the object class as a template in the properties is especially
important because the load data of the templates are then automati-
cally assigned to the integrated object. If this is not done, the object

class behaves like a specially created class without dependencies.
 (>>> 15.3.3.2 "Dependency injection for dedicated types" Page 339)
If the load data are required for motions (e.g. for a robot under impedance
control), this can result in unexpected motions of the robot.

Dependency injection can also be used in dedicated classes. For ex-
ample, the ITaskLogger can be integrated in order to display output
information on the smartHMI.
363 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

364 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
7. Confirm the selection with OK. The name of the basic class is now dis-
played in the Superclass: box.

8. Click on Finish. The Java package with the newly created class is inserted
into the source folder of the Sunrise project and opened in the editor area.

9. Create a constructor with the desired properties.

10. The required arrays and methods can now be defined.

Example Step 1:

For a gripper, the object class Gripper is created using the procedure de-
scribed above. The class Gripper is derived from the basic class Tool and ex-
pands the basic class to include the functions for opening and closing the
gripper.

Step 2:

An object template with the name “ExampleGripper” is created for the gripper.
The object class Gripper is assigned to the object template:

 Entry under Template class in the Properties view: tools.Gripper

The name of the Java package (here “tools”) that contains the class Grip-
per must be specified.

Step 3:

1 package tools;
2 import com.kuka.roboticsAPI.geometricModel.Tool;
3 public class Gripper extends Tool {
4 @Inject

5 private ITaskLogger logger;
6

7 public Gripper(String name) {
8 super(name);
9 }

10

11 /**

12 * Opens the gripper

13 */

14 public void openGripper(){
15 // ...

16 logger.info("Gripper is open.");

17 }

18

19 /**

20 * Closes the gripper

21 */

22 public void closeGripper(){
23 // ...

24 logger.info("Gripper is closed.");

25 }

26 }

Line Description

1 Name of the Java package that contains the class Gripper

4 … 5 Integration of the ITaskLogger interface by means of depen-
dency injection

7 … 9 Standard constructor of the class Gripper (adopted from Tool)

14 … 11 Method openGripper() for opening the gripper

22 … 25 Method closeGripper() for closing the gripper

16, 24 Information displayed on smartHMI with the aid of the ITask-
Logger interface
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
The object class Gripper and the corresponding functions can be used in the
robot application.

15.10.5 Commanding load changes to the safety controller

Description The safety controller requires the load data of a workpiece for calculation of
the external torques. The safety controller can only process the load data of
safety-oriented workpieces.

 (>>> 9.3.10 "Safety-oriented workpieces" Page 158)

During a process, picking up and setting down different workpieces can result
in load changes. During collision detection, the user must explicitly inform the
safety controller via the method setSafetyWorkpiece(…) which safety-oriented
workpiece is currently activated. For this purpose, this workpiece is transferred
as an input parameter.

The setSafetyWorkpiece(…) method belongs to the LBR class and can be
used in both robot applications and background tasks. A precondition for the
transfer of a safety-oriented workpiece to the method is that an instance of the
workpiece has been created from the object templates.

 (>>> 15.10.1 "Integrating tools and workpieces" Page 357)

1 public class ExampleApplication extends RoboticsAPIApplication {
2 @Inject

3 private LBR robot;
4 @Inject

5 private Gripper gripper;
6

7 @Override

8 public void initialize() {
9 // initialize your application here

10 // ...

11 gripper.attachTo(robot.getFlange());

12 // ...

13 }

14

15 @Override

16 public void run() {
17 // your application execution starts here

18 // ...

19 gripper.openGripper();

20 gripper.move(lin(getFrame("/GripPos")));

21 gripper.closeGripper();

22 // ...

23 }

24 }

Line Description

4 … 5 A tool of type Gripper is integrated.

The tool has the functions defined in the object class Gripper.

11 The tool is attached to the robot flange.

19 … 21 The functions defined in the object class Gripper are used to
program a gripping process:

 Open gripper, move to grip position, close gripper.

Only a safety-oriented workpiece may be transferred to setSafety-
Workpiece(…) . If a non-safety-oriented workpiece is transferred, an
exceptional error occurs.
365 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

366 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
To deactivate an active safety-oriented workpiece and communicate to the
safety controller that a safety-oriented workpiece is no longer gripped, the val-
ue null is communicated to the setSafetyWorkpiece(…) method.

The load change is commanded for the safety controller with setSafetyWork-
piece(…). If the workpiece load data are not to be taken into consideration in
the safety-oriented part of the robot controller, the load change must also be
programmed with the corresponding commands.

 (>>> 15.10.2.2 "Attaching a workpiece to other objects" Page 359)

Syntax robot.setSafetyWorkpiece(Workpiece);

Explanation of

the syntax

Example 1 safety-oriented tool and 2 safety-oriented workpieces are created in the ob-
ject templates.

The tool contains the frame "GrippingPoint", which serves as a gripping point
for workpieces and which is selected as the standard frame for motions.

In the application, the workpiece "ComponentA_safetyOriented" is picked up
and set down. The workpiece "ComponentB_safetyOriented" is then picked
up. All load changes are to be taken into consideration in both the safety-ori-
ented and non-safety-oriented part of the robot controller.

Element Description

robot Type: LBR

Name of the robot for which the load change is pro-
grammed

Workpiece Type: Workpiece

Safety-oriented workpiece whose load data are to be trans-
ferred to the safety controller

If no safety-oriented workpiece is to be taken into consider-
ation any longer, null must be transferred.

Fig. 15-15: Workpieces and tool (object templates)

public class ChangeOfLoadExample extends RoboticsAPIApplication {
 @Inject

 private LBR robot;

 @Inject

 private Tool gripper;

 @Inject

 @Named("ComponentA")

 private Workpiece componentA;

 @Inject

 @Named("ComponentB")

 private Workpiece componentB;
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.11 Using inputs/outputs in the program

When exporting an I/O configuration from WorkVisual, a separate Java class
is created for each I/O group in the corresponding Sunrise project. Each of
these Java classes contains the methods required for programming, in order
to be able to read the inputs/outputs of an I/O group and write to the outputs
of an I/O group.

To use the inputs/outputs of an I/O group in the application, the user must in-
tegrate the I/O group by means of dependency injection.

@Override

public void initialize() {
 // ...

 // attach gripper to robot flange

 gripper.attachTo(robot.getFlange());

 }

@Override

public void run() {
 // ...

 // after pick-up, attach workpiece to set load data for

 // motion control

 componentA.attachTo(gripper.getDefaultMotionFrame());

 // set load data for safety controller

 robot.setSafetyWorkpiece(componentA);

 // ...

 // after putting it down, detach workpiece to no longer

 // consider its load for motion control

 componentA.detach();

 // workpiece is no longer considered for safety

 // controller

 robot.setSafetyWorkpiece(null);

 // ...

 // pick-up of second workpiece

 componentB.attachTo(gripper.getDefaultMotionFrame());

 robot.setSafetyWorkpiece(componentB);

 // ...

 }

}

The source code of the Java classes of the package com.kuka.gen-
erated.ioAccess must not be changed manually. To expand the
functionality of an I/O group, it is possible to derive further classes

from the classes created or to continue to use objects from these classes,
e.g. as arrays of their own classes (aggregating).
367 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

368 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 15-16: Project structure after exporting the I/O configuration

Item Description

1 com.kuka.generated.ioAccess Java package

The class created for an I/O group and the methods of this class
are saved in the package.

The Java class NameIOGroup.java (here: LampSwitchIO-
Group.java) contains the following elements:

 Class name of the I/O group: NameIOGroup

 Constructor for assigning the robot controller to the I/O group:
NameIOGroup(Controller)

 “Get” and “set” methods for every configured output: getOut-
put(), setOutput(Value)

 “Get” method for every configured input: getInput()

2 generatedFiles folder

 IODescriptions folder

The data in an I/O group are saved in an XML file. The XML file
can be displayed but not edited.

3 IOTemplates folder

The data of an I/O group saved as a template are saved in an
XML file. The XML file can be displayed but not edited.

A template can be copied into another Sunrise project in order to
be used there. The template can then be imported into WorkVi-
sual, edited there and re-exported.

 (>>> 11.5.8 "Importing an I/O group from a template" Page 185)

 (>>> 11.5.7 "Exporting an I/O group as a template" Page 184)

The generatedFiles folder is used by the system and must not be
used for saving files created by the user.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.11.1 Integrating an I/O group

Description I/O groups can be integrated into robot applications and background tasks by
means of dependency injection. As a result, the Java package com.kuka.gen-
erated.ioAccess is automatically imported with the classes and methods of the
I/O group.

Syntax @Inject

private Data type Group name;

Explanation of

the syntax

Example Integrating the I/O group “SwitchLamp”:

15.11.2 Reading inputs/outputs

Description The “get” method of an input/output is used to poll the state of the input/output.

Syntax Group name.getInput|Output();

Explanation of

the syntax

Example The state of the switch at input “Switch1” and of the lamp at output “Lamp1” is
polled.

Element Description

@Inject Annotation for integrating resources by means of depen-
dency injection

private The keyword designates locally valid variables. Locally
valid means that the data array can only be used by the
corresponding class.

Data type Class of the resource (I/O group) that is to be integrated

Class name of the I/O group:

 NameIOGroup

Name = Name of the I/O group, as defined in WorkVisual

Group name Name of the identifier, as it is to be used in the application

public class ExampleApplication extends RoboticsAPIApplication {
 // ...

 @Inject

 private SwitchLampIOGroup switchLamp;
 // ...

 @Override

 public void initialize() {
 // initialize your application here

 }

 @Override

 public void run() {
 // your application execution starts here

 }

}

Element Description

Group name Name of the identifier of the I/O group

Input Name of the input (as defined in WorkVisual)

Output Name of the output (as defined in WorkVisual)
369 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

370 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.11.3 Setting outputs

Description The “set” method of an output is used to change the value of the output.

Syntax Group name.setOutput(Value);

Explanation of

the syntax

Example The lamp at output “Lamp1” is switched on and then switched off after
2000 ms.

public void run() {
 // ...

 switchLamp.getLamp1();

 switchLamp.getSwitch1();

 // ...

}

Outputs are switched in certain situations although a
safety-oriented stop request is present (e.g. in the case

of a pressed EMERGENCY STOP or violated space monitoring). This can
cause unexpected motions of the connected periphery (e.g opening of a grip-
per).
The following situations can now occur:

 Background task switches output.

 Function called via user key switches output.

 Robot applications continue running to the next synchronous motion
command after a stop request. The code executed up to that point
switches the output.

The behavior described can also be desirable; however, there must never be
any danger to human and machine. This must be ensured by the system in-
tegrator, e.g. by means of de-energizing outputs with hazard potential.

It is not permissible to set outputs in a robot application
that signal system states to the external controller. Fail-

ure to observe this precaution may result in malfunctioning of the external
controller and damage to property.

No “set” methods are available for inputs. They can only be read.

Element Description

Group name Name of the identifier of the I/O group

Output Name of the output (as defined in WorkVisual)

Value Value of the output

The data type of the value to be transferred depends on
the output type.

public void run() {
 // ...

 switchLamp.setLamp1(true);
 ThreadUtil.milliSleep(2000);

 switchLamp.setLamp1(false);
 // ...

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.12 Polling axis torques

Description Certain robot types, e.g. the LBR iiwa, have a joint torque sensor in each axis
which measures the torque acting on the axis. The interface ITorqueSensiti-
veRobot contains the methods required for polling sensor data from the robot.

 getMeasuredTorque()

The measured torque values can be polled and evaluated in the applica-
tion via the method getMeasuredTorque().

 getExternalTorque()

Frequently, it is not the pure measured values which are of interest but
rather only the externally acting torques, without the component resulting
from the weight of the robot and mass inertias during motion. These values
are referred to as external torques. These external torques be accessed
via the method getExternalTorque().

 getSingleTorqueValue(…), getTorqueValues()

The methods getMeasuredTorque() and getTorqueValues() return an ob-
ject of the type TorqueSensorData containing the torque sensor data of all
axes. From this object, it is then possible to poll either all values as an ar-
ray with getTorqueValues(…) or a single axis value with getSingle-
TorqueValue(…).

Syntax To poll the measured sensor data:

TorqueSensorData measuredData = robot.getMeasuredTorque();

To poll externally acting torque data:

TorqueSensorData externalData = robot.getExternalTorque();

To poll torque values of all axes from the sensor data:

double[] allValues = measuredData|externalData.getTorqueValues();

To poll torque values of a specific axis from the sensor data:

double singleValue =
measuredData|externalData.getSingleTorqueValues(joint);

Explanation of

the syntax

In order to be able to display external torques correctly, the load
mounted on the robot must be configured correctly and communicat-
ed to the system.

When polling the torque sensor data with Java, no real-time behavior
is available. This means that the data supplied by the system in the
program were already created several milliseconds earlier.

Element Description

measured
Data

Type: TorqueSensorData

Variable for the return value of getMeasuredTorque(). The
return value contains the measured sensor data.

externalData Type: TorqueSensorData

Variable for the return value of getExternalTorque(). The
return value contains the externally acting torques.

robot Type: LBR

Name of the robot from which the sensor data are polled

allValues Type: double[]; unit: Nm

Array with all torque values which are polled from the sen-
sor data
371 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

372 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example For a specific process step, the measured and externally acting torques are
polled in all axes and saved in an array to be evaluated later. The measured
torque in axis A2 is read and displayed on the smartHMI. For output purposes,
a logger object has been integrated with dependency injection.

15.13 Reading Cartesian forces and torques

Certain robot types, e.g. the LBR iiwa, have a joint torque sensor in each axis
which measures the torque acting on the axis. The robot controller calculates
the Cartesian forces and torques using the measured torques.

The interface IForceSensitiveRobot contains the methods for polling the exter-
nal Cartesian forces and torques currently acting on the robot flange, the TCP
of a tool or any point of a gripped workpiece.

The following points must be taken into consideration:

 The Cartesian forces and torques are estimated based on the measured
values of the joint torque sensors.

A force application point must be specified for the calculation. The external
Cartesian forces and torques calculated for the force application point are
only meaningful in terms of the physics involved if there are no external
forces acting on any other points on the robot.

 The reliability of the calculated values can decrease considerably in ex-
treme poses, e.g. extended positions or singularities.

 The quality and validity of the calculated values can be checked.

 When changing the load data, e.g. with the attachTo command, the poll
can only be executed after the motion command has been sent to the ro-
bot controller. For this purpose, a null space motion or the motion com-
mand positionHold(…) is sufficient.

15.13.1 Polling external Cartesian forces and torques

Description The method getExternalForceTorque(…) is used by the robot to read the ex-
ternal Cartesian forces and torques currently acting on the robot flange, the
TCP of a tool or any point of a gripped workpiece.

The method receives a frame as the transfer parameter. The transferred frame
is the reference frame for calculating the forces and torques, e.g. the tip of a
probe. The method calculates the externally applied forces and torques for the
position described by the frame.

singleValue Type: double; unit: Nm

Torque value of the axis which is polled from the sensor
data

joint Type: JointEnum

Axis whose torque value is to be polled

Element Description

TorqueSensorData measuredData = robot.getMeasuredTorque();

TorqueSensorData externalData = robot.getExternalTorque();

double[] measuredTorques = measuredData.getTorqueValues();
double[] externalTorques = externalData.getTorqueValues();

double torqueA2 = measuredData.getSingleTorqueValue(JointEnum.J2);

logger.info("Currently measured torque for joint 2 [Nm]:" +
torqueA2);
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
For a meaningful calculation in terms of the physics involved, the transferred
frame must describe a point which is mechanically fixed to the flange. The giv-
en frame must also be statically connected to the robot flange frame in the
frame structure.

Optionally, a second frame can be transferred to the method as a parameter.
This frame specifies the orientation of a coordinate system in which the forces
and torques are represented.

Syntax ForceSensorData data = robot.getExternalForceTorque(
measureFrame<, orientationFrame>);

Explanation of

the syntax

Examples Polling of the external forces and torques acting on the robot flange:

Polling of the external forces and torques acting on the robot flange with the
orientation of the world coordinate system:

15.13.2 Polling forces and torques individually

Description The external Cartesian forces and torques polled with getExternalForce-
Torque() can be polled separately from one another. The class ForceSensor-
Data provides the following methods for this:

 getForce()

 getTorque()

The result of these pollings is a vector in each case. The values for each de-
gree of freedom can be polled individually with the methods of the Vector
class.

 (>>> 15.4 "Polling individual values of a vector" Page 341)

Syntax To poll a force vector:

Vector force = data.getForce();

To poll a torque vector:

Vector torque = data.getTorque();

Element Description

data Type: ForceSensorData

Variable for the return value of getExternalForce-
Torque(…). The return value contains the calculated Carte-
sian forces and torques.

robot Type: LBR

Name of the robot

measure
Frame

Type: AbstractFrame

Reference frame for calculation of the Cartesian forces and
torques.

orientation
Frame

Type: AbstractFrame

Optional: Orientation of the frame in which the forces and
torques are represented.

ForceSensorData data =
robot.getExternalForceTorque(robot.getFlange());

ForceSensorData data =
robot.getExternalForceTorque(robot.getFlange(),
World.Current.getRootFrame());
373 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

374 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Explanation of

the syntax

Example Poll of the Cartesian force which is currently acting on the robot flange in the
X direction:

15.13.3 Checking the reliability of the calculated values

Description In unfavorable robot positions, the calculated Cartesian forces and torques
can deviate from the actual forces and torques applied. In particular near sin-
gularities, several of the calculated values are highly unreliable and can be in-
valid. Depending on the axis position, this only applies to some of the
calculated values.

The quality and validity of the calculated values can be evaluated and polled
in the program. The class ForceSensorData provides the following methods
for this:

 getForceInaccuracy(), getTorqueInaccuracy()

The inaccuracy of the calculated force and torque values can be polled.

The result of these pollings is a vector in each case. The values for each
degree of freedom can be polled individually with the methods of the Vec-
tor class.

 (>>> 15.4 "Polling individual values of a vector" Page 341)

Depending on the axis position, the quality of the calculated values for the
individual degrees of freedom may be different. By polling the individual
values, it is possible to determine the degrees of freedom for which the cal-
culation of forces and torques in the current pose supplies valid values.

 isForceValid(…), isTorqueValid(…)

The validity of the calculated force and torque values can be polled.

A limit value for the maximum permissible inaccuracy up to which the cal-
culated values are still valid is transferred as a parameter for each method.

Syntax Polling the inaccuracy of the calculated values:

Vector force = data.getForceInaccuracy();

Vector torque = data.getTorqueInaccuracy();

Polling the validity of the calculated values:

boolean valid = data.isForceValid(tolerance);

boolean valid =data.isTorqueValid(tolerance);

Element Description

force Type: vector (com.kuka.roboticsAPI.geometricModel.math)

Vector with the Cartesian forces which act in the X, Y and Z
directions (unit: N)

torque Type: vector (com.kuka.roboticsAPI.geometricModel.math)

Vector with the Cartesian torques which act about the X, Y
and Z axes (unit: Nm)

data Type: ForceSensorData

Variable for the return value of getExternalForce-
Torque(…). The return value contains the calculated Carte-
sian forces and torques.

ForceSensorData data =
robot.getExternalForceTorque(robot.getFlange());

Vector force = data.getForce();

double forceInX = force.getX();
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example A certain statement block should only be executed if the external Cartesian
forces acting along the axes of the flange coordinate system have been calcu-
lated with an accuracy of 20 N or better.

15.14 Polling the robot position

The axis-specific and Cartesian robot position can be polled in the application.
It is possible to poll the actual and the setpoint position for each.

Overview The following methods of the Robot class are available:

Element Description

force Type: vector (com.kuka.roboticsAPI.geometricModel.math)

Vector with the values for the inaccuracy with which the
Cartesian forces acting in the X, Y and Z directions are cal-
culated (unit: N)

torque Type: vector (com.kuka.roboticsAPI.geometricModel.math)

Vector with the values for the inaccuracy with which the
Cartesian torques acting about the X, Y and Z axes are cal-
culated (unit: Nm)

data Type: ForceSensorData

Variable for the return value of getExternalForce-
Torque(…). The return value contains the calculated Carte-
sian forces and torques.

tolerance Type: double; unit: N or Nm

Limit value for the maximum permissible inaccuracy up to
which the calculated Cartesian forces and torques are still
valid

valid Type: boolean

Variable for the return value of isForceValid(…) or
isTorqueValid(…)

 true: The inaccuracy value in all Cartesian directions is
less than or equal to the limit value defined with toleran-
ce.

 false: The inaccuracy value in one or more Cartesian
directions exceeds the tolerance value

ForceSensorData data =
robot.getExternalForceTorque(robot.getFlange());

if (data.isForceValid(20)){
 //do something

}

Method Description

getCommandedCartesianPo-
sition(…)

Return value type: Frame

Polls for the Cartesian setpoint position

getCommandedJointPosition() Return value type: JointPosition

Polls for the axis-specific setpoint position

getCurrentCartesianPosi-
tion(…)

Return value type: Frame

Polls for the Cartesian actual position
375 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

376 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.14.1 Polling the axis-specific actual or setpoint position

Description For polling the axis-specific actual or setpoint position of the robot, the position
of the robot axes is first saved in a variable of type JointPosition.

From this variable, the positions of individual axes can then be polled. The axis
whose position is to be polled can be specified using either its index or the
Enum JointEnum.

Syntax To poll the axis-specific actual position:

JointPosition position = robot.getCurrentJointPosition();

To poll the axis-specific setpoint position:

JointPosition position = robot.getCommandedJointPosition();

Polling the position of an individual axis:

double value = position.get(axis);

Explanation of

the syntax

Example First the axis-specific actual position of the robot and then the position of axis
A3 are polled via the index of the axis. The angle for axis A3 is displayed in
degrees on the smartHMI. For output purposes, a logger object has been in-
tegrated with dependency injection.

getCurrentJointPosition() Return value type: JointPosition

Polls for the axis-specific actual position

getPositionInformation(…) Return value type: PositionInformation

Polls for the Cartesian position information

The return value contains the following information:

 Axis-specific actual position

 Axis-specific setpoint position

 Cartesian actual position

 Cartesian setpoint position

 Cartesian setpoint/actual value difference (rotational)

 Cartesian setpoint/actual value difference (translational)

Method Description

Element Description

position Type: JointPosition

Variable for the return value. The return value contains the
polled axis positions.

robot Type: Robot

Name of the robot from which the axis positions are polled

value Type: double; unit: rad

Position of the polled axis

axis Type: int or JointEnum

Index or JointEnum of the axis whose position is polled

 0 … 11: Axis A1 … Axis A12

 JointEnum.J1 … JointEnum.J12: Axis A1 … Axis A12

JointPosition actPos = robot.getCurrentJointPosition();

double a3 = actPos.get(2);
logger.info(Math.toDegrees(a3));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.14.2 Polling the Cartesian actual or setpoint position

Description It is possible to poll the Cartesian actual or setpoint position of the robot flange
as well as every other frame below it. This means every frame of an object
which is attached to the robot flange via the attachTo command, e.g. the TCP
of a tool or the frame of a gripped workpiece.

The result of the polling, i.e. the Cartesian position, refers by default to the
world coordinate system. Optionally, it is possible to specify another reference
coordinate system relative to which the Cartesian position is polled. This can
for example be a frame created in the application data or a calibrated base.

The result of the polling is saved in a variable of type Frame and contains all
the necessary redundancy information (redundancy angle, Status and Turn).
From this variable, the position (X, Y, Z) and orientation (A, B, C) of the frame
can be polled via the type-specific get methods.

Syntax To poll the Cartesian actual position:

Frame position = robot.getCurrentCartesianPosition(
frameOnFlange<, referenceFrame>);

To poll the Cartesian setpoint position:

Frame position = robot.getCommandedCartesianPosition(
frameOnFlange<, referenceFrame>);

Explanation of

the syntax

Examples Cartesian actual position of the robot flange with reference to the world coor-
dinate system:

Cartesian actual position of the TCP of a tool with reference to a base:

Element Description

position Type: Frame

Variable for the return value. The return value contains the
polled Cartesian position.

robot Type: Robot

Name of the robot from which the Cartesian position is
polled

frameOn
Flange

Type: ObjectFrame

Robot flange or a frame subordinated to the flange whose
Cartesian position is polled

reference
Frame

Type: AbstractFrame

Reference coordinate system relative to which the Carte-
sian position is polled. If no reference coordinate system is
specified, the Cartesian position refers to the world coordi-
nate system.

Frame cmdPos = robot.getCurrentCartesianPosition(robot.getFlange());

tool.attachTo(robot.getFlange());

// ...

Frame cmdPos =
robot.getCurrentCartesianPosition(tool.getFrame("/TCP"),
getApplicationData().getFrame("/Base"));
377 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

378 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.14.3 Polling the Cartesian setpoint/actual value difference

Description The Cartesian setpoint/actual value difference (= difference between the pro-
grammed and measured position) can be polled with the getPositionInforma-
tion(…) method.

The result of the polling is saved in a variable of type PositionInformation.
From this variable, the translational and rotational setpoint/actual value differ-
ences can be polled separately from each other.

Syntax To poll position information:

PositionInformation info = robot.getPositionInformation(
frameOnFlange<, referenceFrame>);

To poll the translational setpoint/actual value difference:

Vector translatoryDiff = info.getTranslationOffset();

To poll the rotational setpoint/actual value difference:

Rotation rotatoryDiff = info.getRotationOffset();

Explanation of

the syntax

The Cartesian actual/setpoint value position saved in the PositionIn-
fomation object can be read with the methods getCurrentCartesian-
Position(…) and getCommandedCartesianPosition(…) that have

already been described.

Element Description

info Type: PositionInformation

Variable for the return value. The return value contains the
polled position information.

robot Type: Robot

Name of the robot from which the position information is
polled

frameOn
Flange

Type: ObjectFrame

Robot flange or a frame subordinated to the flange whose
position information is being polled

reference
Frame

Type: AbstractFrame

Reference coordinate system relative to which the position
information is polled. If no reference coordinate system is
specified, the position information refers to the world coor-
dinate system.

translatoryDiff Type: vector (com.kuka.roboticsAPI.geometricModel.math)

Translational setpoint/actual value difference in the X, Y, Z
directions (type: double, unit: mm)

The offset values for each degree of freedom can be polled
individually with the “get” methods of the Vector class.

 (>>> 15.4 "Polling individual values of a vector" Page 341)

rotatoryDiff Type: rotation (com.kuka.roboticsAPI.geometric-
Model.math)

Setpoint/actual value difference of the axis angles A, B, C
(type: double, unit: rad)

The offset values for each degree of freedom can be polled
individually with the “get” methods of the Rotation class -
getAlphaRad(), getBetaRad, getGammaRad().
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Example Reading of the translational setpoint/actual value difference in the X direction
and the setpoint/actual value difference of the axis angle C.

15.15 HOME position

The HOME position is an application-specific position of the robot. It can be
reset for an application during initialization.

The HOME position has the following values by default:

15.15.1 Changing the HOME position

Description The HOME position in an application can be changed with setHomePosi-
tion(…). The method belongs to the Robot class.

A HOME position must meet the following conditions:

 Good starting position for program execution

 Good standstill position. For example, the stationary robot must not be an
obstacle.

The new HOME position can be transferred as an axis-specific or Cartesian
position (frame). It is only applicable in the application in which it was changed.
Other applications continue to use the HOME position with the default values.

Syntax robot.setHomePosition(home);

Explanation of

the syntax

Examples To transfer an axis-specific position as the HOME position:

tool.attachTo(robot.getFlange());

// ...

PositionInformation posInf =
robot.getPositionInformation(tool.getFrame("/TCP"),
getApplicationData().getFrame("/Base"));

Vector transDiff = posInf.getTranslationOffset();

Rotation rotDiff = posInf.getRotationOffset();

double transOffsetInX = transDiff.getX();
double rotOffsetofC = rotDiff.getGammaRad();

Axis A1 A2 A3 A4 A5 A6 A7

Pos. 0° 0° 0° 0° 0° 0° 0°

Element Description

robot Type: Robot

Name of the robot to which the new HOME position refers

home Type: JointPosition; unit: rad

1st option: transfer the axis position of the robot in the new
HOME position.

Type: AbstractFrame

2nd option: transfer a frame as the new HOME position.

Note: The frame must contain all redundancy information
so that the axis positions of the robot in the HOME position
are unambiguous. This is the case with a taught frame, for
example.
379 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

380 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
To transfer the taught frame as the HOME position and move to it with pt-
pHome():

15.16 Polling system states

Different system states can be polled from the robot and processed in the ap-
plication. The polling of system states is primarily required when using a high-
er-level controller so that the controller can react to changes in state.

15.16.1 Polling the HOME position

Description The following methods of the Robot class are available for polling the HOME
position:

 getHomePosition()

Polls for the HOME position currently defined for the robot

 isInHome()

Polls whether the robot is currently in the HOME position

Syntax To poll the HOME position:

JointPosition homePos = robot.getHomePosition();

To check whether the robot is currently in the HOME position:

boolean result = robot.isInHome();

Explanation of

the syntax

Example As long as the robot is not yet in the HOME position, a certain statement block
is to be executed.

@Inject

private LBR robot;
// ...

JointPosition newHome = new JointPosition(0.0, 0.0, 0.0,
Math.toRadians(90), 0.0, 0.0, 0.0);

robot.setHomePosition(newHome);

@Inject

private LBR robot;
// ...

ObjectFrame newHome = getApplicationData().getFrame("/Homepos");

robot.setHomePosition(newHome);

robot.moveAsync(ptpHome());

Element Description

homePos Type: JointPosition

Variable for the return value of getHomePosition(). The
return value contains axis angles of the polled HOME posi-
tion.

robot Type: Robot

Name of the robot from which the HOME position is polled

result Type: boolean

Variable for the return value of isInHome(). The return
value is true when the robot is in the HOME position.

@Inject

private LBR robot;
// ...

while(! robot.isInHome()){
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.16.2 Polling the mastering state

Description The method isMastered() is available for polling the mastering state. The
method belongs to the Robot class.

Syntax boolean result = robot.isMastered();

Explanation of

the syntax

15.16.3 Polling “ready for motion”

Description The method isReadyToMove() is available for polling whether the robot is
ready for motion. The method belongs to the Robot class.

Syntax boolean result = robot.isReadyToMove();

Explanation of

the syntax

15.16.3.1Reacting to changes in the “ready for motion” signal

Description There is a notification service of the Controller class in RoboticsAPI which re-
ports changes in the “ready for motion” signal. To register for the service,
transfer an IControllerStateListener object to the Controller attribute in the ro-
bot application. The method addControllerListener(…) is used for this pur-
pose.

The method onIsReadyToMoveChanged(…) is called every time the “ready to
move” signal changes. The reaction to the change can be programmed in the
body of the method onIsReadyToMoveChanged(…).

Syntax kuka_Sunrise_Cabinet.addControllerListener(new
IControllerStateListener() {

 //do something

}

Element Description

robot Type: Robot

Name of the robot whose mastering state is polled

result Type: Boolean

Variable for the return value

 true: All axes are mastered.

 false: One or more axes are unmastered.

Element Description

robot Type: Robot

Name of the robot which is polled whether it is ready for
motion

result Type: Boolean

Variable for the return value

 true: Robot is ready for motion.

 false: A safety stop is activated or the robot drives are
in the error state.

If the return value is true, this does not necessarily mean that the
brakes are open and that the robot is under servo control.
381 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

382 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
...

@Override

public void onIsReadyToMoveChanged(Device device,
boolean isReadyToMove) {

// Reaction to change

}

...

});

Explanation of

the syntax

15.16.4 Polling the robot activity

Description A robot is active if a motion command is active. This affects both motion com-
mands from the application and jogging commands.

The method hasActiveMotionCommand() is available for polling whether the
robot is active. The method belongs to the Robot class.

Syntax boolean result = robot.hasActiveMotionCommand();

Explanation of

the syntax

15.16.5 Polling the state of safety signals

Description The state of the following safety signals can be polled and evaluated in an ap-
plication:

 Active operating mode

 Enabling

 Local EMERGENCY STOP

 External EMERGENCY STOP

Element Description

kuka_Sunrise
_Cabinet

Type: Controller

Controller attribute of the robot application (= name of the
robot controller in the application)

Element Description

robot Type: Robot

Name of the robot whose activity is polled

result Type: Boolean

Variable for the return value

 true: A motion command is active.

 false: No motion command is active.

Polling does not provide any information as to whether the robot is
currently in motion.
If the return value is false, this does not necessarily mean that the ro-

bot is stationary.
For example, robot activity may be polled directly after a synchronous motion
command with a break condition. If the break condition occurs, the poll sup-
plies the value false when the robot is braked and moved.
If the return value is true, this does not necessarily mean that the robot is in
motion. For example, the poll supplies the value true if a position-controlled
robot executes the motion command positionHold(…) and is stationary.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
 “Operator safety” signal

 Stop request (safety stop)

 Referencing state of position and joint torque sensors

The state of the different safety signals is first polled via the method getSafe-
tyState() and grouped in an object of type ISafetyState.

From this object, the states of individual safety signals can then be polled. The
interface ISafetyState contains the methods required for this.

Syntax ISafetyState currentState = kinematics.getSafetyState();

Explanation of

the syntax

Precondition The EMERGENCY STOP signal and the “Operator Safety” signal can only be
evaluated if the following conditions are met in the safety configuration:

 The selected category matches the safety function:

 Category Local EMERGENCY STOP for local EMERGENCY STOP

 Category External EMERGENCY STOP for external EMERGENCY
STOP

 Category Operator safety for operator safety

 The configured reaction is a safety stop (no output).

Overview Methods of the ISafetyState interface

The implementing class of the interface is SunriseSafetyState (package:
com.kuka.roboticsAPI.controllerModel.sunrise).

Element Description

currentState Type: ISafetyState

Variable for the return value. The return value contains the
state of the safety signals at the time of polling with get-
SafetyState().

Note: This does not apply to the referencing states. Refer-
encing states are not polled until the corresponding meth-
ods of the ISafetyState object are called.

kinematics Type: MovableDevice

Kinematic system for which the state of the safety signals
is polled

Method Description

getEmergencyStopInt() Return value type: Enum of type EmergencyStop

Checks whether a local E-STOP is activated.

 ACTIVE: Local E-STOP is activated.

 INACTIVE: Local E-STOP is not activated.

 NOT_CONFIGURED: Not relevant, as a local E-STOP is al-
ways configured.

getEmergencyStopEx() Return value type: Enum of type EmergencyStop

Checks whether an external E-STOP is activated.

 ACTIVE: External E-STOP is activated.

 INACTIVE: External E-STOP is not activated.

 NOT_CONFIGURED: No external EMERGENCY STOP is
configured.
383 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

384 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The methods for polling the referencing state are described here:

 (>>> 15.16.5.1 "Polling the referencing state" Page 384)

Example The system polls whether a safety stop is activated. If this is the case, the op-
erator safety is then checked. If this is violated, a message is displayed on the
smartHMI. For output purposes, a logger object has been integrated with de-
pendency injection.

15.16.5.1Polling the referencing state

Description The LBR iiwa has position and joint torque sensors that can be referenced.
This referencing state of these sensors can be polled by the robot, e.g. to
check whether referencing needs to be carried out again.

getEnablingDeviceState() Return value type: Enum of type EnablingDeviceState

Checks whether an enabling switch is pressed.

 HANDGUIDING: Enabling switch on the hand guiding de-
vice is pressed.

 NORMAL: Enabling switch on the smartPAD is pressed.

 NONE: No enabling switch is pressed or a safety function
has been violated and is blocking motion enable.

getOperationMode() Return value type: Enum of type OperationMode (package:
com.kuka.roboticsAPI.deviceModel)

Checks which operating mode is active.

 T1, T2, AUT, KRF

getOperatorSafetyState() Return value type: Enum of type OperatorSafety

Checks the “Operator safety” signal.

 OPERATOR_SAFETY_OPEN: Operator safety is violated
(e.g. safety gate is open).

 OPERATOR_SAFETY_CLOSED: Operator safety is not vi-
olated.

 NOT_CONFIGURED: No operator safety is configured.

getSafetyStopSignal() Return value type: Enum of type SafetyStopType

Checks whether a safety stop is activated.

 NOSTOP: No safety stop is activated.

 STOP0: A safety stop 0 or a safety stop 1 is activated.

 STOP1: A safety stop 1 (path-maintaining) is activated.

 STOP2: This value is currently not returned.

Method Description

ISafetyState safetyState = robot.getSafetyState();

SafetyStopType safetyStop = safetyState.getSafetyStopSignal();

if(safetyStop != SafetyStopType.NOSTOP){
 OperatorSafety operatorSafety =

 safetyState.getOperatorSafetyState();

 if(operatorSafety == OperatorSafety.OPERATOR_SAFETY_OPEN) {
 logger.warn("The safety gate is open!");

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
If a robot has no position or joint torque sensors that can be referenced, polling
returns the value “false”.

Example Polling whether the position sensor of axis A1 is referenced

15.16.5.2Reacting to a change in state of safety signals

Description There is a notification service of the Controller class in RoboticsAPI which re-
ports changes in the state of safety signals. This service allows the user to di-
rectly react to the change in a signal state.

To register for the service, transfer an ISunriseControllerStateListener object
to the Controller attribute in the robot application. The method addController-
Listener(…) is used for this purpose.

The method onSafetyStateChanged(…) is called every time the state of a
safety signal changes. The reaction to the change can be programmed in the
body of the method onSafetyStateChanged(…).

Method Description

isAxisGMSReferenced(…) Return type: Boolean

Checks whether the joint torque sensor of a specific robot axis
is referenced. The axis to be checked is transferred as a param-
eter (type: JointEnum).

 true: Joint torque sensor of the axis is referenced.

 false: Joint torque sensor of the axis is not referenced or the
robot has no joint torque sensors that can be referenced.

If an invalid axis is transferred, i.e. an axis that is not present on
the robot, an Illegal Argument Exception is triggered.

areAllAxesGMSReferenced() Return type: Boolean

Checks whether all joint torque sensors of the robot are refer-
enced.

 true: All joint torque sensors are referenced.

 false: At least 1 joint torque sensor is not referenced or the
robot has no joint torque sensors that can be referenced.

isAxisPositionReferenced(…) Return type: Boolean

Checks whether the position sensor of a specific robot axis is
referenced. The axis to be checked is transferred as a parame-
ter (type: JointEnum).

 true: Position sensor of the axis is referenced.

 false: Position sensor of the axis is not referenced or the ro-
bot has no position sensors that can be referenced.

If an invalid axis is transferred, i.e. an axis that is not present on
the robot, an Illegal Argument Exception is triggered.

areAllAxesPosition
Referenced()

Return type: Boolean

Checks whether all position sensors of the robot are referenced.

 true: All position sensors are referenced.

 false: At least 1 position sensor is not referenced or the robot
has no position sensors that can be referenced.

boolean isReferencedJ1 =
robot.getSafetyState().isAxisPositionReferenced(JointEnum.J1);
385 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

386 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Syntax kuka_Sunrise_Cabinet.addControllerListener(new
ISunriseControllerStateListener() {

...

@Override
public void onSafetyStateChanged(Device device,
SunriseSafetyState safetyState) {

// Reaction to change in state

}

});

Explanation of

the syntax

Example If the state of a safety signal changes, the operator safety is checked via the
method onSafetyStateChanged()(…). If this is violated, a message is dis-
played on the smartHMI. For output purposes, a logger object has been inte-
grated with dependency injection.

15.17 Changing and polling the program run mode

Description The program run mode can be changed and polled via the methods setExe-
cutionMode(…) and getExecutionMode() of the SunriseExecutionService.
The SunriseExecutionService itself is polled by the Controller.

Preparation 1. Variable of type SunriseExecutionService.

2. Poll the SunriseExecutionService via the method getExecutionService()
and save in the variable.

Syntax To change the program run mode:

service.setExecutionMode(ExecutionMode.newMode);

To poll the current program run mode:

currentMode = service.getExecutionMode();

Element Description

kuka_Sunrise
_Cabinet

Type: Controller

Controller attribute of the robot application (= name of the
robot controller in the application)

kuka_Sunrise_Cabinet.addControllerListener(new
ISunriseControllerStateListener() {

// ...

@Override

public void onSafetyStateChanged(Device device,
 SunriseSafetyState safetyState) {

 OperatorSafety operatorSafety =

 safetyState.getOperatorSafetyState();

 if(operatorSafety == OperatorSafety.OPERATOR_SAFETY_OPEN){
 logger.warn("The saftey gate is open!");

 }

}

});
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example The SunriseExecutionService is polled by the Controller and saved in the vari-
able “serv”.

The system first switches to Step mode and then back to standard mode.

The current program run mode is polled.

15.18 Changing and polling the override

The interface IApplicationOverrideControl provides methods with which the
current override can be polled or changed in the application. For this, the in-
terface IApplicationControl must be accessed in the first step using the method
getApplicationControl().

Element Description

service: Type: SunriseExecutionService

Variable for the return value (contains the SunriseExecu-
tionService polled by the Controller)

newMode Type: Enum of type ExecutionMode

New program run mode

 ExecutionMode.Step: Step mode (program sequence
with a stop after each motion command)

 ExecutionMode.Continuous: Standard mode (contin-
uous program sequence without stops)

currentMode Type: ExecutionMode

Variable for the return value (contains the program run
mode polled by the SunriseExecutionService)

@Inject

private Controller controller;

private SunriseExecutionService serv;
// ...

public void initialize() {
 // ...

 serv = (SunriseExecutionService)controller.getExecutionService();

 // ...

}

public void run() {
 // ...

 serv.setExecutionMode(ExecutionMode.Step);

 // ...

 serv.setExecutionMode(ExecutionMode.Continuous);

 // ...

}

public void run() {
 // ...

 ExecutionMode currentMode;

 currentMode = serv.getExecutionMode();

 // ...

}

387 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

388 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The following override types are distinguished:

 Manual override: Override which can be adjusted manually by the user via
the smartPAD

 Application override: Programmed override set by the application

 Effective program override: Product of the manual and application over-
ride

Effective program override = manual override · application override

Overview Methods used for polling the current override:

Methods used for changing the override:

Example

15.18.1 Reacting to an override change

Description It is possible for an application to inform itself when an override changes. A lis-
tener of type IApplicationOverrideListener must be defined and registered for
this purpose.

When changing an override, the method overrideChanged(…) is called. The
reaction to the change can be programmed in the body of the method overri-
deChanged(…).

Method Description

getApplicationOverride() Return value type: double

Polls the application override

getManualOverride() Return value type: double

Polls the manual override

getEffectiveOverride() Return value type: double

Polls the effective program override

Method Description

setApplicationOverride(…) Sets the application override to the specified value (type: dou-
ble)

 0 … 1

clipApplicationOverride(…) Reduces the application override to the specified value (type:
double)

 0 … 1

If a value is specified that is higher than the value currently pro-
grammed for the application override, the statement clipApplica-
tionOverride(…) is ignored.

clipManualOverride(…) Reduces the manual override to the specified value (type: dou-
ble)

 0 … 1

If a value is specified that is higher than the currently pro-
grammed manual override, the statement clipManualOver-
ride(…) is ignored.

getApplicationControl().setApplicationOverride(0.5);

// ...

double actualOverride =
getApplicationControl().getEffectiveOverride();
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Syntax Defining a listener:

IApplicationOverrideListener overrideListener =
new IApplicationOverrideListener(){

@Override

public void overrideChanged(double effectiveOverride,

double manualOverride, double applicationOverride) {

// Reaction to override change

};

};

Registering a listener:

getApplicationControl().
addOverrideListener(overrideListener);

Removing a listener:

getApplicationControl().
removeOverrideListener(overrideListener);

Explanation of

the syntax

15.19 Conditions

Description Often, values are to be monitored in applications and if definable limits are ex-
ceeded or not reached, specific reactions are to be triggered. Possible sources
for these values include the sensors of the robot or configured inputs. The
progress of a motion can also be monitored. Possible reactions are the termi-
nation of a motion being executed or the execution of a handling routine.

A condition can have 2 states: It is met (state = TRUE) or or not met (state =
FALSE). To define a condition, an expression is formulated. In this expression,
data, such as measurements provided by the system, are compared with a
permissible limit value. The result of the evaluation of the expression defines
the state of the condition.

Since different system data can be used for formulating conditions, there are
different kinds of conditions. Each condition type is made available as its own
class in the RoboticsAPI. They belong to the com.kuka.roboticsAPI.condition-
Model package and implement the ICondition interface.

Some system data, e.g. axis torques or Cartesian forces and torques on the
robot flange, are only available for sensitive robot types equipped with corre-
sponding sensor systems. These sensitive robot types include the LBR iiwa.
Condition types using forces or torques are only supported by these sensitive
robot types. If these condition types are applied to robots that do not provide
information about forces or torques, this results in a runtime error (Exception).

Overview The following condition types are available:

Element Description

override
Listener

Type: IApplicationOverrideListener

Name of the listener
389 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

390 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Areas of appli-

cation

 Abortion of motions

A motion is terminated as soon as a specific event occurs. The event oc-
curs if the condition already has the state TRUE before the start of the mo-
tion or if it switches to the state TRUE during the motion.

 (>>> 15.20 "Break conditions for motion commands" Page 409)

 Path-related switching actions (Trigger)

An action is triggered as soon as a specific event occurs. The event occurs
if the condition already has the state TRUE before the start of the motion
or if it switches to the state TRUE during the motion.

 (>>> 15.21 "Path-related switching actions (Trigger)" Page 413)

 Monitoring of processes (Monitoring)

The state of a condition is checked cyclically using a listener. If the state
of the condition changes, it is possible to react.

 (>>> 15.22 "Monitoring processes (Monitoring)" Page 417)

 Blocking wait for condition

An application is stopped until a certain condition is met or a certain wait
time has expired.

 (>>> 15.23 "Blocking wait for condition" Page 421)

Data type Description

JointTorqueCondition The axis torque condition is met if the torque measured in an
axis lies outside of a defined range of values.

 (>>> 15.19.2 "Axis torque condition" Page 391)

ForceCondition The force condition is met if the Cartesian force exerted on a
frame below the robot flange (e.g. at the TCP) exceeds a
defined magnitude.

 (>>> 15.19.3 "Force condition" Page 392)

ForceComponentCondition The force component condition is met if the Cartesian force
exerted along an axis of a frame below the robot flange (e.g.
along an axis of the TCP) exceeds a defined range.

 (>>> 15.19.4 "Force component condition" Page 398)

CartesianTorqueCondition The conditions for the Cartesian torque is met if the Cartesian
torque acting about the axis of a frame below the robot flange
(e.g. about the axis of the TCP) exceeds a defined value.

 (>>> 15.19.5 "Condition for Cartesian torque" Page 400)

TorqueComponentCondition The torque component condition is met if the Cartesian torque
exerted about an axis of a frame below the robot flange (e.g.
about an axis of the TCP) is outside a defined range.

 (>>> 15.19.6 "Torque component condition" Page 404)

MotionPathCondition The path-related condition is met if a defined distance on the
planned path, from the start or end point of the motion, is
reached. In addition, it is possible to define a time delay which
must be met.

 (>>> 15.19.7 "Path-related condition" Page 405)

BooleanIOCondition The condition for Boolean signals is met if a Boolean digital
input or output has a specific state.

 (>>> 15.19.8 "Condition for Boolean signals" Page 408)

IORangeCondition The condition for the value range of a signal is met if the value
of an analog or digital input or output lies within a defined range.

 (>>> 15.19.9 "Condition for the range of values of a signal"
Page 408)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.19.1 Complex conditions

Conditions can be logically linked to one another so that it is possible to define
complex conditions. The logic operators required for this are available as
ICondition methods. The calling ICondition object is linked to one or more con-
ditions, which are transferred as parameters.

The operators can be called several times in a row and in this way, parenthe-
ses and nesting of operations can be realized. The evaluation is thus depen-
dent on the order of calling.

Operators

Example

15.19.2 Axis torque condition

Description The axis torque condition is used to check whether the external torque deter-
mined in an axis lies outside of a defined range of values.

 (>>> 15.12 "Polling axis torques" Page 371)

Operator Description/syntax

NOT Inversion of the calling ICondition object

ICondition invert();

XOR EITHER/OR operation linking the calling ICondition object
with a further condition

ICondition xor(ICondition other);

other: further condition

AND AND operation linking the calling ICondition object with one
or more additional conditions

ICondition and(ICondition other1, ICondition
other2, …);

other1, other2, …: further conditions

OR OR operation linking the calling ICondition object with one
or more additional conditions

ICondition or(ICondition other1, ICondition
other2, …);

other1, other2, …: further conditions

JointTorqueCondition condA = …;

JointTorqueCondition condB = …;

JointTorqueCondition condC = …;

JointTorqueCondition condD = …;

ICondition combi1, combi2, combi3, combi4;

// NOT A

combi1 = condA.invert();

// A AND B AND C

combi2 = condA.and(condB, condC);

// (A OR B) AND C

combi3 = condA.or(condB).and(condC);

// (A OR B) AND (C OR D)

combi4 = condA.or(condB).and(condC.or(condD));
391 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

392 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Constructor

syntax

JointTorqueCondition(JointEnum joint, double minTorque,
double maxTorque)

The following must apply when determining the upper and lower limit values
for the torque: minTorque ≤ maxTorque.

Example The condition is met if a torque value of ≤ -2.5 Nm or ≥ 4.0 Nm is measured in
axis A3.

15.19.3 Force condition

Description The force condition can be used to check whether a Cartesian force exerted
on a frame below the robot flange exceeds a defined limit value.

For example, it is possible to react to the force generated when the robot
presses on a surface using a tool mounted on the flange. For the force condi-
tion, the projections of the force vector exerted on a frame below the flange
are considered. The position of this frame is defined by the point of application
of the force (here the tool tip). The orientation of the frame should correspond
to the orientation of the surface.

The load data must be specified correctly during programming. Only
then is the condition usefully applicable.

This condition is only supported by sensitive robots, e.g. the
LBR iiwa. If the condition is applied to a different robot that does not
provide the required sensor information, this results in a runtime error

(Exception).

Element Description

joint Axis whose torque value is to be checked

minTorque Lower limit value for the axis torque (unit: Nm)

The condition is met if the torque is less than or equal to
minTorque.

maxTorque Upper limit value for the axis torque (unit: Nm)

The condition is met if the torque is greater than or equal to
minTorque.

JointTorqueCondition torqueCondJ3 =

new JointTorqueCondition(JointEnum.J3, -2.5, 4.0);

Fig. 15-17: Force vectors
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
The following force vectors are relevant:

 Normal force N:

The normal force is the projection of the force exerted on the surface nor-
mal (= vector which is perpendicular to the surface). This results in the part
of the force exerted vertically on the surface. For example, pressure is ex-
erted via the normal force in order to fit a component.

 Shear force S:

The shear force is the projection of the force exerted on the surface. This
results in the part of the force exerted parallel to the surface. The shear
force is generated by friction.

Methods Force conditions are of the data type ForceCondition. ForceCondition contains
the following static methods for programming conditions:

 createSpatialForceCondition(…): Condition for Cartesian force from all di-
rections

 createNormalForceCondition(…): Condition for normal force

 createShearForceCondition(…): Condition for shear force

To formulate the condition, a frame below the flange coordinate system (e.g.
the tip of a tool) is defined as a reference system. The forces which are exerted
relative to this frame are determined. The orientation of the reference system
can be optionally defined via an orientation frame. This can be used, for ex-
ample, to define the position of the surface on which the force is exerted.

A limit value is defined to determine the minimum force magnitude which
meets the condition.

The Cartesian force is calculated from the values of the joint torque sensors.
The reliability of the calculated force values varies depending on the axis con-
figuration. If the quality of the force calculation is also to be taken into account,
it is possible to specify a value for the maximum permissible inaccuracy. If the
system calculates an inaccuracy exceeding this value, the force condition is
also met.

1 Frame which specifies the orientation of the reference frame (here:
orientation of the surface)

2 Point of application of the force, here the tip of the tool

3 Reference frame below the flange onto which the force vector is pro-
jected. The position of the frame corresponds to the point of applica-
tion of the force. The orientation corresponds to the orientation of the
surface.

The load data must be specified correctly during programming. Only
then is the condition usefully applicable.

The force estimation cannot return meaningful values near singularity
positions. It is advisable not to use the force component condition for
this type of axis configuration. Alternatively, the axis torque condition

can be used or the axis position can be adapted using the redundancy so as
to ensure that there is no singularity.

This condition is only supported by sensitive robots, e.g. the
LBR iiwa. If the condition is applied to a different robot that does not
provide the required sensor information, this results in a runtime error

(Exception).
393 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

394 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.19.3.1Condition for Cartesian force from all directions

Description The static method createSpatialForceCondition(…) is used to define a condi-
tion which is valid regardless of the direction from which the Cartesian force is
exerted on a frame below the flange.

Syntax ForceCondition.createSpatialForceCondition(
AbstractFrame measureFrame<, AbstractFrame orientationFrame>,
double threshold<, double tolerance>)

Explanation of

the syntax

Example The condition is met as soon as the magnitude of the force acting from any
direction on the TCP of a tool exceeds 30 N.

Element Description

measure
Frame

Frame below the robot flange relative to which the exerted
force is determined.

The position of the point of application of the force is
defined using this parameter.

orientation
Frame

Optional. The orientation of the reference system is defined
using this parameter.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.

threshold Maximum magnitude of force which may act on the refer-
ence system (unit: N).

 ≥ 0.0

The condition is met if the magnitude of force exerted on
the reference system from any direction exceeds the value
specified here.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: N).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the force calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 @Inject

 private Tool gripper;
 // ...

 @Override

 public void initialize() {
 // ...

 gripper.attachTo(robot.getFlange());

 // ...

 }

 @Override

 public void run() {
 // ...

 ForceCondition spatialForce_tcp = ForceCondition.

 createSpatialForceCondition(
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.19.3.2Condition for normal force

Description A condition for the normal force can be defined via the static method create-
NormalForceCondition(…). The component of the force exerted along a defin-
able axis of a frame below the flange (e.g. along an axis of the TCP) is
considered here. This axis is generally defined so that it is perpendicular to the
surface on which the force is exerted (surface normal).

Syntax ForceCondition.createNormalForceCondition(AbstractFrame
measureFrame<, AbstractFrame orientationFrame>, CoordinateAxis
direction, double threshold<, double tolerance>)

Explanation of

the syntax

Example A gripper mounted on the flange presses on a table plate. The robot is to react
to that part of the force exerted at the TCP of the gripper which acts vertically
on the table plate. The reference system is therefore defined such that its Z
axis runs along the surface normal of the table plate.

 gripper.getFrame("/TCP"),

 30.0);

 // ...

 }

}

Element Description

measure
Frame

Frame below the robot flange relative to which the exerted
force is determined.

The position of the point of application of the force is
defined using this parameter.

orientation
Frame

Optional. The orientation of the reference system is defined
using this parameter.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.

direction Coordinate axis of the reference system.

The force component acting on the axis specified here is
checked with the condition.

 CoordinateAxis.X

 CoordinateAxis.Y

 CoordinateAxis.Z

threshold Maximum magnitude of force which may act along the axis
of the reference system (unit: N).

 ≥ 0.0

The condition is met if the magnitude of force exceeds the
value specified here.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: N).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the force calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.
395 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

396 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The condition is met as soon as the normal force exceeds a magnitude of
45 N. The condition is also to be considered met if the inaccuracy value of the
calculated data exceeds 8.

15.19.3.3Condition for shear force

Description A condition for the shear force can be defined via the static method createS-
hearForceCondition(…). The component of the force acting parallel to a plane
is considered here. The position of the plane is determined by specifying the
axis which is vertical to the plane.

Syntax ForceCondition.createShearForceCondition(AbstractFrame
measureFrame<, AbstractFrame orientationFrame>, CoordinateAxis
normalDirection, double threshold<, double tolerance>)

Explanation of

the syntax

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 @Inject

 private Tool gripper;
 // ...

 @Override

 public void initialize() {
 // ...

 gripper.attachTo(robot.getFlange());

 // ...

 }

 @Override

 public void run() {
 // ...

 ForceCondition normalForce_z = ForceCondition.

 createNormalForceCondition(

 gripper.getFrame("/TCP"),

 getFrame("/Table/Edge/Tabletop"),

 CoordinateAxis.Z,

 45.0,

 8.0);

 // ...

 }

}

Element Description

measure
Frame

Frame below the robot flange relative to which the exerted
force is determined.

The position of the point of application of the force is
defined using this parameter.

orientation
Frame

Optional. The orientation of the reference system is defined
using this parameter.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Example A gripper mounted on the flange presses on a table plate. The force at the TCP
of the gripper is to be determined using the orientation of the table plate. This
process considers the shear force which acts parallel to the XY plane of the
measurement point, defined by the TCP and the position of the table.

To define the XY plane, the axis perpendicular to this plane must be specified
as a parameter. This is the Z axis.

The condition is met as soon as the shear force exceeds a magnitude of 25 N.
The condition is also to be considered met if the inaccuracy value of the cal-
culated data exceeds 5.

normal
Direction

Coordinate axis of the reference system.

The axis specified here defines the surface normal of a
plane. The force component acting parallel to this plane is
checked.

 CoordinateAxis.X

 CoordinateAxis.Y

 CoordinateAxis.Z

threshold Maximum magnitude of force which may be exerted paral-
lel to the reference system plane defined by its surface nor-
mal (unit: N).

 ≥ 0.0

The condition is met if the magnitude of force exceeds the
value specified here.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: N).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the force calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.

Element Description

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 @Inject

 private Tool gripper;
 // ...

 @Override

 public void initialize() {
 // ...

 gripper.attachTo(robot.getFlange());

 // ...

 }

 @Override

 public void run() {
 // ...

 ForceCondition shearForce_xyPlane = ForceCondition.

 createShearForceCondition(

 gripper.getFrame("/TCP"),

 getFrame("/Table/Edge/Tabletop"),
397 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

398 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.19.4 Force component condition

Description The force component condition can be used to check whether the Cartesian
force exerted on a frame below the robot flange (e.g. at the TCP) in the X, Y
or Z direction exceeds a defined range.

The force component condition belongs to the class ForceComponentCondi-
tion. For the force component condition, a frame below the flange coordinate
system is defined as a reference system. The force is determined at this
frame, e.g. at the tip of a tool. The orientation of the reference system can be
optionally defined via an orientation frame.

The direction from which the force is checked is defined with one of the coor-
dinate axes of the reference system. The force component condition is met if
the Cartesian force along the defined coordinate axis of the reference system
lies outside of a definable range of values.

The Cartesian force is calculated from the values of the joint torque sensors.
The reliability of the calculated force values varies depending on the axis con-
figuration. If the quality of the force calculation is also to be taken into account,
it is possible to specify a value for the maximum permissible inaccuracy. If the
system calculates an inaccuracy exceeding this value, the force component
condition is also met.

Constructor

syntax

The ForceComponentCondition class has several constructors which differ in
their number of input parameters:

ForceComponentCondition(AbstractFrame measureFrame
<, AbstractFrame orientationFrame>, CoordinateAxis coordinateAxis,
double min, double max<, double tolerance>)

 CoordinateAxis.Z,

 25.0,

 5.0);

 // ...

 }

}

The load data must be specified correctly during programming. Only
then is the condition usefully applicable.

The force estimation cannot return meaningful values near singularity
positions. It is advisable not to use the force component condition for
this type of axis configuration. Alternatively, the axis torque condition

can be used or the axis position can be adapted using the redundancy so as
to ensure that there is no singularity.

This condition is only supported by sensitive robots, e.g. the
LBR iiwa. If the condition is applied to a different robot that does not
provide the required sensor information, this results in a runtime error

(Exception).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example A joining process is ideally executed with a force of between 20 N and 25 N.
A force component condition is to be defined, and is met if the force acting in
the Z direction at the free end of a gripped workpiece is between 20 N and
25 N.

To this end, a force component condition is first defined which has the status
FALSE in this range of values. The desired result is then realized by inversion.

Element Description

measure
Frame

Frame below the robot flange relative to which the exerted
force is determined.

The position of the point of application of the force is
defined using this parameter.

orientation
Frame

Optional. The orientation of the reference system is defined
using this parameter.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.

coordinate
Axis

Coordinate axis of the frame relative to which the exerted
force is determined. Defines the direction from which the
acting force is checked.

 CoordinateAxis.X

 CoordinateAxis.Y

 CoordinateAxis.Z

min Lower limit of the range of values for the force exerted
along the coordinate axis of the reference system (unit: N).

The force component condition is met if the force falls
below the value specified here.

max Upper limit of the range of values for the force exerted
along the coordinate axis of the reference system (unit: N).

The force component condition is met if the force exceeds
the value specified here.

Note: The upper limit value must be greater than the lower
limit value: max > min.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values.

 > 0.0

Default: 10.0

The force component condition is met if the inaccuracy of
the force calculation is greater than or equal to the value
specified here.

If the parameter is not specified, the default value is auto-
matically used.

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 @Inject

 private Tool gripper;
 @Inject

 @Named("Bolt")

 private Workpiece bolt;
 // ...

 @Override
399 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

400 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.19.5 Condition for Cartesian torque

Description The condition can be used to check whether a Cartesian torque exerted on a
frame below the robot flange exceeds a defined limit value. The point of appli-
cation of the torque is specified by means of a frame below the robot flange
coordinate system.

One application for this condition is the monitoring of torques that occur in a
screw fastening process.

The condition for the Cartesian torque can be used to check different projec-
tions of the torque vector acting on the axes of the reference frame:

 Torque MTurn

The torque exerted about an axis arises from the projection of the torque
vector on this axis.

 Tilting torque MTilt

The tilting torque arises from the projection of the torque vector on a plane.

The torque is applied about the longitudinal axis of the power wrench during a
screw fastening process in order to screw in the screw. If the condition for the

 public void run() {
 // ...

 bolt.attachTo(gripper.getFrame("/Root));

 ForceComponentCondition assemblyForce_inverted =

 new ForceComponentCondition(
 bolt.getFrame("/Assembly"),

 CoordinateAxis.Z,

 20.0,

 25.0);

 ForceComponentCondition assemblyForce =

 (ForceComponentCondition)

 assemblyForce_inverted.invert();

 // ...

 }

}

Fig. 15-18: Torque vectors in the screw fastening process

1 Power wrench

2 Screw

3 Reference frame, here the tip of the power wrench
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
torque is used, it is possible to ensure that the maximum permissible values
are not exceeded when fastening screws.

The tilting torque arises during a screw fastening process as a result of unde-
sired tilting of the power wrench about the longitudinal axis, forwards or to the
side. If the condition for the tilting torque is configured, it is possible to check
whether the tilting torque is within an acceptable range of values.

Methods Conditions for the Cartesian torque are of data type CartesianTorqueCondi-
tion. CartesianTorqueCondition contains the following static methods for pro-
gramming conditions:

 createSpatialTorqueCondition(…): Condition for Cartesian torque from all
directions

 createTurningTorqueCondition(…): Condition for torque

 createTiltingTorqueCondition(…): Condition for tilting torque

To formulate the condition, a frame is defined as a reference system below the
flange coordinate system. The torque is determined at this frame, e.g. at the
tip of a power wrench. The orientation of the reference system can be option-
ally defined via an orientation frame. In this way, the desired orientation of the
screw can be specified, for example.

A limit value is defined to determine the minimum Cartesian torque magnitude
which meets the condition.

The Cartesian torque is calculated from the values of the joint torque sensors.
The reliability of the calculated Cartesian torques varies depending on the axis
configuration. If the quality of the calculation is also to be taken into account,
it is possible to specify a value for the maximum permissible inaccuracy. If the
system calculates an inaccuracy exceeding this value, the condition for the
Cartesian torque is also met.

15.19.5.1Condition for Cartesian torque from all directions

Description The static method createSpatialTorqueCondition(…) is used to define a con-
dition which is valid regardless of the direction from which the Cartesian torque
is exerted on a frame below the flange.

Syntax CartesianTorqueCondition.createSpatialTorqueCondition(
AbstractFrame measureFrame<, AbstractFrame orientationFrame>,
double threshold<, double tolerance>)

The load data must be specified correctly during programming. Only
then is the condition usefully applicable.

The force estimation cannot return meaningful values near singularity
positions. It is advisable not to use the force component condition for
this type of axis configuration. Alternatively, the axis torque condition

can be used or the axis position can be adapted using the redundancy so as
to ensure that there is no singularity.

This condition is only supported by sensitive robots, e.g. the
LBR iiwa. If the condition is applied to a different robot that does not
provide the required sensor information, this results in a runtime error

(Exception).
401 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

402 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.19.5.2Condition for torque

Description A condition for the torque can be defined via the static method createTurning-
TorqueCondition(…). The component of the overall torque applied about a de-
finable axis of a frame below the flange (e.g. about an axis of the TCP) is
considered here.

Syntax CartesianTorqueCondition.createTurningTorqueCondi-
tion(AbstractFrame measureFrame<, AbstractFrame orienta-
tionFrame>, CoordinateAxis direction, double threshold<, double
tolerance>)

Element Description

measure
Frame

Frame below the robot flange at which the exerted torque
is determined.

The position of the point of application of the torque is
defined using this parameter.

orientation
Frame

Optional. The orientation of the reference system is defined
using this parameter.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.

threshold Maximum magnitude of the torque which may act on the
reference system (unit: Nm).

 ≥ 0.0

The condition is met if the magnitude of the torque exerted
on the reference system from any direction exceeds the
value specified here.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: Nm).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the torque calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.

Element Description

measure
Frame

Frame below the robot flange at which the exerted torque
is determined.

The position of the point of application of the torque is
defined using this parameter.

orientation
Frame

Optional. This parameter defines the orientation of the
frame relative to which the torque is determined.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.19.5.3Condition for tilting torque

Description A condition for the tilting torque can be defined via the static method createTil-
tingTorqueCondition(…). The component of the overall torque applied to a
plane of the reference system is considered here. The position of the plane is
determined by specifying the axis which is vertical to the plane (surface nor-
mal).

Syntax CartesianTorqueCondition.createTiltingTorqueCondi-
tion(AbstractFrame measureFrame<, AbstractFrame orienta-
tionFrame>, CoordinateAxis normalDirection, double threshold<,
double tolerance>)

direction Coordinate axis of the reference system.

The component of the overall torque acting on the axis
specified here of the reference system is checked using
this condition.

 CoordinateAxis.X

 CoordinateAxis.Y

 CoordinateAxis.Z

threshold Maximum magnitude of the torque that may be applied to
the axis of the reference system (unit: Nm).

 ≥ 0.0

The condition is met if the magnitude of the torque exceeds
the value specified here.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: Nm).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the torque calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.

Element Description

Element Description

measure
Frame

Frame below the robot flange at which the exerted torque
is determined.

The position of the point of application of the torque is
defined using this parameter.

orientation
Frame

Optional. This parameter defines the orientation of the
frame relative to which the torque is determined.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.

normal
Direction

Coordinate axis of the reference system.

The axis specified here defines the surface normal of a
plane. The component of the overall torque applied to the
plane is checked.

 CoordinateAxis.X

 CoordinateAxis.Y

 CoordinateAxis.Z
403 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

404 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.19.6 Torque component condition

Description The torque component condition can be used to check whether the Cartesian
torque exerted about the X, Y or Z axis of a frame below the robot flange (e.g.
about an axis of the TCP) is outside a defined range. It is used for monitoring
the Cartesian torque in a specific direction, e.g. for monitoring screw fastening
processes.

The torque component condition is represented by the class TorqueCompo-
nentCondition. For the torque component condition, a frame below the flange
coordinate system is defined as a reference system. The torque is determined
at this frame, e.g. at the tip of a power wrench. The orientation of the reference
system can be optionally defined via an orientation frame.

The direction in which the torque is checked is defined with one of the coordi-
nate axes of the reference system. The torque component condition is met if
the Cartesian torque about the defined coordinate axis of the reference system
lies outside a definable range of values.

The Cartesian torque is calculated from the values of the joint torque sensors.
The reliability of the calculated Cartesian torques varies depending on the axis
configuration. If the quality of the calculation is also to be taken into account,
it is possible to specify a value for the maximum permissible inaccuracy. If the
system calculates an inaccuracy exceeding this value, the torque component
condition is also met.

threshold Maximum magnitude of the tilting torque that may be
applied to the plane of the reference system defined by its
surface normal (unit: Nm).

 ≥ 0.0

The condition is met if the magnitude of the torque exceeds
the value specified here.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: Nm).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the torque calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.

Element Description

The load data must be specified correctly during programming. Only
then is the condition usefully applicable.

The force estimation cannot return meaningful values near singularity
positions. It is advisable not to use the force component condition for
this type of axis configuration. Alternatively, the axis torque condition

can be used or the axis position can be adapted using the redundancy so as
to ensure that there is no singularity.

This condition is only supported by sensitive robots, e.g. the
LBR iiwa. If the condition is applied to a different robot that does not
provide the required sensor information, this results in a runtime error

(Exception).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Constructor

syntax

The TorqueComponentCondition class has several constructors which differ
in their number of input parameters:

TorqueComponentCondition(AbstractFrame measureFrame
<, AbstractFrame orientationFrame>, CoordinateAxis component,
double min, double max<, double tolerance>)

15.19.7 Path-related condition

Description Path-related conditions are always used in conjunction with a motion com-
mand. They serve as break conditions or triggers for path-related switching ac-
tions.

The condition defines a point on the planned path (switching point) on which
a motion is to be terminated or a desired action is to be triggered. If the switch-
ing point is reached, the condition is met.

Element Description

measure
Frame

Frame below the robot flange relative to which the exerted
torque is determined.

The position of the point of application of the torque is
defined using this parameter.

orientation
Frame

Optional. This parameter defines the orientation of the
frame relative to which the torque is determined.

If the orientationFrame parameter is not specified, measu-
reFrame defines the orientation of the reference system.

coordina-
teAxis

Coordinate axis of the frame relative to which the exerted
torque is determined. Defines the direction in which the
acting torque is checked.

 CoordinateAxis.X

 CoordinateAxis.Y

 CoordinateAxis.Z

min Lower limit of the range of values for the torque exerted
about the coordinate axis of the reference system (unit:
Nm).

The torque component condition is met if the torque falls
below the value specified here.

max Upper limit of the range of values for the torque exerted
about the coordinate axis of the reference system (unit:
Nm).

The torque component condition is met if the torque
exceeds the value specified here.

Note: The upper limit value must be greater than the lower
limit value: max > min.

tolerance Optional. Maximum permissible inaccuracy of the calcu-
lated values (unit: Nm).

 > 0.0

Default: 10.0

The condition is met if the inaccuracy of the torque calcula-
tion is greater than or equal to the value specified here.

If the parameter is not specified, the default value is auto-
matically used.
405 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

406 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The switching point can be defined by a shift in space and/or time. The shift
can optionally refer to the start or end point of a motion.

Path-related conditions are of data type MotionPathCondition.

Constructor

syntax

The MotionPathCondition class has the following constructor:

MotionPathCondition(ReferenceType reference, double distance,
long delay)

Static methods A MotionPathCondition object can also be created via one of the following stat-
ic methods:

MotionPathCondition.createFromDelay(ReferenceType refe-
rence, long delay)

MotionPathCondition.createFromDistance(ReferenceType refe-
rence, double distance)

The braking process or the defined action is only triggered when the
switching point is reached. When using a path-related condition as a
break condition, this results in the robot coming to a standstill after the

switching point rather than directly at it.

If a time offset is defined, a change to the override influences the
switching point. The action linked to a path-related condition is there-
fore only triggered with an effective program override of 100% and at

the defined switching point in T2 or Automatic modes.

Element Description

reference Data type: com.kuka.roboticsAPI.conditionModel.Refer-
enceType

Reference point of the condition

 ReferenceType.START: Start point

 ReferenceType.DEST: End point
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Maximum offset The switching point can only be offset within certain limits. The limits apply to
the entire offset, comprising the shift in space and time.

 Negative offset, at most to the start point of the motion

 Positive offset, at most to the end point of the motion

The following parameterizations may not be used, as they will inevitably lead
to an offset beyond the permissible limits and thus to a runtime error:

Even if a valid value combination has been used, the switching point can nev-
ertheless be offset beyond the permissible limits. In these cases, the response
is as follows:

 A condition which is met before the start of the motion triggers the motion
at the start point.

 A condition which is met after the end of the motion is never a trigger.

distance Offset in space relative to the reference point of the condi-
tion.

For CP motions, distance specifies the Cartesian distance
between the switching point and reference point (= dis-
tance along the path which connects the switching point
and reference point) and not the shortest distance between
these points. (unit: mm)

For PTP motions, distance does not specify a Cartesian dis-
tance but rather a path parameter without a unit.

 Negative value: Offset contrary to the direction of mo-
tion

 Positive value: Offset in the direction of motion

 (>>> "Maximum offset" Page 407)

delay Offset in time relative to the path point defined by distance.
Or if distance is not defined, to the reference point of the
condition. (unit: ms)

 Negative value: Offset contrary to the direction of mo-
tion

 Positive value: Offset in the direction of motion

Phases in which the application is paused are not included
in the time measurement.

 (>>> "Maximum offset" Page 407)

Element Description

Value combination Effect

reference = ReferenceType.START

distance < 0

The switching point is before the
start of the motion.

reference = ReferenceType.START

distance = 0

delay < 0

reference = ReferenceType.DEST

distance > 0

The switching point is after the end
of the motion.

reference = ReferenceType.DEST

distance = 0

delay > 0
407 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

408 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example A path-related condition is to be formulated for an adhesive bonding applica-
tion. The adhesive bead is to end 5 cm before the end point of the motion. In
order for the flow of adhesive to end in time, the condition must be met 700 ms
before this distance to the end is reached.

15.19.8 Condition for Boolean signals

Description The Boolean signal condition can be used to check Boolean digital inputs or
outputs. The condition is met if a Boolean input or output has a specific state.

Boolean signal conditions are of data type BooleanIOCondition.

Constructor

syntax

BooleanIOCondition(AbstractIO booleanSignal, boolean booleanIO-
Value)

Explanation of

the syntax

Example A Boolean digital input signal is returned via a switch. In order to react to the
signal in an application, a Boolean signal condition is to be formulated. The
condition must be fulfilled as soon as a high level (state TRUE) is present
when the switch is activated.

15.19.9 Condition for the range of values of a signal

Description The value of a digital or analog input or output can be checked with the condi-
tion for the range of values of a signal. The condition is met if the value of the
signal lies within a defined range.

Conditions for ranges of values are of data type ForceComponentCondition.

Constructor

syntax

IORangeCondition(AbstractIO signal, Number minValue, Number
maxValue)

MotionPathCondition glueStop = new
MotionPathCondition(ReferenceType.DEST, -50.0, -700);

Element Description

boolean
Signal

Boolean input/output signal that is checked

boolean
IOValue

State of the input/output signal with which the condition is
met

 true, false

public class ExampleApplication extends RoboticsAPIApplication {
 // ...

 @Inject

 private SwitchesIOGroup switches;
 // ...

 @Override

 public void run() {
 // ...

 AbstractIO switch_1 = switches.getInput("Switch1");

 BooleanIOCondition switch1_active =

 new BooleanIOCondition(switch_1, true);
 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example A temperature sensor returns an analog input signal whose value can lie in the
range between 0 °C and 2000 °C. As soon as a threshold of 35 °C is exceed-
ed, a condition for monitoring the sensor signal should be met.

15.20 Break conditions for motion commands

For certain processes a planned motion must not be fully executed but rather
terminated when definable events occur. For example, in joining processes,
the robot must stop if a force threshold is reached.

15.20.1 Defining break conditions

Description Break conditions are conditions which cause a motion to be terminated. A
break condition is met if it already has the state TRUE before the start of the
motion or if it switches to the state TRUE during the motion.

Conditions are defined as objects of type ICondition. The available condition
types belong to the package com.kuka.roboticsAPI.conditionModel.

An overview of the available condition types can be found here:

To define a break condition for a motion, an object of the desired condition
type is transferred to the motion command via the method breakWhen().

breakWhen(…) can be called several times when programming a motion com-
mand to define different break conditions for a motion. The individual break
conditions are then linked by a logic OR operation.

The following points must be taken into consideration when programming
break conditions:

Element Description

signal Analog or digital input/output signal that is checked

minValue Lower limit of the range of values in which the condition is
met

The value returned by the signal must be greater than or
equal to minValue.

maxValue Upper limit of the range of values in which the condition is
met

The value returned by the signal must be less than or equal
to maxValue.

public class ExampleApplication extends RoboticsAPIApplication {
 // ...

 @Inject

 private SensorIOGroup sensors;
 // ...

 @Override

 public void run() {
 // ...

 AbstractIO temperatureSensor =

 sensors.getInput("TemperatureSensor2");

 IORangeCondition tempHigher35 =

 new IORangeCondition(temperatureSensor, 35.0, 2000.0);
 }

}

409 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

410 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 For a spline block, break conditions can only be programmed for the entire
spline block. Break conditions for individual splines segments are not per-
missible.

 If a break condition defined for a motion within a MotionBatch is triggered,
this is terminated, and then the next motion command in the batch is exe-
cuted. If a break condition defined for the entire MotionBatch occurs, the
entire MotionBatch is terminated.

 A break condition causes the motion currently being executed to be termi-
nated. If no appropriate reaction strategy is programmed in the application,
subsequent motions are carried out immediately after the terminated mo-
tion.

 In the case of approximated motions, the approximate positioning arc is
part of the path of the subsequent motion. For this reason, only the break
conditions for the subsequent motion affect the approximate positioning
arc.

 If the break condition in an approximated motion occurs just before the ap-
proximate positioning point is reached, and if this does not cause the robot
to come to a standstill until it is on the approximate positioning arc, the ro-
bot is accelerated again when the approximate positioning arc is reached
in order to execute the subsequent motion.

Syntax motion.breakWhen(condition_1<, condition_2, … >);

Explanation of

the syntax

Example A LIN motion is terminated if the torque in axis A3 is less than or equal to -
12 Nm or greater than or equal to 0 Nm.

15.20.2 Evaluating the break conditions

Description If break conditions have been defined for a motion command, it is possible to
view various information on the termination of a motion: For this purpose, the
motion command is temporarily stored in an IMotionContainer variable. Via
the method getFiredBreakConditionInfo(), this variable can be polled for an
object of type IFiredConditionInfo, which contains the information about termi-
nation of the motion. If no break condition occurs during the motion, getFired-
BreakConditionInfo() returns zero.

Syntax IMotionContainer motionCmd = motion.breakWhen(...);

IFiredConditionInfo firedCondInfo =
motionCmd.getFiredBreakConditionInfo();

Element Description

motion Type: Motion

Motion for which a break condition is to be defined

Example:

 ptp(getApplicationData().getFrame("/P1"))

condition Type: ICondition

Parameterized ICondition object which describes a break
condition

JointTorqueCondition cond_1 = new JointTorqueCondition(JointEnum.J3,
-12.0, 0.0);

robot.move(lin(getApplicationData().getFrame("/P10"))

 .breakWhen(cond_1));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Overview The following methods are available in the IFiredConditionInfo interface:

15.20.2.1Polling a break condition

Description The condition which caused the termination of a motion can be polled via the
method getFiredCondition(). The return value is of type ICondition and can be
compared to the transferred break conditions via the equals(…) method.

The poll is particularly useful if several break conditions for a motion have
been defined by repeatedly calling the breakWhen(…) method.

Syntax ICondition firedCondition = firedCondInfo.getFiredCondition();

Explanation of

the syntax

Example The break conditions “cond1” and “cond2” are generated.

The break conditions “cond1” and “cond2” are transferred to a LIN motion with
breakWhen(…). The “motionCmd” variable of type IMotionContainer can be
used to evaluate the motion command.

Element Description

motion Motion instruction

Example:

 lbr.move(ptp(getApplicationData().getFrame("/P1"))

motionCmd Type: IMotionContainer

Temporary memory for the motion command

firedCondInfo Type: IFiredConditionInfo

Information about termination of the motion

Method Description

getFiredCondition() Return value type: ICondition

Polls for the condition which caused a motion to be terminated

getPositionInfo() Return value type: PositionInformation

Polls for robot position valid at the time when the break condi-
tion was triggered.

getStoppedMotion() Return value type: IMotion

Polls for the segment of a spline block or the motion of a
MotionBatch which was terminated

Element Description

firedCondition Type: ICondition

Variable for the return value. The variable contains the
condition which caused the motion to be terminated.

firedCondInfo Type: IFiredConditionInfo

Information about termination of the motion

ICondition cond1;

ICondition cond2;

cond1 = new ...;
cond2 = new ...;

IMotionContainer motionCmd =

 robot.move(lin(getApplicationData().getFrame("P10"))

 .breakWhen(cond1).breakWhen(cond2));
411 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

412 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The information about the termination of the motion are polled by "motionC-
md". If the polled information is not equal to null, the motion has been termi-
nated. The system only polls for the triggered break condition in this case.

15.20.2.2Polling the robot position at the time of termination

Description The robot position at the time when the break condition was triggered can be
polled via the method getPositionInfo().

The following position information can be accessed via the return value of type
PositionInformation.

 Axis-specific actual position

 Cartesian actual position

 Axis-specific setpoint position

 Cartesian setpoint position

 Setpoint/actual value difference (translational)

 Setpoint/actual value difference (rotational)

Syntax PositionInformation firedPosInfo =
firedCondInfo.getPositionInfo();

Explanation of

the syntax

Example The Cartesian actual position of the robot at the time when the break condition
was triggered is polled via the method getCurrentCartesianPosition().

15.20.2.3Polling a terminated motion (spline block, MotionBatch)

Description Break conditions can be defined for an entire spline block or MotionBatch. If a
break condition occurs, the entire spline block or MotionBatch is terminated.

The method getStoppedMotion() can be used to poll which spline segment or
which motion of a MotionBatch has been terminated. The return value is of
type IMotion.

Syntax IMotion stoppedMotion = firedCondInfo.getStoppedMotion();

IFiredConditionInfo firedInfo = motionCmd.getFiredConditionInfo();

if(firedInfo != null){
 ICondition firedCond = firedInfo.getFiredCondition();

 if(firedCond.equals(cond1)){
 // ...

 }

// ...

}

Element Description

firedPosInfo Type: PositionInformation

Variable for the return value. The return value contains the
position information at the time when the break condition
was triggered.

firedCondInfo Type: IFiredConditionInfo

Information about termination of the motion

PositionInformation firedPosInfo = firedInfo.getPositionInfo();

Frame firedCurrPos = firedPosInfo.getCurrentCartesianPosition();
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example Poll using the example of a spline block:

15.21 Path-related switching actions (Trigger)

A trigger is an event which is used to activate user-defined, path-related ac-
tions. If a specific event occurs while a motion is being executed, the action is
triggered. The action is performed in parallel with the robot motion. For exam-
ple, during a positioning motion, the gripper must be opened at the right time
in order to be open when a setdown position for the workpiece it is transporting
is free.

15.21.1 Programming triggers

Description Events which activate path-related switching actions are called triggers.
Events are defined using conditions. An event occurs if the defined condition
already has the state TRUE before the start of the motion or if it switches to
the state TRUE during the motion.

Conditions are defined as objects of type ICondition. The available condition
types belong to the package com.kuka.roboticsAPI.conditionModel.

An overview of the available condition types can be found here:

To program a trigger, an object of the desired condition type and an ITrigger-
Action object which describes the action to be executed are transferred to the
motion command via the method triggerWhen(…).

triggerWhen(…) can be called several times when programming a motion
command to define different triggers for a motion. The execution of the corre-
sponding switching actions is only dependent on whether the triggering event
occurs, and is not influenced by the order of calling via triggerWhen(…).

Element Description

stoppedMotion Type: IMotion

Variable for the return value. The variable contains the
terminated motion.

firedCondInfo Type: IFiredConditionInfo

Information about termination of the motion

ICondition stopCondition = new ...;
// ...

Spline splineMotion = new Spline(
 spl(getApplicationData().getFrame("/P1")),

 circ(getApplicationData().getFrame("/P2"),

 getApplicationData().getFrame("/P3")),

 spl(getApplicationData().getFrame("/P4")).setCartVelocity(150),

 lin(getApplicationData().getFrame("/P5"))

).setCartVelocity(250).breakWhen(stopCondition);

IMotionContainer splineCont = robot.move(splineMotion);

IFiredConditionInfo firedInfoSpline =
splineCont.getFiredConditionInfo();

 if(firedInfoSpline != null){
 IMotion stoppedMotion = firedInfoSpline.getStoppedMotion();

// ...

}

413 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

414 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Syntax motion.triggerWhen(condition, action);

Explanation of

the syntax

15.21.2 Programming a path-related switching action

Description The path-related action to be executed when an event occurs is defined via an
ITriggerAction object. ITriggerAction is an interface from the com.kuka.robot-
icsAPI.conditionModel package. This interface currently does not provide any
methods.

The ICallbackAction interface, which is derived from ITriggerAction, can be
used for programming actions. The interface has the method onTrigger-
Fired(…). The action to be carried out when the trigger is activated can be pro-
grammed in the body of the method onTriggerFired(…).

An ICallbackAction object can be used in any number of triggers.

Syntax ICallbackAction action = new ICallbackAction() {

@Override

public void onTriggerFired(IFiredTriggerInfo
triggerInformation) {

//Action to be executed

}

};

The triggering event cannot re-trigger an action while it is being exe-
cuted. The trigger is not effective again until the method trigger-
When(…) has ended. It is possible to poll for the number of events

missed while the method was being executed.
 (>>> 15.21.3 "Evaluating trigger information" Page 415)

Element Description

motion Type: Motion

Motion for which a trigger must be defined

Example:

 ptp(getApplicationData().getFrame("/P1"))

condition Type: ICondition

Parameterized ICondition object which describes the con-
dition for the trigger

action Type: ITriggerAction

ITriggerAction object which describes the action to be exe-
cuted

 (>>> 15.21.2 "Programming a path-related switching
action" Page 414)

The onTriggerFired(…) method is not called in real time: It is therefore
not possible to guarantee specific time behavior. This can lead to de-
layed execution of the action.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

Example During motion to point “P1”, output “DO1” is always switched at the moment
when input “DI1” is TRUE.

15.21.3 Evaluating trigger information

The method onTriggerFired(…) is called when a trigger is activated. The ob-
ject triggerInformation of type IFiredTriggerInfo, which contains various
information about the activating trigger, is transferred to the method onTrigger-
Fired(…). This trigger information can be polled.

Overview The following methods of the IFiredTriggerInfo class are available:

Element Description

action Type: ICallbackAction

ICallbackAction object which describes the action trans-
ferred with triggerWhen(…)

onTrigger
Fired(…)

Method whose execution is fired by the trigger

triggerIn
formation

Type: IFiredTriggerInfo

Contains information about the firing trigger

 (>>> 15.16.5.2 "Reacting to a change in state of safety
signals" Page 385)

//set trigger action

ICallbackAction toggleOut_1 = new ICallbackAction() {

 @Override

 public void onTriggerFired(IFiredTriggerInfo triggerInformation)
 {

 //toggle output state when trigger fired

 if(IOs.getDO1())
 {

 IOs.setDO1(false);
 }

 else
 {

 IOs.setDO1(true);
 }

 }

};

//set trigger condition

BooleanIOCondition buttonPressed = new
BooleanIOCondition(IOs.getInput("DI1"), true);

//motion with trigger

robot.move(ptp(P1)).triggerWhen(buttonPressed, toggleOut_1));

robot.move(ptp(P2));
415 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

416 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
To poll for the position information obtained with getPositionInformation(), the
following methods of the PositionInformation class are available:

Example 1 When the trigger is fired, the triggering time and condition are displayed on the
smartHMI. For output purposes, a logger object has been integrated with de-
pendency injection.

Method Description

getFiredCondition() Return value type: ICondition

Polls for the condition which fired the trigger

getMissedEvents() Return value type: int

Polls for how many times the event which fired the trigger still occurred
while the triggered action was being executed

Note: The triggering event cannot re-trigger an action while it is being
executed.

getMotionContainer() Return value type: IMotionContainer

Polls for the motion command, during the execution of which the trigger
was fired

getPositionInforma-
tion()

Return value type: PositionInformation

Polls for position information valid at the time when the trigger was fired.

The return value contains the following position information:

 Axis-specific actual position

 Cartesian actual position

 Axis-specific setpoint position

 Cartesian setpoint position

 Setpoint/actual value difference (translational)

 Setpoint/actual value difference (rotational)

getTriggerTime() Return value type: java.util.Date

Polls for the time at which the trigger was fired

Method Description

getCommandedCartesianPo-
sition()

Return value type: Frame

Polls for the Cartesian setpoint position at triggering time

getCommandedJointPosition() Return value type: JointPosition

Polls for the axis-specific setpoint position at triggering time

getCurrentCartesianPosition() Return value type: Frame

Polls for the Cartesian actual position at triggering time

getCurrentJointPosition() Return value type: JointPosition

Polls for the axis-specific actual position at triggering time

BooleanIOCondition in1 = new BooleanIOCondition(_input_1, true);

ICallbackAction ica = new ICallbackAction() {

 @Override

 public void onTriggerFired(IFiredTriggerInfo triggerInformation)
 {

 logger.info("TriggerTime: "+ triggerInformation

 .getTriggerTime().toString());

 logger.info("TriggerCondition: "+ triggerInformation
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Example 2 The axis-specific and Cartesian robot position at triggering time are polled.

15.22 Monitoring processes (Monitoring)

Monitoring means keeping a process under surveillance using a listener so
that it is possible to react to certain events while an application is running.

These events are changes in state of defined conditions. The listener monitors
the state of the condition. If the state of the condition changes, the listener is
notified and the predetermined handling routine is triggered as a reaction.

During execution of a handling routine, the listener is not informed if further
events occur. Once the handling routine has been completed, these events
are only transferred to the listener and handled if the appropriate notification
type has been defined.

 (>>> 15.22.3 "Registering a listener for notification of change in state"
Page 419)

15.22.1 Listener for monitoring conditions

Various listener interfaces are available from the package com.kuka.robotic-
sAPI.conditionModel for monitoring a condition. The listeners differ in type in
that they are each notified of a certain change in state of the monitored condi-
tion.

Each listener type declares a method which is executed when the listener is
notified. The desired handling routine is programmed in the body of this meth-
od.

 .getFiredCondition().toString());

 }

};

robot.move(ptp(getApplicationData().getFrame("/P1"))

.triggerWhen(in1, ica));

BooleanIOCondition in1 = new BooleanIOCondition(_input_1, true);

ICallbackAction ica = new ICallbackAction() {

 @Override

 public void onTriggerFired(IFiredTriggerInfo triggerInformation)
 {

 PositionInformation posInfo = triggerInformation

 .getPositionInformation();

 posInfo.getCommandedCartesianPosition();

 posInfo.getCommandedJointPosition();

 posInfo.getCurrentCartesianPosition();

 posInfo.getCommandedJointPosition();

 };

};

robot.move(ptp(getApplicationData().getFrame("/P1"))

 .triggerWhen(in1, ica));
417 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

418 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Overview The following programming steps are required in order to be able to react to
the change in state of a condition:

15.22.2 Creating a listener object to monitor the condition

Description The syntax of a listener object is described here using the listener IAnyEdge-
Listener as an example. The listener method onAnyEdge(…), which is auto-
matically declared when the object is created, has input parameters. These
input parameters contain information about the event triggered by the execu-
tion of the method, and can be polled and evaluated.

The listener objects of the other listener types are created in the same way and
are structured analogously.

Syntax IAnyEdgeListener condListener = new IAnyEdgeListener() {

@Override

public void onAnyEdge(ConditionObserver conditionObser-
ver, Date time, int missedEvents, boolean conditionValue)
{

// Reaction to change in state

}

};

Data type Description

IRisingEdgeListener Notification when the monitored condition is met (rising edge, change in
state FALSE > TRUE).

Method for the handling routine:

 onRisingEdge(…)

IFallingEdgeListener Notification when the monitored condition is no longer met (falling edge,
change in state TRUE > FALSE).

Method for the handling routine:

 onFallingEdge(…)

IAnyEdgeListener Notification for every change in state of the condition (rising or falling
edge, change in state FALSE > TRUE or TRUE > FALSE).

Method for the handling routine:

 onAnyEdge(…)

Step Description

1 Create a listener object to monitor the condition.

 (>>> 15.22.2 "Creating a listener object to monitor the condi-
tion" Page 418)

2 Program the desired handling routine in the listener method.

3 Register the listener for notification in case of a change in
state of the condition.

 (>>> 15.22.3 "Registering a listener for notification of change
in state" Page 419)

4 If this has not already been done by the method selected for
registration, activate the notification service for the listener.

 (>>> 15.22.4 "Activating or deactivating the notification ser-
vice for listeners" Page 420)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Explanation of

the syntax

15.22.3 Registering a listener for notification of change in state

Description An object of type ConditionObserver is required to register a listener for notifi-
cation in case of a change in state.

To create an object of type ConditionObserver, the ObserverManager of the
application must first be polled via the method getObserverManager(). The
ObserverManager class provides various methods for creating the required
object.

 createAndEnableConditionObserver(…)

The notification service for the listener is active immediately.

 createConditionObserver(…)

The notification service for the listener is not active immediately, but rather
must be explicitly activated.

 (>>> 15.22.4 "Activating or deactivating the notification service for listen-
ers" Page 420)

The transferred parameters in each case are identical for both methods.

Syntax ConditionObserver myObserver =
getObserverManager().createAndEnableConditionObserver
(condition, notificationType, listener)

Element Description

condListener Type: IAnyEdgeListener

Name of the listener object

Input parameters of the listener method:

condition
Observer

Type: ConditionObserver

Object notified by the listener

time Type: Date

Date and time the listener was notified

missed
Events

Type: int

Number of changes in state which have occurred but not
been handled.

Possible causes of non-handled events:

 The notification service was deactivated when the trig-
gering event occurred.

 The handling routine was being executed when the trig-
gering event occurred again.

These events can be handled using the notification type
NotificationType.MissedEvents. (>>> "NotificationType"
Page 420)

condition
Value

Type: Boolean

Only present with the listener method onAnyEdge(…).
Specifies the edge via which the method was called.

 true: rising edge (change in state FALSE > TRUE)

 false: falling edge (change in state TRUE > FALSE)
419 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

420 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Explanation of

the syntax

NotificationType The Enum of type NotificationType has the following values:

15.22.4 Activating or deactivating the notification service for listeners

Description The methods for activating or deactivating the notification service belong to the
ConditionObserver class.

The notification service must only be activated if the method createCondition-
Observer(…) was used to register the listener.

Syntax To activate the notification service:

Element Description

myObserver Type: ConditionObserver

Object which monitors the defined condition

condition Type: ICondition

Condition which is monitored

notification
Type

Type: Enum of type NotificationType

Notification type

Defines the events at which the listener is to be notified in
order to execute the desired handling routine.

 (>>> "NotificationType" Page 420)

listener Type: IRisingEdgeListener, IFallingEdgeListener or
IAnyEdgeListener

Listener object which is registered

Value Description

EdgesOnly The listener is only notified in the event of an edge
change (according to the listener type used).

OnEnable The listener is notified in the event of an edge change
(according to the listener type used).

In addition, the state of the monitored condition is
checked upon activation of the listener. Depending on
the listener type, the listener is notified when the follow-
ing events occur:

 IRisingEdgeListener: only if the condition is met
upon activation

 IFallingEdgeListener: only if the condition is not met
upon activation

 IAnyEdgeListener: if the condition is met or not met
upon activation

MissedEvents The listener is notified in the event of an edge change
(according to the listener type used).

In addition, following the execution of the handling rou-
tine, the listener is notified if triggering events were
missed. This means that if the triggering edge change
again occurs during execution of the handling routine,
the listener is also notified again, and the handling rou-
tine is executed a second time.

All Combination of OnEnable and MissedEvents

The listener is notified in the case of all events
described under OnEnable and MissedEvents.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
myObserver.enable()

To deactivate the notification service:

myObserver.disable()

Explanation of

the syntax

15.22.5 Programming example for monitoring

A listener of type IRisingEdgeListener is defined for monitoring a force condi-
tion. As soon as a force of 35 N on the TCP is exceeded, this is considered a
collision. The listener is notified and a warning lamp lights up.

NotificationType.MissedEvents is defined as the notification type. If the per-
missible force on the TCP is exceeded multiple times while the warning lamp
is switched on, the listener will be informed promptly.

15.23 Blocking wait for condition

Description With waitFor(…), an application is stopped until a certain condition is met or a
certain wait time has expired. The application is then resumed.

waitFor(…) must access the ObserverManager of the application. This is
called with getObserverManager().

All condition types are supported with the exception of MotionPathCondition.

An overview of the available condition types can be found here:

Syntax Blocking wait with no time limit:

getObserverManager().waitFor(condition)

Blocking wait with a time limit:

Element Description

myObserver Type: ConditionObserver

Object which monitors the defined condition

ForceCondition collision = ForceCondition

.createSpatialForceCondition(tool.getDefaultMotionFrame(), 35);

IRisingEdgeListener collisionListener = new IRisingEdgeListener() {

 @Override

 public void onRisingEdge(ConditionObserver conditionObserver,
 Date time, int missedEvents) {

 signals.setWarningLED(true);

 }

});

ConditionObserver collisionObserver = getObserverManager()

.createConditionObserver(collision, NotificationType.MissedEvents,

collisionListener);

collisionObserver.enable();

Latency times may occur while the wait command is being processed.
It is not possible to guarantee that the programmed wait time will be
maintained exactly.
421 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

422 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
boolean result = getObserverManager().waitFor(condition, timeout,
timeUnit)

Explanation of

the syntax

Example A wait for a Boolean input signal is required in the application. The application
is to be blocked for a maximum of 30 seconds. If the input signal is not sup-
plied within this time, a defined handling routine is then to be executed.

Element Description

condition Type: ICondition

Condition which is waited for

If the condition is already met when waitFor(…) is called,
the application is immediately resumed.

timeout Type: long

Maximum wait time

If the condition of the defined wait time does not occur, the
application is also resumed without the occurrence of the
condition.

timeUnit Type: Enum of type TimeUnit

Unit of the specified wait time

The Enum TimeUnit is an integral part of the standard Java
library.

result Type: boolean

Variable for the return value of waitFor(…). The return
value is true if the condition occurs within the specified wait
time.

Note: If no wait time is defined, waitFor(…) does not sup-
ply a return value.

public class ExampleApplication extends RoboticsAPIApplication {
 // ...

 @Inject

 private SwitchIOGroup inputs;
 // ...

 @Override

 public void run() {
 // ...

 Input input = inputs.getInput ("Input");

 BooleanIOCondition inputCondition =

 new BooleanIOCondition(input, true);

 boolean result = getObserverManager().
 waitFor(inputCondition, 30, TimeUnit.SECONDS);

 if(!result){
 //do something

 }

 else{
 //continue program

 }

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.24 Recording and evaluating data

While an application is being executed, specific data, for example external
forces and torques, can be recorded for later evaluation. The DataRecorder
class (package: com.kuka.roboticsAPI.sensorModel) is available for program-
ming the data recording.

The recorded data are saved in a file and stored on the robot controller in the
directory C:\KRC\Roboter\Log\DataRecorder.

The file name is defined with the DataRecorder object to be created. If an error
has occurred during recording, the file name begins with “FaultyDataRecord-
er…”.

The file can be opened with a text editor or read into an Excel table.

15.24.1 Creating an object for data recording

Description For data recording, an object of type DataRecorder must first be created and
parameterized. The following default parameters are set if the standard con-
structor is used for this purpose:

 The file name under which the recorded data are saved is created auto-
matically. The name also contains an ID which is internally assigned by the
system: DataRecorderID.log

 No recording duration is defined. Data are recorded until the buffer (cur-
rently 16 MB) is full or the maximum number of data sets (currently
30,000) is reached.

 The recording rate, i.e. the minimum time between 2 recordings, is 1 ms.

Constructor

syntax

The DataRecorder class has the following constructors:

DataRecorder() (standard constructor)

DataRecorder(String fileName, long timeout, TimeUnit timeUnit,
int sampleRate)

Explanation of

the syntax
Element Description

fileName File name (with extension) under which the recorded data
are saved

Example: “Recording_1.log”

timeout Recording duration

 -1: No recording duration is defined.

 ≥ 1

Default: -1

The time unit is defined with timeUnit.

timeUnit Time unit for the recording duration

Example: TimeUnit.SECONDS

The Enum TimeUnit is an integral part of the standard Java
library.

sampleRate Recording rate (unit: ms)

 ≥ 1

Default: 1
423 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

424 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example 1 Data are to be recorded every 100 ms for a duration of 5 s and written to the
file Recording_1.log.

Example 2 The DataRecorder object is generated using the standard constructor. This
only specifies that data are recorded every 1 ms for an indefinite duration. The
recorded data are to be written to the file Recording_2.log. The file name is de-
fined with the corresponding “set” method.

15.24.2 Specifying data to be recorded

Using dot operators and the corresponding “add” method, the data to be re-
corded are added to the DataRecorder object created for this purpose. The si-
multaneous recording of various data is possible.

Overview The following “add” methods of the DataRecorder class are available:

The DataRecorder class offers “set” methods which can be used to
adapt the parameter values, in particular when using the standard
constructor.

 setFileName(…), setSampleRate(…), setTimeout(…, …)

In setTimeout(…, …), the first parameter defines the recording duration and
the second parameter defines the corresponding time unit.

DataRecorder rec_1 = new DataRecorder("Recording_1.log", 5,
TimeUnit.SECONDS, 100);

DataRecorder rec_2 = new DataRecorder();
rec_2.setFileName("Recording_2.log");

Method Description

addInternalJointTorque(…) Return value type: DataRecorder

Recording of the measured axis torques of the robot which is
transferred as a parameter (type: robot)

addExternalJointTorque(…) Return value type: DataRecorder

Recording of the external axis torques (adjusted to the model)
of the robot which is transferred as a parameter (type: robot)

addCartesianForce(…) Return value type: DataRecorder

Recording of the Cartesian forces along the X, Y and Z axes of
the frame which is transferred as a parameter (unit: N). The
variance of the Cartesian forces is also recorded.

A second frame can be transferred as a parameter in order to
define the orientation for the force measurement. If no separate
frame is specified for the orientation, null must be transferred.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
addCartesianTorque(…) Return value type: DataRecorder

Recording of the Cartesian torques along the X, Y and Z axes of
the frame transferred as a parameter (unit: Nm). The variance
of the Cartesian forces is also recorded.

A second frame can be transferred as a parameter in order to
define the orientation for the torque measurement. If no sepa-
rate frame is specified for the orientation, null must be trans-
ferred.

Parameters:

 AbstractFrame measureFrame

Frame attached to the robot flange, e.g. the TCP of a tool.
Defines the position of the measurement point.

 AbstractFrame orientationFrame

Defines the orientation of the measurement point.

Note: Both parameters must always be transferred together.
The orientation may be null.

addCommandedJointPosi-
tion(…)

Return value type: DataRecorder

Recording of the axis-specific setpoint position of the robot
which is transferred as a parameter (type: robot). As a second
parameter, the unit in which the axis angles are recorded must
be transferred (Enum of type: AngleUnit).

addCurrentJointPosition(…) Return value type: DataRecorder

Recording of the axis-specific actual position of the robot which
is transferred as a parameter (type: robot). As a second param-
eter, the unit in which the axis angles are recorded must be
transferred (Enum of type: AngleUnit).

Parameters:

 Robot robot

 AngleUnit angleUnit

 AngleUnit.Degree: Axis angle in degrees

 AngleUnit.Radian: Axis angle in rad

addCommandedCartesianPo-
sitionXYZ(…)

Return value type: DataRecorder

Recording of the Cartesian setpoint position (translational sec-
tion)

The measurement point and reference coordinate system rela-
tive to which the position is recorded are transferred as parame-
ters.

Method Description
425 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

426 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example For an LBR iiwa, the following data are to be recorded using a DataRecorder
object:

 Axis torques which are measured on the robot

 Force on the TCP of a gripper mounted on the robot with the orientation of
a base frame

15.24.3 Starting data recording

Data recording can be started independently of robot motion (possible at any
point in the application) or synchronously with robot motion by means of a trig-
ger.

Independent of

robot motion

Before motion-independent recording is started, the DataRecorder object
must be activated via the enable() method. Recording is started via the star-
tRecording() method.

When recording has ended, the DataRecorder object is automatically deacti-
vated. If data are to be recorded again with the same DataRecorder object, the
DataRecorder must be re-activated.

addCurrentCartesianPosition-
XYZ(…)

Return value type: DataRecorder

Recording of the Cartesian actual position (translational sec-
tion)

The measurement point and reference coordinate system rela-
tive to which the position is recorded are transferred as parame-
ters.

Parameters:

 AbstractFrame measureFrame

Frame attached to the robot flange, e.g. the TCP of a tool.
Defines the position of the measurement point.

 AbstractFrame referenceFrame

Defines the reference coordinate system.

Note: Both parameters must always be transferred together.
None of the parameters may be null.

Method Description

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 @Inject

 private Tool gripper;
 // ...

 @Override

 public void run() {
 // ...

 gripper.attachTo(robot.getFlange());

 // ...

 DataRecorder rec = new DataRecorder();
 rec.addInternalJointTorque(robot);

 rec.addCartesianForce(gripper.getFrame("TCP"),

 getApplicationData().getFrame("/Base"));

 // ...

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Synchronous via

a trigger

A condition of type ICondition and an action must be formulated for a trigger.
When this condition is met, the trigger is fired, causing the action to be carried
out.

 (>>> 15.21.1 "Programming triggers" Page 413)

This action starts the data recording. An object of type StartRecordingAction
must be transferred for this purpose. When the object is created, the Da-
taRecorder object to be used for data recording must be specified.

Constructor syntax:

StartRecordingAction(DataRecorder recorder)

The ICondition object and the StartRecordingAction object are subsequently
linked to a motion command with triggerWhen(…).

Example 1 Data recording is to start when the robot has carried out the approach motion
to a pre-position. The DataRecorder object is activated before the pre-position
is addressed so as to reduce the delay when starting the recording.

Example 2 Data recording is to begin 2 s after the start of a motion. A MotionPathCondi-
tion object is parameterized for this.

It is not possible for more than one DataRecorder object to be activat-
ed at any one time.

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 // ...

 @Override

 public void run() {
 // ...

 DataRecorder rec = new DataRecorder();
 // ...

 rec.enable();

 // ...

 robot.move(lin(getApplicationData()

 .getFrame("/PrePosition")));

 rec.startRecording();

 // ...

 }

}

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 // ...

 @Override

 public void run() {
 // ...

 DataRecorder rec = new DataRecorder();
 // ...

 StartRecordingAction startAct =

 new StartRecordingAction(rec);
 MotionPathCondition startCond = new MotionPathCondition(
 ReferenceType.START, 0.0, 2000);

 robot.move(lin(getApplicationData()

 .getFrame("/Destination"))

 .triggerWhen(startCond, startAct));
427 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

428 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.24.4 Ending data recording

Data recording can be ended independent of robot motion (possible at any
point in the application), or synchronous with robot motion by means of a trig-
ger.

In addition, recording is automatically ended when the application ends or
when the recording duration specified in the DataRecorder object used has
been reached.

Independent of

robot motion

Recording can be stopped at any time via the stopRecording() method.

Synchronous via

a trigger

A condition of type ICondition and an action must be formulated for a trigger.
When this condition is met, the trigger is fired, causing the action to be carried
out.

 (>>> 15.21.1 "Programming triggers" Page 413)

This action ends the data recording. An object of type StopRecordingAction
must be transferred for this purpose. When the object is created, the Da-
taRecorder object to be used for data recording must be specified.

Constructor syntax:

StopRecordingAction(DataRecorder recorder)

The ICondition object and the StopRecordingAction object are linked to a mo-
tion command with triggerWhen(…).

15.24.5 Polling states from the DataRecorder object

Overview The following methods of the DataRecorder class are available:

 // ...

 }

}

Method Description

isEnabled() Return value type: Boolean

The system polls whether the DataRecorder object is activated (= true).

isRecording() Return value type: Boolean

The system polls whether data recording is running (= true).
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.24.6 Example program for data recording

The following are to be recorded during an assembly process: the torques act-
ing externally on the axes of an LBR iiwa and the Cartesian forces acting on
the TCP of a gripper on the robot flange. The data are to be recorded every
10 ms.

Recording is to begin synchronously with robot motion when the force acting
from any direction on the TCP of the gripper exceeds 20 N. When the assem-
bly process ends, recording is to end as well.

The file is then to be evaluated if it is available after a maximum of 5 s.

isFileAvailable() Return value type: Boolean

The system polls whether the file with the recorded data is already
saved on the robot controller and whether it is available for evaluation
(= true).

awaitFileAvailable(…) Return value type: Boolean

Blocks the calling application or background task until the defined block-
ing duration has expired or until the file with the recorded data is saved
on the robot controller and is available for evaluation (= true).

The blocking statement returns the value “false” if the file is not available
within the maximum blocking duration.

Syntax:

 awaitFileAvailable(long timeout, java.util.concur-
rent.TimeUnit timeUnit)

Parameters:

 timeout: maximum blocking duration

 timeUnit: time unit for the maximum blocking time

Method Description

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 @Inject

 private Tool gripper;
 // ...

 @Override

 public void run() {
 // ...

 gripper.attachTo(robot.getFlange());

 // ...

 DataRecorder rec = new DataRecorder();

 rec.setFileName("Recording.log");

 rec.setSampleRate(10);

 rec.addExternalJointTorque(robot);

 rec.addCartesianForce(gripper.getFrame("/TCP"), null);

 StartRecordingAction startAction =

 new StartRecordingAction(rec);
 ForceCondition startCondition = ForceCondition

 .createSpatialForceCondition(

 gripper.getFrame("/TCP"), 20.0);
429 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

430 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.25 Defining user keys

Description Functions can be freely assigned to the 4 user keys on the smartPAD. For this
purpose, various user key bars can be defined in the source code of the robot
application or background tasks.

The user keys are assigned functions using the user key bar. One user key on
the bar must be assigned a function, but it is not necessary for all of the keys
to be assigned. In addition, graphical or text elements illustrating the function
of each user key are located on the side panel of the smartHMI screen next to
the user keys.

All the user key bars defined in the running robot application or the background
task are available to the operator. For example, one user key bar can be used
for controlling a gripper, and in another bar the same keys can be used to se-
lect different program sections.

User key bars are available until the robot application or background task
which created them has ended.

Overview The following steps are required in order to program a user key bar:

 robot.move(ptp(getApplicationData()

 .getFrame("/StartPosition")));

 robot.move(lin(getApplicationData()

 .getFrame("/MountingPosition"))

 .triggerWhen(startCondition, startAction));

 robot.move(lin(getApplicationData()

 .getFrame("/DonePosition")));

 rec.stopRecording();

 if (rec.awaitFileEnable(5, TimeUnit.SECONDS)){

 // Evaluation of the file if available

 }

 // ...

 }

}

Fig. 15-19: User keys on the smartPAD (example)

1 User keys 2 Bar with LED icons
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.25.1 Creating a user key bar

Description The following methods are required in order to create a user key bar:

 getApplicationUI()

This method is used to access the interface to the smartHMI graphical
user interface from a robot application or a background task. Return value
type: ITaskUI

 createUserKeyBar(…)

This method is used to create the user key bar. It is part of the ITaskUI in-
terface.

Syntax IUserKeyBar keybar =
getApplicationUI().createUserKeyBar("name");

Explanation of

the syntax

Example A user key bar for controlling a gripper is created.

Step Description

1 Create a user key bar.

 (>>> 15.25.1 "Creating a user key bar" Page 431)

2 Add user keys to the bar (at least one).

 (>>> 15.25.2 "Adding user keys to the bar" Page 432)

3 Define the function which is to be executed if the user key is
actuated.

 (>>> 15.25.3 "Defining the function of a user key" Page 433)

4 Assign at least one graphical or text element to the area along
the left side panel of the smartHMI next to the user key.

 (>>> 15.25.4 "Labeling and graphical assignment of the user
key bar" Page 435)

5 For user keys which trigger functions associated with a risk:
Define the warning message to be displayed when the user
key is actuated. The message appears before the function
can be triggered.

 (>>> 15.25.5 "Identifying safety-critical user keys" Page 438)

6 Publish a user key bar.

 (>>> 15.25.6 "Publishing a user key bar" Page 439)

Element Description

keybar Type: IUserKeyBar

Name of the user key bar created with createUserKey-
Bar(…)

name Type: String

Name under which the user key bar is displayed on the
smartHMI (>>> Fig. 6-9)

The number of characters which can be displayed is lim-
ited.

 A maximum of 12 to 15 characters is recommended.

IUserKeyBar gripperBar =
getApplicationUI().createUserKeyBar("Gripper");
431 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

432 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.25.2 Adding user keys to the bar

Description A newly created user key bar does not have any user keys to start with. The
user keys to be used must be added to the bar.

The IUserKeyBar interface provides the following methods for this purpose:

 addUserKey(…)

Adds a single user key to the bar.

 addDoubleUserKey(…)

Combines 2 neighboring user keys to a double key and adds this to the
bar. The corresponding areas on the side panel of the smartHMI screen
are also combined into a larger area.

When adding a user key to a bar, the user defines the function to be executed
when the user key is actuated (e.g. opening a gripper, changing a parameter,
etc.). Depending on the programming, both pressing and releasing the user
key can be interpreted as actuation and linked to a function.

A user key bar must have at least one user key. Each user key is assigned a
unique number. This number is transferred when a user key is added.

Syntax Adding a single key:

IUserKey key = keybar.addUserKey(slot, listener, ignoreEvents);

Adding a double key:

IUserKey doubleKey = keybar.addDoubleUserKey(slot, listener, igno-
reEvents);

Explanation of

the syntax

Fig. 15-20: Numbering of the user keys

1 Single keys 2 Double keys

Element Description

keybar Type: IUserKeyBar

Name of the user key bar to which a user key is added

key Type: IUserKey

Name of the single key added to the bar

doubleKey Type: IUserKey

Name of the double key added to the bar
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
Example The user keys are assigned the following functions for controlling a gripper:

 The top user key is to be used to open the gripper, and the key below it is
to close the gripper.

 The two lower user keys are combined in a double key. This is to be used
to increase and decrease the velocity of the gripper.

 The functions for opening and closing the gripper are not to be called again
until the respective function has ended.

15.25.3 Defining the function of a user key

Description In order to define which function is to be executed when a user key is actuated,
a listener object of type IUserKeyListener must be created. The on-
KeyEvent(…) method is automatically declared when the object is created.

The listener method onKeyEvent(…) is called when the following events oc-
cur:

 The user key is pressed.

 The user key is released.

slot Type: int

Number of the user key which is added.

Single keys:

 0 … 3

Double keys:

 0, 2

listener Type: IUserKeyListener

Name of the listener used to define the function to be exe-
cuted when the user key is actuated

 (>>> 15.25.3 "Defining the function of a user key"
Page 433)

ignoreEvents Type: boolean

Defines whether there is a reaction if the user key is re-
actuated while the key function is being executed

 true: If the key is actuated while the function is being ex-
ecuted, it has no effect.

 false: It is counted how many times the key is actuated
while the function is being executed. The function is re-
peated this many times.

Element Description

IUserKeyBar gripperBar =
getApplicationUI().createUserKeyBar("Gripper");

IUserKeyListener openGripperListener = ...;

IUserKeyListener closeGripperListener = ...;

IUserKeyListener gripperVelocityListener = ...;

IUserKey openKey = gripperBar.addUserKey(0,

 openGripperListener, true);
IUserKey closeKey = gripperBar.addUserKey(1,

 closeGripperListener, true);
IUserKey velocityKey = gripperBar.addDoubleUserKey(2,

 gripperVelocityListener, false);
433 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

434 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Syntax IUserKeyListener listener = new IUserKeyListener() {

@Override

public void onKeyEvent(IUserKey key, UserKeyEvent event) {

// Reaction to event

}

};

Explanation of

the syntax

Example The user key bar for controlling a gripper is expanded by a method which can
be used to adapt the velocity of the gripper. The two lower user keys combined
in a double key are used for this purpose.

The attribute velocity is declared for setting the velocity. The attribute spec-
ifies the current velocity as a proportion of the maximum velocity (range of val-
ues: 0.1 … 1.0). Pressing the upper user key increases the value by 0.1 and
pressing the lower user key decreases it by 0.1.

Only one OnKeyEvent(…) can be carried out even if different listen-
ers are used. For example, if the user triggers the OnKeyEvent(…) of
user key 2 while the OnKeyEvent(…) of user key 1 is being executed,

the second OnKeyEvent(…) will not start until the first has been completed.

Element Description

listener Type: IUserKeyListener

Name of the listener object

Input parameters of the listener method onKeyEvent(…):

key Type: IUserKey

User key which has been actuated

The parameter can be used to directly access the user key,
for example to change the corresponding labelling or
graphical assignment. In addition, it is possible to deter-
mine which user key has been actuated, especially when
the same reaction is used for different user keys.

event Type: Enum of type UserKeyEvent

Event called by the listener method onKeyEvent(…)

Enum values for single keys:

 UserKeyEvent.KeyDown: Key has been pressed.

 UserKeyEvent.KeyUp: Key has been released.

Enum values for double keys:

 UserKeyEvent.FirstKeyDown: Of the two keys, the
upper one has been pressed.

 UserKeyEvent.SecondKeyDown: Of the two keys, the
lower one has been pressed.

 UserKeyEvent.FirstKeyUp: Of the two keys, the upper
one has been released.

 UserKeyEvent.SecondKeyUp: Of the two keys, the
lower one has been released.

double velocity = 0.1;
// ...

IUserKeyBar gripperBar = ...;

// ...

IUsertKeyListener gripperVelocityListener = new IUserKeyListener(){
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.25.4 Labeling and graphical assignment of the user key bar

Description At least one graphical or text element must be assigned to the area along the
left side panel of the smartHMI next to the user key. LED icons of various col-
ors and sizes are available as graphical elements. These elements can be
adapted during the runtime of the robot application or the background task.

In order to clearly position the individual elements, the area next to the user
key is divided into a grid with 3x3 spaces. This also applies for user keys that
have been grouped together as a double key. In the case of double keys, the
grid stretches over both fields.

One element can be set in each grid space. This grid space is defined by the
value of the enum UserKeyAlignment. If a new element is allocated to a grid
space which has already been assigned, the existing element is deleted.

UserKey

alignment

 @Override

 public void onKeyEvent(IUserKey key, IUserKeyEvent event){
 if(event == UserKeyEvent.FirstKeyDown && velocity <= 0.9){
 velocity = velocity + 0.1;

 }

 else if(event == UserKeyEvent.SecondKeyDown && velocity >= 0.2){
 velocity = velocity – 0.1;

 }

 }

};

// ...

IUserKey velocityKey = gripperBar.addDoubleUserKey(2,

 gripperVelocityListener, false);

Fig. 15-21: Division of the grid

1 Single keys 2 Double keys

Grid space
no.

Value

1 UserKeyAlignment.TopLeft

2 UserKeyAlignment.TopMiddle

3 UserKeyAlignment.TopRight

4 UserKeyAlignment.MiddleLeft

5 UserKeyAlignment.Middle

6 UserKeyAlignment.MiddleRight

7 UserKeyAlignment.BottomLeft

8 UserKeyAlignment.BottomMiddle

9 UserKeyAlignment.BottomRight
435 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

436 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.25.4.1Assigning a text element

Description Each grid space can be assigned a text element. The setText(…) method is
used for this purpose. The method belongs to the IUserKey interface.

Syntax key.setText(position, "text");

Explanation of

the syntax

Example The user key bar for controlling a gripper is to be expanded. A suitable label
should be displayed continuously next to each of the user keys.

 Label for the user keys for opening and closing the gripper: OPEN and
CLOSE

 Label for the user keys for increasing and decreasing the gripper velocity:
Plus sign and minus sign

In addition, the current velocity is to be displayed and automatically updat-
ed each time a change is made.

Element Description

key Type: IUserKey

User key to which a text element is assigned

position Type: Enum of type UserKeyAlignment

Position of the element (grid space)

 (>>> "UserKey alignment" Page 435)

text Type: String

Text to be displayed

Often, a text length of 2 or more characters will exceed the
size of the grid space. The text display area is then
expanded. However, it is only practical to use a limited
number of characters. The possible number of characters
depends on the text elements of the neighboring grid
spaces and the characters used.

double velocity = 0.1;
// ...

IUserKeyBar gripperBar = ...;

// ...

IUserKeyListener gripperVelocityListener = new IUserKeyListener(){
 @Override

 public void onKeyEvent(IUserKey key, IUserKeyEvent event){
 if(event == UserKeyEvent.FirstKeyDown && velocity <= 0.9){
 velocity = velocity + 0.1;

 }

 else if(event == UserKeyEvent.SecondKeyDown && velocity >= 0.2){
 velocity = velocity - 0.1;

 }

 // The following line formats the velocity display

 // The first three characters are displayed

 String value = String.valueOf(velocity).substring(0, 3);

 key.setText(UserKeyAlignment.Middle, value);

 }

 }

};

IUserKey openKey = ...;

openKey.setText(UserKeyAlignment.TopLeft, "OPEN");

IUserKey closeKey = ...;

closeKey.setText(UserKeyAlignment.TopLeft, "CLOSE");
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.25.4.2Assigning an LED icon

Description Each grid space can be assigned an LED icon. The setLED(…) method is
used for this purpose. The method belongs to the IUserKey interface.

Syntax key.setLED(position, led, size);

Explanation of

the syntax

Example The user key bar for controlling a gripper is to be expanded. The user keys for
opening and closing the gripper should each be assigned a small LED icon.

As long as the gripper is opening or closing, the LED icons should be dis-
played in green. If the gripper is stationary, the LED icons should be displayed
in gray.

IUserKey velocityKey = ...;

velocityKey.setText(UserKeyAlignment.TopMiddle, "+");

velocitykey.setText(UserKeyAlignment.Middle,

 Double.toString(velocity));

velocityKey.setText(UserKeyAlignment.BottomMiddle, "-");

Element Description

key Type: IUserKey

User key to which a graphical element is assigned

position Type: Enum of type UserKeyAlignment

Position of the element (grid space)

 (>>> "UserKey alignment" Page 435)

led Type: Enum of type UserKeyLED

Color of the LED icon

 UserKeyLED.Grey: Gray

 UserKeyLED.Green: Green

 UserKeyLED.Yellow: Yellow

 UserKeyLED.Red: Red

size Type: Enum of type UserKeyLEDSize

Size of the LED icon

 UserKeyLEDSize.Small: Small

 UserKeyLEDSize.Normal: Large

IUserKeyBar gripperBar = getApplicationUI()

 .createUserKeyBar("Gripper");

IUserKeyListener openGripperListener = new IUserKeyListener(){
@Override

public void onKeyEvent(IUserKey key, UserKeyEvent event) {
 key.setLED(UserKeyAlignment.BottomMiddle, UserKeyLED.Green,

 UserKeyLEDSize.Small);

 openGripper(); // Method for opening the gripper

 key.setLED(UserKeyAlignment.BottomMiddle, UserKeyLED.Grey,

 UserKeyLEDSize.Small);

}

};

IUserKeyListener openGripperListener = new IUserKeyListener(){
@Override

public void onKeyEvent(IUserKey key, UserKeyEvent event) {
 key.setLED(UserKeyAlignment.BottomMiddle, UserKeyLED.Green,
437 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

438 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.25.5 Identifying safety-critical user keys

Description User keys can trigger functions that are associated with a risk. In order to pre-
vent damage caused by the unintentional actuation of such user keys, a warn-
ing message can be added identifying them as safety-critical. The
setCriticalText(…) method is used for this purpose. The method belongs to the
IUserKey interface.

If the operator actuates a user key designated as safety-critical, the message
defined with setCriticalText(…) is displayed on the smartHMI in a window with
the name Critical operation. The user key is then deactivated for approx. 5 s.
Once this time has elapsed, the operator can trigger the desired function by
actuating the user key again within 5 s.

If the user key is not actuated within this time or if an area outside of the Crit-
ical operation window is touched, the window is closed and the user key is
reset to its previous state.

Syntax key.setCriticalText("text");

Explanation of

the syntax

Example The user key bar for controlling a gripper is to be expanded. If the user key for
opening the gripper is actuated, a warning message should appear. The oper-
ator is requested to ensure that no damage can result from workpieces falling
out when the gripper is opened.

 UserKeyLEDSize.Small);

 closeGripper(); // Method for closing the gripper

 key.setLED(UserKeyAlignment.BottomMiddle, UserKeyLED.Grey,

 UserKeyLEDSize.Small);

}

};

IUserKeyListener gripperVelocityListener = ...;

// ...

IUserKey openKey = ...;

openKey.setText...;

openKey.setLED(UserKeyAlignment.BottomMiddle, UserKeyLED.Grey,

 UserKeyLEDSize.Small);

IUserKey closeKey = ...;

closeKey.setText...;

closeKey.setLED(UserKeyAlignment.BottomMiddle, UserKeyLED.Grey,

 UserKeyLEDSize.Small);

IUserKey velocityKey = ...;

Element Description

key Type: IUserKey

User key which is provided with a warning message

text Type: String

Message text displayed when the user key is actuated

IUserKeyBar gripperBar =
getApplicationUI().createUserKeyBar("Gripper");

// ...

IUserKey openKey = ...;

openKey.setText...;
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.25.6 Publishing a user key bar

Description Once a user key bar has been equipped with all the necessary user keys and
functionalities, it must be published with the publish() method. Only then can
the operator access it on the smartPAD.

Once a user key bar has been published, further user keys may not be added
later in the program sequence. In other words, it is not possible to add an un-
assigned user key and assign a function to it at a later time. It is, however, pos-
sible to change the labeling or graphical element displayed next to the user
key on the smartHMI at a later time.

Syntax keybar.publish();

Explanation of

the syntax

Example The user key bar created for controlling a gripper is published.

15.26 Message programming

15.26.1 Programming user messages

Description It is possible to program notification, warning and error messages which are
displayed on the smartHMI and written to the LOG file of the application while
the application is running. In addition, it is possible to program messages
which are not displayed on the smartHMI but are only written to the LOG file.

In order to program a user message, an object of the ITaskLogger class is in-
tegrated by means of dependency injection. At this object, the corresponding
methods can be called in order to generate a message display with the appro-
priate LOG level.

Dependency injection makes it possible for messages to be displayed on the
smartHMI from all classes of an application, including those which are not a
task (robot application, background task, etc.).

openKey.setLED...;

openKey.setCriticalText("Gripper opens when key is actuated again.
Ensure that no damage can result from workpieces falling out!");

Element Description

keybar Type: IUserKeyBar

Name of the user key bar created with createUserKey-
Bar(…).

IUserKeyBar gripperBar =
getApplicationUI().createUserKeyBar("Gripper");

// ...

gripperBar.publish();

It is advisable to only display messages on the smartHMI which are
absolutely essential. Over-intensive use of the message display can
have a negative effect on the runtime of the application and the oper-

ation of the smartHMI.

For message output, it is advisable to use only the commands de-
scribed here and not other logging functionalities, e.g. the Java com-
mands System.out.println(…) or System.err.println(…). If these

commands are used, it is not possible to guarantee that the message will be
displayed on the smartHMI.
439 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

440 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Syntax Integrating a logger object:

@Inject

private ITaskLogger logger;

Notification message:

logger.info("Message text");

Warning message:

logger.warn("Message text");

Error message:

logger.error("Message text");

Message that is only written to the LOG file:

logger.fine("Message text");

Explanation of

the syntax

Example Once the robot has reached an end point, a notification message is to be dis-
played. If the motion ended with a collision, a warning notification is displayed
instead.

Element Description

logger Name of the logger object, as it is to be used in the applica-
tion

Message text Text which is to be displayed on the smartHMI and/or writ-
ten to the LOG file

public class ExampleApplication extends RoboticsAPIApplication {
 @Inject

 private ITaskLogger logger;
 @Inject

 private IApplicationData data;
 @Inject

 private LBR robot;

 private ForceCondition collision

 @Override

 public void initialize() {
 // initialize your application here

 collision = ForceCondition

 .createSpatialForceCondition(robot.getFlange(), 15.0);

 }

 @Override

 public void run() {
 // ...

 IMotionContainer motion = robot.move(lin(getFrame("/P20"))

 .breakWhen(collision));

 if (motion.getFiredBreakConditionInfo() == null){
 logger.info("End point reached.");

 }

 else {
 logger.warn("Motion canceled after collision!");

 }

 // ...

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
15.26.2 Programming user dialogs

Description User dialogs can be programmed in an application. These user dialogs are
displayed in a dialog window on the smartHMI while the application is being
run and require user action.

Various dialog types can be programmed via the method displayModalDia-
log(…). The following icons are displayed on the smartHMI according to type:

The user answers by selecting a button that can be labeled by the program-
mer. Up to 12 buttons can be defined.

The application or the background task from which the dialog was called is
stopped until the user reacts. How program execution continues can be made
dependent on which button the user selects. The method displayModalDia-
log(…) returns the index of the button which the user selects on the smartHMI.
The index begins at “0” (= index of the first button).

Syntax getApplicationUI().displayModalDialog(Dialog type, "Dialog
text", "Button_1"<, … "Button_12">)

Explanation of

the syntax

Example The following user dialog of type QUESTION is to be displayed on the smartH-
MI:

Icon Type

INFORMATION

Dialog with information of which the user must take note

QUESTION

Dialog with a question which the user must answer

WARNING

Dialog with a warning of which the user must take note

ERROR

Dialog with an error message of which the user must take
note

Element Description

Dialog type Type: Enum of type ApplicationDialogType

 INFORMATION: The dialog with the information icon is
displayed.

 QUESTION: The dialog with the question icon is dis-
played.

 WARNING: The dialog with the warning icon is dis-
played.

 ERROR: The dialog with the error icon is displayed.

Dialog text Type: String

Text which is displayed in the dialog window on the
smartHMI

Button_1 …
Button_12

Type: String

Labeling of buttons 1 … 12 (proceeding from left to right on
the smartHMI)
441 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

442 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.27 Program execution control

15.27.1 Pausing an application

Description An application can be paused with the halt() method.

The halt() method pauses the motion currently being executed, and the appli-
cation state on the smartHMI switches to Motion paused.

halt() causes a blocking stop of the calling thread. If further threads are running
at the same time, these will continue to be executed. The application execution
is only stopped if halt() is called in the application thread. It is therefore advis-
able not to call halt() in handling routines for path-related switching actions or
in handling routines for monitoring processes. Instead, it is advisable to use
the pause() method in these handling routines.

 (>>> 15.27.2 "Pausing motion execution" Page 442)

The motion and paused thread may only be resumed via the Start key on the
smartPAD. Pressing the Start key causes the paused motion to resume. The
paused thread is resumed with the instruction following halt() in the source
code.

Syntax getApplicationControl().halt();

15.27.2 Pausing motion execution

Description Motion execution can be paused with the pause() method.

The behavior corresponds to pausing the application via the smartPAD. The
pause() method pauses the motion currently being executed, and the applica-
tion state on the smartHMI switches to Motion paused.

Fig. 15-22: Example of a user dialog

int direction = getApplicationUI().displayModalDialog(
 ApplicationDialogType.QUESTION,

 "Where do you want to go to?",

 "To the left", "To the right", "To HOME-Position");

switch (direction) {
 case 0:
 robot.move(ptp(getApplicationData().getFrame("/Left")));

 break;
 case 1:
 robot.move(ptp(getApplicationData().getFrame("/Right")));

 break;
 case 2:
 robot.move(ptpHome());

 break;
}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
pause() does not cause a blocking wait. The application continues to be exe-
cuted until a synchronous motion command is reached.

Motion execution may only be resumed via the Start key on the smartPAD.

Syntax getApplicationControl().pause();

15.27.3 FOR loop

Description The FOR loop, also called counting loop, repeats a statement block as long as
a defined condition is met.

A counter is defined, which is increased or decreased by a constant value with
each execution of the loop. At the beginning of a loop execution, the system
checks if a defined condition is met. This condition is generally formulated by
comparing the counter with a limit value. If the condition is no longer met, the
loop is no longer executed and the program is continued after the loop.

The FOR loop is generally used if it is known how often a loop must be exe-
cuted.

FOR loops can be nested.

 (>>> 15.27.8 "Examples of nested loops" Page 449)

Syntax for (int Counter = Start value; Condition; Counting statement){

Statement_1;

<...

Statement_n;

}

Explanation of

the syntax

Example

Element Description

Counters Counter for the number of loops executed

The counter is assigned a start value. With each execution
of the loop, the counter is increased or decreased by a
constant value.

Start value Start value of the counter

Condition Condition for the loop execution

The counter is generally compared with a limit value. The
result of the comparison is always of type Boolean. The
loop is ended as soon as the comparison returns FALSE,
meaning that the condition is no longer met.

Counting
statement

The counting statement determines the amount by which
the counter is changed with each execution of the loop.
The increment and counting direction can be specified in
different ways.

Examples:

 Start value ++|--: With each execution of the loop, the
start value is increased or decreased by a value of 1.

 Start value +|- Increment: With each execution of the
loop, the start value is increased or decreased by the
specified increment.

for (int i = 0; i < 10; i++){
 logger.info(i);

}

443 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

444 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The value of the variable i is increased by 1 with every cycle. The current val-
ue of i is displayed on the smartHMI with every cycle. The loop is executed a
total of 10 times. The values of 0 to 9 are displayed in the process. For output
purposes, a logger object has been integrated with dependency injection.

15.27.4 WHILE loop

Description The WHILE loop repeats a statement block for as long as a certain condition
is fulfilled. It is also called a rejecting loop because the condition is checked
before every loop execution.

If the condition is no longer met, the statement block of the loop is no longer
executed and the program is resumed after the loop. If the condition is not al-
ready fulfilled before the first execution, the statement block is not executed at
all.

The WHILE loop is generally used if it is unknown how often a loop must be
executed, e.g. because the repetition condition is calculated or is a specific
signal.

WHILE loops can be nested.

 (>>> 15.27.8 "Examples of nested loops" Page 449)

Syntax while (Repetition condition){

Statement_1;

<...

Statement_n;

}

Explanation of

the syntax

Example 1

Before the loop is executed the system checks whether an input signal is set.
As long as this is the case, the loop will be executed again and again and the
smartHMI will display the input as TRUE. If the input signal has been reset, the
loop will not be executed (any longer) and the input will be displayed as
FALSE. For output purposes, a logger object has been integrated with depen-
dency injection.

Example 2

With every loop execution, the value of the variable w is increased by a random
number between 1 and 6. As long as the sum of all random numbers is less
than 21, the loop will be executed. It is not possible to predict the exact number

Element Description

Repetition
condition

Type: boolean

Possible:

 Variable of type Boolean

 Logic operation, e.g. a comparison, with a result of type
Boolean

while(input1 == true){
 logger.info("Input 1 is TRUE.");

}

logger.info("Input 1 is FALSE.");

int w = 0;
Random num = new Random();

while (w <= 21) {
 w = w + (num.nextInt(6) + 1);

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
of cycles. It is possible that the loop is ended after 4 cycles (3 x 6 and 1 x 3)
or only after 21 cycles (21 x1).

15.27.5 DO WHILE loop

Description The DO WHILE loop repeats a statement block until a certain condition is ful-
filled. It is also called a post-test loop because the condition is only checked
after every loop execution.

The statement block is executed at least once. When the condition is met, the
loop is terminated and the program is resumed.

The DO WHILE loop is generally used if a loop must be executed at least once,
but it is unknown how often e.g. because the break condition is being calculat-
ed or is a specific signal.

DO WHILE loops can be nested.

 (>>> 15.27.8 "Examples of nested loops" Page 449)

Syntax do {

Statement_1;

<...

Statement_n;

} while (Break condition);

Explanation of

the syntax

Example

Random numbers between 1 and 6 are generated until the “dice” shows a 6.
The dice must be thrown at least once.

15.27.6 IF ELSE branch

Description The IF ELSE branch is also called a conditional branch. Depending on a con-
dition, either the first statement block (IF block) or the second statement block
(ELSE block) is executed.

The ELSE block is executed if the IF condition is not met. The ELSE block may
be omitted. If the IF condition is not met, then no further statements are exe-
cuted.

It is possible to check further conditions and to link them to statements after
the IF block using else if. As soon as one of these conditions is met and
the corresponding statements are executed, the subsequent branches are no
longer checked.

Several IF statements can be nested in each other.

Element Description

Break condi-
tion

Type: Boolean

Possible:

 Variable of type Boolean

 Logic operation, e.g. a comparison, with a result of type
Boolean

int num;

do {
 num = (int) (Math.random()*6+1);
} while (num!=6);
445 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

446 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Syntax if (Condition_1){

Statement_1;

<...

Statement_n;

}

<else if (Condition_2){

Statement_1;

<...

Statement_n;

}>

<else {

Statement_1;

<...

Statement_n;

}>

Explanation of

the syntax

Example 1 IF branch without else

If variable a has the value 17, variable b is assigned the value 1.

Example 2 IF branch within a FOR loop without else

The loop is executed 5 times. If variable a has the value 3, the value of a is
increased by 5 once only.

The values 1, 2, 8, 9 and 10 are displayed on the smartHMI. For output pur-
poses, a logger object has been integrated with dependency injection.

Example 3 IF ELSE branch with else if

Element Description

Condition Type: boolean

Possible:

 Variable of type Boolean

 Logic operation, e.g. a comparison, with a result of type
Boolean

int a;
int b;

if (a == 17){
 b = 1;

}

for(int a = 1; a <= 10; a++){
 if(a == 3){
 a = a + 5;

 }

 logger.info(a);

}

double velAct = 0.0;
double velDesired = 130.0;
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
In a program, a test run for a vehicle is to be carried out. This test run is only
meaningful at a specific command velocity.

The IF statement checks whether the actual velocity velAct is lower than the
command velocity velDesired. If this is the case, the vehicle accelerates. If
this is not the case, it continues with else if.

The IF ELSE statement checks whether the actual velocity velAct is higher
than the command velocity velDesired. If this is the case, the vehicle is
braked. If this is not the case, the ELSE block is excecuted with the test run.

15.27.7 SWITCH branch

Description The SWITCH branch is also called a multiple branch. Generally, a SWITCH
branch corresponds to a multiply nested IF branch.

In a SWITCH block, different CASE blocks can be executed which are desig-
nated by CASE labels (jump labels). Depending on the result of an expression,
the corresponding CASE block is selected and executed. The program jumps
to the CASE label and is resumed at this point.

The keyword break at the end of a CASE block means that the SWITCH
block is left. If no break follows at the end of an instruction block, all subse-
quent instructions (not only instructions with CASE labels) are executed until
either a BREAK label is reached or all instructions have been executed.

A DEFAULT block can optionally be programmed. If no condition is met for
jumping to a CASE label, the DEFAULT block is executed.

Syntax switch (expression){

case Constant_1:

 Statement_1;

<...

Statement_n;>

< break;>

<...

case Constant_n:

Statement_1;>

<...

Statement_n;>

< break;>

< default:

Statement_1;>

<...

// ...

if (velAct < velDesired) {
 accelerating();

}

else if (velAct > velDesired) {
 braking();

}

else {
 testrun();

}

447 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

448 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Statement_n;>

< break;>

}

Explanation of

the syntax

Example 1 SWITCH branch with BREAK and DEFAULT instruction:

If variable a has the value 1, the program jumps to the label case 1. The vari-
able b is assigned the value 10. The BREAK instruction causes the SWITCH
block to be left. Program execution is resumed with the next command after
the closing bracket of the SWITCH block.

If variable a has the value 2 at the start, variable b is assigned the value 20. If
a has the value 3 at the start, b is assigned the value 30.

The DEFAULT statement is optional. It is nonetheless advisable for it always
to be set. If variable a has a value at the start that is not covered by a CASE
statement (e.g. 0 or 5), the instructions in the DEFAULT block are executed.
In this example, this means that variable b is assigned the value 40.

Example 2 The keyword break may be omitted in a CASE statement. Cases in which this
is practically applied include the following:

 The identical statement is to be executed in multiple CASE instances (e.g.
a = 1, 2 or 3). See SWITCH statement with fall-through (variant 1).

 For a CASE instance, specific statements and additional statements appli-
cable to another instance are to be executed. See SWITCH statement with
fall-through (variant 2).

SWITCH statement with fall-through (variant 1):

Element Description

Expression Type: int, byte, short, char, enum

Constant Type: int, byte, short, char, enum

The data type of the constant must match the data type of
the expression.

Note: Constants of type char must be specified with ' , e.g.
case 'a'

// ...

int a, b;
switch (a){
case 1:
 b = 10;

 break;
case 2:
 b = 20;

 break;
case 3:
 b = 30;

 break;
default:
 b = 40;

 break;
}

// next command

// ...

int a, b;
switch (a){
case 1:
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
In variant 1, the statements to be executed are only written to the last of the
grouped CASE blocks. Omission of the BREAK statement in case 1 and
case 2 makes the assignment of variable b in these CASE blocks obsolete
too, as variable b will be overwritten in case 3 anyway. To make it evident
that the BREAK statement has not been forgotten but intentionally omitted,
fall-through is entered as a comment.

SWITCH statement with fall-through (variant 2):

The behavior in variant 2 is as follows:

 If case 1 occurs, variable b is set to 10 and additionally variable c to 20.

In case 1 fall-through is entered as a comment to indicate that further
statements are to be executed, in this case those of case 2.

 If case 2 occurs, variable c is set to 20. Variable b is not changed.

15.27.8 Examples of nested loops

The outer loop is first executed until the inner loop is reached. The inner loop
is then executed completely. The outer loop is then executed until the end, and
the system checks whether the outer loop must be executed again. If this is
the case, the inner loop must also be executed again.

There is no limit on the nesting depth of loops. The inner loops are always ex-
ecuted as often as the outer loop.

 // fall-through

case 2:
 // fall-through

case 3:
 b = 20;

 break;
case 4:
 b = 30;

 break;
default:
 b = 40;

 break;
}

// next command

// ...

int a, b, c;
switch (a){
case 1:
 b = 10;

 // fall-through

case 2:
 c = 20;

 break;
case 3:
 b = 30;

 break;
case 4:
 c = 30;

 break;
default:
 b = 40;

 c = 40;

 break;
}

// next command
449 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

450 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
FOR in FOR loop

The outer loop determines that the inner loop is executed 3 times. The counter
of the outer loop starts with the value i = 1.

Once the smartHMI has displayed the start of the 1st cycle, the counter of the
inner loop starts with the value k = 10. The value of variable k is decreased
by 1 with every cycle. The current value of k is displayed on the smartHMI with
every cycle. If variable k has the value 1, the inner loop will be executed for
the last time.

Then the outer loop is ended and the value of variable i is increased by 1. The
2nd cycle begins. For output purposes, a logger object has been integrated
with dependency injection.

FOR in WHILE

loop

The following rules apply in a dice game:

 The total sum of all rolls must be at least 21 (poll with WHILE loop).

 The dice are rolled 3 times in each round (FOR loop).

 Only even numbers (2, 4 and 6) are counted (IF poll with modulo).

15.28 Continuing a paused application in Automatic mode (recovery)

Description If a paused application is to be continued in Automatic mode, the higher-level
controller must be able to determine whether the robot is still situated on its
programmed path. If the robot is no longer situated on the path, e.g. following
a non-path-maintaining stop or because it was jogged while the program was
paused, there must be a suitable strategy for automatically repositioning the
robot.

This return strategy may only be applied if it can be ensured that there is no
risk of a collision while the robot is returning to the path. If this is not ensured,
the robot must be manually repositioned by the user.

RoboticsAPI provides the IRecovery interface for automatic repositioning. It is
possible to access the interface from robot applications and background tasks:

 IRecovery getRecovery()

Overview The interface IRecovery provides methods for polling whether robots must be
repositioned in order to resume a paused application and which return strategy
is applied.

for (int i = 1; i < 4; i++) {
 logger.info(i + ".Cycle begins");

 for (int k = 10; k > 0; k--) {
 logger.info("..." + k);

 }

}

int sum = 0;
int round = 1;
int diceRoll = 0;
Random num = new Random();

while (sum < 21) {
 round ++;

 for (int i = 1; i <= 3; i++){
 diceRoll = (num.nextInt(6) + 1);

 if (diceRoll % 2 == 0)
 sum += diceRoll;

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
PTPRecovery

Strategy

The class PTPRecoveryStrategy provides “get” methods which are used to
poll the characteristics of the PTP motion. With these methods, it is possible
to evaluate whether the return strategy may be carried out in Automatic mode.

External

controller

The robot controller must inform the higher-level controller whether the robot
must be repositioned. The higher-level controller may only allow the return
strategy to be carried out if this can be done without risk. Otherwise, the robot
may only be manually repositioned.

Method Description

isRecoveryRequired() Return value type: Boolean

Checks whether one or more robots used in the application
must be repositioned in a paused application.

true: At least one robot must be repositioned for the application
to be resumed.

false: The application can be resumed immediately.

isRecoveryRequired(…) Return value type: Boolean

Checks whether a specific robot must be repositioned in a
paused application. The robot is transferred as a parameter
(type: Robot).

true: The robot must be repositioned for the application to be
resumed.

false: The application can be resumed immediately.

getRecoveryStrategy(…) Return value type: RecoveryStrategy

Polls the strategy being applied in order to return a specific
robot to the path. The robot is transferred as a parameter (type:
Robot).

 PTPRecoveryStrategy: The robot is repositioned with a
PTP motion.

The robot is moved at 20% of the maximum possible axis ve-
locity and the effective program override.

No further strategies are available at this time.

The method returns null in the following cases:

 No return strategy is required or available.

 The application is not paused.

Method Description

getStartPosition() Return value type: JointPosition

Polls for the start position of the PTP motion (= axis position
from which the robot can be repositioned)

The start position is the currently commanded setpoint position
of the robot and not the currently measured actual position.

getMotion() Return value type: PTP

Polls for the PTP motion carried out on execution of the strategy

Further information can be polled from the returned motion
object:

 getDestination(): Target position of the PTP motion (= axis
position at which the robot left the path)

 getMode(): Controller mode of the motion which was inter-
rupted
451 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

452 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The following system signals are available:

 Output AutExt_AppReadyToStart

With this output, the robot controller communicates to the higher-level con-
troller whether or not the application may be resumed.

 If isRecoveryRequired(…) supplies the value false (= no repositioning
required), the output can be set to TRUE.

 If getRecoveryStrategy(…) supplies null (= no return strategy avail-
able), the output must be set to FALSE.

 If the evaluation of the return strategy shows that it can be executed in
Automatic mode, the output can be set to TRUE.

If this is not the case, the output must be set to FALSE.

 Input App_Start

The higher-level controller informs the robot controller via a rising edge
that the application should resume. (Precondition:
AutExt_AppReadyToStart is TRUE)

The higher-level controller must send the start signal App_Start twice:

1. Start signal for repositioning

2. Start signal for resuming the application

15.29 Error treatment

15.29.1 Handling of failed motion commands

Motion commands that are communicated to the robot controller can fail for
various reasons, e.g.:

 End point lies outside of a workspace

 End point cannot be reached with the given axis configuration

 The frame used is not present in the application data

A failed motion command results by default in a termination of the application.
Handling routines can be defined in order to prevent the application from ter-
minating in case of error.

The following handling options are available depending on the error:

 Failed synchronous motion commands are handled using a try-catch block

 Failed asynchronous motion commands are handled using an event han-
dler

15.29.2 Handling of failed synchronous motion commands

Description Synchronously executed motion commands (.move(…);) are sent in steps to
the real-time controller and executed. The further execution of the program is
interrupted until the motion has been executed. Only then is the next com-
mand sent.

Using a try-catch block, predictable runtime errors or exceptions can be exe-
cuted in the program sequence without the application being aborted.

A defined method for error treatment is triggered within a try-catch block.
When the keyword try is called, an attempt is made to execute the listed com-
mand. If an error occurs during execution, the corresponding handling routine
is started in the catch block.

Syntax try {

// Code in which a runtime error can occur when executed
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
}

catch(Exception e){

// Code for treating the runtime error

}

< finally{

// Final treatment (optional)

}>

Explanation of

the syntax

Example A robot executes a motion under impedance control with very low stiffness.
For this reason, it is not guaranteed to reach the end position. It is then to move
relatively by 50 cm in the positive Z direction of the flange coordinate system.
If the robot is in an unfavorable position following the motion under impedance
control, the linear motion cannot be executed and a runtime error will occur. In
order to prevent the application from aborting in this case, the critical linear
motion is programmed in a try-catch block. If the motion planning fails, the ro-
bot should be moved to an auxiliary point before the application is resumed.

Element Description

try{…} The try block contains a code which can result in a runtime
error.

If an error occurs, the execution of the try block is termi-
nated and the catch block is executed.

catch(…)
{…}

The catch block contains the code for treating the runtime
error.

The catch block will only be executed if an error occurs in
the try block.

Excep-
tion e

The error data type (here: Exception) can be used to define
the error type to be handled in the catch block. The error
type Exception is the superclass of most error data
types.

However, it is also possible to focus on more specific
errors. Information about errors which have occurred can
be polled using the parameter e.

In particular, the error data type CommandInvalidException
(package: com.kuka.roboticsAPI.executionModel) is impor-
tant for handling failed motion commands. It occurs, for
example, when the end point of the motion cannot be
reached.

finally
{…}

The finally block is optional.

Here it is possible to specify a final treatment to be exe-
cuted in all cases, whether or not an error occurs in the try
block.

public class ErrorHandler extends RoboticsAPIApplication {
 @Inject

 private ITaskLogger logger;
 @Inject

 private LBR robot;
 // ...

 @Override

 public void run() {
 // ...
453 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

454 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
15.29.3 Handling of failed asynchronous motion commands

Description In the case of asynchronously executed motion commands (.moveA-
sync(…);), the next program line is executed directly after the motion com-
mand is sent.

An event handler is used in order to react to a failed asynchronous motion
command.

This event handler is an object of type IErrorHandler and defines the method
handleError(…). The transfer of further motion commands to the real-time
controller is blocked during execution of the method handleError(…). The ap-
plication remains at a standstill.

The handling routine is defined with handleError(…). Information on the failed
motion command can be accessed via the input parameters of the method.
The method returns a parameter of type ErrorHandlingAction. The final reac-
tion to the error is selected via this parameter.

The following reactions are available:

 The application is terminated with an error.

 The motion execution is paused and can only be resumed by the user
pressing the Start key on the smartPAD.

 The error is ignored and the application is resumed.

The defined event handler must be registered before it can be used in the ap-
plication. The method getApplicationControl().registerMoveAsyncErrorHan-
dler(…) is used for this purpose. The method belongs to the
IApplicationControl interface.

Syntax Defining the event handler:

IErrorHandler errorHandler = new IErrorHandler(){

 CartesianImpedanceControlMode softMode =

 new CartesianImpedanceControlMode();

 softMode.parametrize(CartDOF.ALL).setStiffness(10.0);

 robot.move(ptp(getFrame("/Start"))

 .setMode(softMode).setJointVelocityRel(0.3));

 try{
 logger.info("1: Try to execute linear motion");

 robot.move(linRel(0.0, 0.0, 500.0)

 .setJointVelocityRel(0.5));

 }

 catch(CommandInvalidException e){
 logger.info("2: Motion not executable");

 robot.move(ptp(getFrame("/AuxiliaryPoint"))

 .setJointVelocityRel(0.5));

 }

 finally{
 logger.info(

 "3: Commands in finally block are executed");

 }

 logger.info("4: Application continues here.");

 // ...

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
@Override

public ErrorHandlingAction handleError

(Device device, IMotionContainer failedContainer,

List<IMotionContainer> canceledContainers){

// Code which is executed in case of error

return ErrorHandlingAction.reaction;

}

};

Registering the event handler:

getApplicationControl().registerMoveAsyncErrorHandler(er-
rorHandler);

Explanation of

the syntax

Example Several asynchronous motion commands are to be executed in an application.
By registering an event handler of type IErrorHandler, a handling routine is de-
fined using the method handleError(…) for the event that one of the asynchro-
nous motion commands fails:

 The smartHMI displays which motion command has failed.

 The smartHMI displays which motion commands are no longer executed.

The handleError(…) method is ended with the return of the value ErrorHan-
dlingAction.Ignore.

Element Description

errorHandler Type: IErrorHandler

Name of the event handler responsible for handling failed
asynchronous motion commands

Input parameters of the handleError(…) method:

device Type: Device

The parameter can be used to access the robot for which
the failed motion command is commanded.

failed
Container

Type: IMotionContainer

The parameter can be used to access the failed motion
command.

canceled
Container
s

Type: List<IMotionContainer>

The parameter can be used to access a list of all deleted
motion commands. It contains all motion commands which
have already been sent to the real-time controller when the
method handleError(…) is called.

reaction Type: Enum of type ErrorHandlingAction

Return value of the handleError(…) method by means of
which the final reaction to the error is defined:

 ErrorHandlingAction.EndApplication:

The application is terminated with an error.

 ErrorHandlingAction.PauseMotion:

The motion execution is paused until the user resumes
the application via the smartPAD.

 ErrorHandlingAction.Ignore:

The error is ignored and the application is resumed.
455 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

456 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
public class ErrorHandler extends RoboticsAPIApplication {
 // fields which need to be injected

 @Inject

 private ITaskLogger logger;
 @Inject

 private LBR robot;

 // not injected fields

 private IErrorHandler errorHandler;

 @Override

 public void initialize(){

 errorHandler = new IErrorHandler() {
 @Override

 public ErrorHandlingAction handleError(Device device,
 IMotionContainer failedContainer,

 List<IMotionContainer> canceledContainers) {

 logger.warn("Excecution of the following motion failed: "

 + failedContainer.getCommand().toString());

 logger.info("The following motions will not be executed:");

 for (int i = 0; i < canceledContainers.size(); i++) {
 logger.info(canceledContainers.get(i)

 .getCommand().toString());

 }

 return ErrorHandlingAction.Ignore

 }

 };

 getApplicationControl()

 .registerMoveAsyncErrorHandler(errorHandler);

 }

 @Override

 public void run(){
 robot.move(ptpHome());

 robot.move(ptp(getFrame("/PrePos")));

 // ...

 robot.moveAsync(ptp(getFrame("/P1")));

 robot.moveAsync(ptp(getFrame("/P2")));

 robot.moveAsync(lin(getFrame("/P3")));

 robot.moveAsync(ptp(getFrame("/P4")));

 robot.moveAsync(ptp(getFrame("/P5")));

 robot.moveAsync(ptp(getFrame("/P6")));

 robot.moveAsync(ptp(getFrame("/P7")));

 robot.moveAsync(ptp(getFrame("/P8")));

 robot.moveAsync(ptp(getFrame("/P9")));

 // ...

 robot.move(ptpHome());
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

15 Programming
To explain the system behavior, it is assumed that the linear motion to P3 can-
not be planned. This means that the method handleError(…) is called. In our
example, the robot is situated at end point P2 at this time.

If, for example, the motion commands to P4, P5, P6 are already in the real-
time controller at the same time, these motion commands will be deleted and
no longer executed.

Calling the method handleError(…) will block further motion commands from
being sent to the real-time controller. In this case, the application will be
stopped before the motion command to P7. If the handleError(…) method is
ended with the return of the value ErrorHandlingAction.Ignore, the ap-
plication is resumed. The robot then moves directly from its current position P2
to P7.

 }

}

Fig. 15-23: Failed motion to P3 (example of path)
457 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

458 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
16 Background tasks

16.1 Using background tasks

Activities Background tasks are used in order to be able to perform tasks in the back-
ground, parallel to a running robot application, or to implement cyclical pro-
cesses that are to be run continuously in the background. Multiple background
tasks can run simultaneously and independently of the running robot applica-
tion.

Background tasks are used, in particular, to control and monitor peripheral de-
vices and to implement the corresponding higher-level logic. Examples:

 Switching signal lamps

 Monitoring and evaluating sensor information

This means that no higher-level controller, e.g. a PLC, is required for smaller
applications, as the robot controller can perform such tasks by itself.

Properties Background tasks, like robot applications, are implemented as Java classes.
They are similar in structure to robot applications: they have a run() method
that contains the commands to be executed.

Background tasks are an integral feature of the Sunrise project. They are cre-
ated in Sunrise.Workbench and transferred to the robot controller when the
project is synchronized.

 (>>> 5.6 "Creating a new background task" Page 55)

There are 2 types of background task that differ in terms of their duration:

 Cyclic background task

Executed cyclically. The cyclical behavior can be adapted by the program-
mer depending on the task to be performed.

 Non-cyclic background task

Executed once.

Background tasks also differ in terms of their start type:

 Manual

The task must be started manually via the smartPAD. (This function is not
yet supported.)

 Automatic

The task is automatically started when the robot controller is booted and
stopped when it is shut down.

t

In the case of outputs that are switched by a background task, the fol-
lowing points must be observed:

The outputs are switched, irrespective of whether a robot application
is currently being executed.

 The outputs are also switched if the robot application is paused due to an
EMERGENCY STOP or missing enabling signal.

 The outputs are also switched if a stop request from the safety controller
is active (this also applies if outputs are switched by a robot application).

Background tasks must not be used for moving the robot
or influencing parameters that might affect motions. This

is the task of the robot application. Calling motion commands or modifying
motion-specific parameters in a background task can result in unspecified
behavior of the robot and thus cause personal injury and damage to property.
459 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

460 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
In background tasks many objects of the application can be accessed by
means of dependency injection.

 (>>> 15.3.3 "Dependency Injection" Page 336)

If a background task requires access to information from the running robot ap-
plication or other background tasks that are not accessible via dependency in-
jection, a separate interface is available for data exchange.

 (>>> 16.4 "Data exchange between tasks" Page 464)

Synchronization

behavior

When synchronizing the Sunrise project, the associated background tasks
with Automatic start type exhibit the following behavior:

 Tasks not yet present

Both cyclic and non-cyclic tasks are transferred to the controller and sub-
sequently started.

 Tasks already present

If the task to be synchronized (cyclic or non-cyclic) is already present on
the controller, it will be terminated if it is still running. The synchronization
is then executed and the task automatically restarted.

 Tasks no longer present

If a background task has been deleted from the associated project and
synchronization is carried out, the task is terminated before synchroniza-
tion on the controller. It is then no longer available after synchronization.

Runtime behavior After a non-cyclic task has been started, it is executed fully in accordance with
its programming. When it reaches the end of its run() method, it is terminated
and not restarted until the next synchronization or the next reboot of the con-
troller.

When started, a cyclic task is first instanced. The run() method of the task is
then repeatedly called on a regular basis. These background tasks are there-
fore permanently executed as long as the controller is running.

If an error which cannot be intercepted and rectified occurs in a task (cyclic or
non-cyclic), the task is automatically terminated.

If a background task has been terminated because of an unhandled
error, the task can only be restarted by rebooting the robot controller
or carrying out project synchronization of Sunrise.Workbench on the

robot controller.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
16.2 Cyclic background task

Structure

Initialization initializeCyclic(…) is used to define the cyclical behavior of the background
task.

When a cyclical background task is created, the call for initializeCyclic(…) is
automatically inserted. The input parameters of the method are assigned initial
values, which can lead to the following cyclical behavior:

 Delay: 0 ms

Fig. 16-1: Structure of a cyclic background task

Item Description

1 This line contains the name of the package in which the task is lo-
cated.

2 Import section

The section contains the imported classes which are required for
programming the task

3 Header of the task

The cyclic background task is a subclass of RoboticsAPICyclic-
BackgroundTask.

4 Declaration section

The data arrays of the task that are required for its execution are
declared here.

As an example, the controller is automatically integrated via
dependency injection when the task is created.

5 initialize() method

Initial values are assigned here to data arrays that are not integrat-
ed using dependency injection.

The initializeCyclic(…) method is available by default. This method
is used to define the cyclical behavior of the task.

 (>>> "Initialization" Page 461)

Note: The method must not be deleted or renamed.

6 runCyclic() method

The code that is to be executed cyclically is programmed here.

Note: The method must not be deleted or renamed.
461 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

462 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Period: 500 ms

 Behavior if the defined period is exceeded: execution of runCyclic() con-
tinues.

The initial values can be changed by the programmer.

initializeCyclic(long initialDelay, long period, TimeUnit timeUnit,
CycleBehavior behavior);

Example A robot is to assemble workpieces that it takes from a magazine. The maga-
zine can contain a maximum of 100 workpieces and is loaded manually. If the
remaining number of workpieces in the magazine falls below 20, this is sig-
naled to the robot controller via a digital input. An LED is then to flash every
500 ms to signal to the operator that the magazine needs filling. Another LED
is to flash if the force determined at the robot flange exceeds a limit of 150 N.

A cyclic background task is used for data evaluation and activation of the
LEDs. The background task is executed every 500 ms.

Element Description

initialDelay Delay after which the cyclical background task is executed
for the first time after the start. All further cycles are exe-
cuted without a delay.

The time unit is defined with timeUnit.

period Period (= time between 2 calls of runCyclic())

The period is maintained even if the execution time of run-
Cyclic() is less than the defined period. The behavior in the
event of runCyclic() exceeding the period is defined by
behavior.

The time unit is defined with timeUnit.

timeUnit Time unit of initialDelay and period

The Enum TimeUnit is an integral part of the standard Java
library.

behavior Timeout behavior

The behavior of the background task if the period defined
with period is exceeded by the runtime of runCyclic() is
defined here.

 CycleBehavior.BestEffort

runCyclic() is executed completely and then called
again.

 CycleBehavior.Strict

Execution of the background task is canceled with an
error of type CycleExceededException.

public class LEDTask extends RoboticsAPICyclicBackgroundTask {
 @Inject

 private LBR robot;
 @Inject

 private ProcessParametersIOGroup processParaIOs;
 @Inject

 private ProcessParametersLEDsIOGroup LED_IOs;

 public void initialize() {
 initializeCyclic(0, 500, TimeUnit.MILLISECONDS,

 CycleBehavior.BestEffort);

 }
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
16.3 Non-cyclic background task

Structure

 public void runCyclic() {
 // Check if refill is required (value true)

 if (processParaIOs.getSensor_RefillRequired()) {
 /*

 * If refill is required, the appropriate LED changes

 * its state with every execution of runCyclic()

 */

 LED_IOs.setLED_RefillRequired(!LED_IOs.

 getLED_RefillRequired());

 }

 else{
 /*

 * If refill is not required, the LED remains off

 */

 LED_IOs.setLED_RefillRequired(false);
 }

 // Query the applied force

 Vector forceVector = robot.getExternalForceTorque(robot.

 getFlange()).getForce();

 // Check if absolute force (length of vector) exceeds 150N

 if (forceVector.length() > 150.0) {
 /*

 * If the force limit is exceeded, the appropriate LED

 * changes its state with every execution of runCyclic()

 */

 LED_IOs.setLED_ForceExceeded(!LED_IOs.

 getLED_ForceExceeded());

 }

 else{
 LED_IOs.setLED_ForceExceeded(false);
 }

 }

}

Fig. 16-2: Structure of a non-cyclic background task
463 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

464 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
16.4 Data exchange between tasks

Description The mechanism described here can be used to exchange data between run-
ning tasks. One task can provide task functions (providing task) that can be
accessed by other tasks (requesting tasks).

Example: Accessing and processing information from the running robot appli-
cation in a background task.

It is not relevant for programming whether data are exchanged between a
background task and a robot application or between 2 background tasks. The
providing task may be either a robot application or a background task. For this
reason, background tasks and robot applications are grouped together as
tasks.

Overview The following steps are required in order for the providing task and the re-
questing task to be able to communicate with one another:

Item Description

1 This line contains the name of the package in which the task is lo-
cated.

2 Import section

The section contains the imported classes which are required for
programming the task

3 Header of the task

The non-cyclic background task is a subclass of RoboticsAPI-
BackgroundTask.

4 Declaration section

The data arrays of the task that are required for its execution are
declared here.

As an example, the controller is automatically integrated via
dependency injection when the task is created.

5 initialize() method

Initial values are assigned here to data arrays that are not integrat-
ed using dependency injection.

Note: The method must not be deleted or renamed.

6 run() method

The code that is to be executed once is programmed here. The
runtime is not limited.

Note: The method must not be deleted or renamed.

Step Description

1 Create an interface and declare the desired task functions.

 (>>> 16.4.1 "Declaring task functions" Page 465)

2 Implement the interface in which the task functions are
declared.

The interface can be implemented directly by the providing
task or by a specially created class. The declared task func-
tions must be programmed in the implementing class.

 (>>> 16.4.2 "Implementing task functions" Page 466)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
Example The data exchange between tasks is described step by step in the sections be-
low, using the following example:

An assembly process is to be implemented using the robot application “As-
semblyApplication”. An LED is to flash during the assembly process. If the ro-
bot leaves the path during the application and has to be repositioned, a further
LED is to flash.

The LEDs are activated by the background task “LEDTask”. In this example,
the background task is the requesting task.

The robot application is the providing task. It must enable access to your Re-
covery interface, which is used to check whether repositioning of the robot is
required. Furthermore, it must also signal the start and end of the assembly
process.

16.4.1 Declaring task functions

Description The desired task functions must be declared in a specially created interface.

Example Declaration of the task functions via the interface IApplicationInformationFunc-
tion

The following methods are to be available to the providing task (here the back-
ground task) and are declared by the IApplicationInformationFunction inter-
face:

 isAssemblyRunning(): polls whether an assembly process is currently be-
ing executed

 isManualRepositioningRequired(): polls whether repositioning of the robot
is required

3 Create the providing task.

The providing task must contain a parameterless public
method with the annotation @TaskFunctionProvider which
returns the implementation of the interface.

 (>>> 16.4.3 "Creating the providing task" Page 467)

4 In the requesting task, use the getTaskFunction(…) method to
poll the interface in which the task functions are declared. The
method is available in all task classes.

The ITaskFunctionMonitor interface can be used to check
whether the task functions are available.

 (>>> 16.4.4 "Using task functions" Page 469)

Step Description

The interface may only declare those methods that are to be made
available to the requesting task. It is thus advisable not to use set
methods for setting fields in the interface. Instead, such methods can

be offered by the implementing class.

1 public interface IApplicationInformationFunction {
2

3 /**

4 * Signifies whether assembly is currently executed

5 * @return true, if assembly is executed
6 */

7 public boolean isAssemblyRunning();
8

9 /**
465 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

466 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
16.4.2 Implementing task functions

Description A class must be made available that implements the interface and in which the
declared task functions are programmed. The providing task or a specially cre-
ated class can be used as the implementing class.

Example Implementation of the interface IApplicationInformationFunction using the
class ApplicationInformation

The following methods are only to be available to the providing task (here the
robot application) and are declared and implemented by the ApplicationInfor-
mation class:

 setAssemblyRunning(…): Announces the start and end of the assembly
process

 setApplicationRecoveryInterface(…): Enables access to the Recovery in-
terface of the robot application

10 * Returns whether the application requires

11 * repositioning of the robot

12 * @return true if repositioning is required
13 */

14 public boolean isManualRepositioningRequired();
15

16 }

Line Description

1 … 16 Interface IApplicationInformationFunction

7 Method isAssemblyRunning()

Called by the requesting task to poll whether the assembly
process is currently running.

14 Method isManualRepositioningRequired()

Called by the requesting task to poll whether repositioning of
the robot is required.

1 public class ApplicationInformation implements
2 IApplicationInformationFunction {

3 private boolean _assembly;
4 private IRecovery _applicationRecoveryInterface;
5

6 @Override

7 public boolean isAssemblyRunning() {
8 return _assembly;
9 }

10

11 /**

12 * Called from application when assembly is

13 * started and finished

14 * @param assembly Set to true when assembly is started.
15 * Reset when assembly is stopped.

16 */

17 public void setAssemblyRunning(boolean assembly) {
18 _assembly = assembly;

19 }

20

21 @Override

22 public boolean isManualRepositioningRequired() {
23 return _applicationRecoveryInterface.isRecoveryRequired();
24 }
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
16.4.3 Creating the providing task

Description A task can provide task functions of various interfaces. For each interface
whose task functions are provided by the task, a parameterless public method
with the annotation @TaskFunctionProvider must be inserted which returns
the implementation of the interface.

Syntax @TaskFunctionProvider

public Interface Method name()

 return Interface instance;

}

Explanation of

the syntax

25

26 /**

27 * Called from application to give access to its

28 * recovery interface

29 * @param applicationRecoveryInterface Recovery
30 * interface of the application

31 */

32 public void setApplicationRecoveryInterface(
33 IRecovery applicationRecoveryInterface) {

34 _applicationRecoveryInterface =

35 applicationRecoveryInterface;

36 }

37 }

Line Description

1 … 37 Class ApplicationInformation

The task functions are programmed in the class.

3, 4 Declaration of the data fields

 _assembly: saves the current status of the assembly pro-
cess

 _applicationRecoveryInterface: refers to the Recovery in-
terface of the robot application

6 … 9 Method isAssemblyRunning()

Called by the requesting task to poll whether the assembly
process is currently running.

17 … 19 Method setAssemblyRunning(…)

Called by the robot application when the assembly process is
started or ended.

21 … 2 Method isManualRepositioningRequired()

Called by the requesting task to poll whether repositioning of
the robot is required.

32 … 36 Method setApplicationRecoveryInterface(…)

Called by the robot application for making its Recovery inter-
face available.

Element Description

Interface Interface whose task functions the task provides
467 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

468 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example The robot application contains a data array of type ApplicationInformation. Its
method setApplicationRecoveryInterface(…) provides the Recovery interface
of the robot application. Calling the method setAssembly(…) announces that
the assembly process is being carried out.

Method name Name of the method that returns the implementation of the
interface (the name can be freely selected)

Interface
instance

Instance of the implementing class

If the providing task does not, itself, implement the interface derived
from ITaskFunction, it requires an instance of the implementing class.
It is advisable to create this instance as an array.

If the providing task implements the interface itself, transfer the in-
stance of the task for the Interface instance parameter:
return this;

Each interface may only be provided once. This means that there
must not be 2 tasks that return the same interface in their @Task-
FunctionProvider annotation.

Element Description

public class AssemblyApplication extends RoboticsAPIApplication {
 @Inject

 private LBR robot;
 private ApplicationInformation appInformation;

 public void initialize() {
 appInformation = new ApplicationInformation();
 // Gives access to recovery interface

 appInformation.setApplicationRecoveryInterface(getRecovery());

 }

 public void run() {

 // Moves robot to initial pose

 robot.move(ptp(getFrame("/StartPos")));

 // Announces that assembly is running

 appInformation.setAssemblyRunning(true);
 assembly();

 // Announces that assembly is finished

 appInformation.setAssemblyRunning(false);

 // Moves robot to initial pose

 robot.move(ptp(getFrame("/StartPos")));

 }

 /**

 * Implements the assembly process

 */

 private void assembly() {

 // ...

 }
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
16.4.4 Using task functions

Task functions that provide a task can be used by other tasks.

Enabling access The following steps are required in order to enable access to the task functions
of an interface in the requesting task:

1. Create the data array of the type of the interface.

private Interface Interface instance;

2. Poll the interface with the getTaskFunction(…) method. The task functions
of the interface are saved in the data array just created.

Interface instance = getTaskFunction(Interface.class);

Explanation of the syntax:

 Interface: Interface whose task functions the task wants to access

 Interface instance: Instance of the interface in which the task functions are
declared

Example:

In the requesting background task “LEDTask”, access to the functions defined
by IApplicationInformationFunction is to be enabled. The interface instance re-
quired for this is created as a data array and generated in the initialize() meth-
od of the task:

Checking avail-

ability

The task functions of the providing task are only available when the providing
task is being executed or is paused.

The methods of the ITaskFunctionMonitor interface can be used to check
whether the task functions of the providing task are available.

The following steps are required in order to make the methods of the interface
available in the requesting task:

 /**

 * TaskFunctionProvider method that has to be

 * implemented by the task

 */

 @TaskFunctionProvider

 public IApplicationInformationFunction getAppInfoFunction() {
 return appInformation;
 }

}

public class LEDTask extends RoboticsAPICyclicBackgroundTask {

 // ...

 private IApplicationInformationFunction appInfoFunction;

 public void initialize() {

 // ...

 // Get Task Function Interface

 appInfoFunction =

 getTaskFunction(IApplicationInformationFunction.class);

If a task function is not available when it is called, a runtime error may
occur in the requesting task (InstanceNotRunningException). If this
error is not handled, execution of the task is aborted.
469 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

470 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
1. Create the data array of the type of the interface.

private ITaskFunctionMonitor monitor;

2. Use the TaskFunctionMonitor.create(…) method to initialize the monitor
for the task functions to be monitored. The instance of the interface in
which the task functions are declared is transferred to the method as a pa-
rameter.

monitor = TaskFunctionMonitor.create(Interface instance);

Explanation of the syntax:

 monitor: Instance of the ITaskFunctionMonitor interface

 Interface instance: Instance of the interface in which the task functions are
declared

The following methods are available in the ITaskFunctionMonitor interface:

Example:

In the method runCyclic() of the background task “LEDTask”, polling is to be
carried out to ascertain whether the assembly process is currently being exe-
cuted. For this, the interface IApplicationInformationFunction offers the meth-
od isAssemblyRunning().

The requesting background task “LEDTask” can only poll whether the assem-
bly process is being executed if the robot application is running or paused. For
this reason, the availability of the function must be checked before isAssem-
blyRunning() is called:

Method Description

isAvailable() Return value type: Boolean

Specifies whether the task functions of the providing task
are available (true = available).

await(time,
unit)

Return value type: Boolean

If the task functions are not available when the providing
task is called, the system waits a defined time for them to
become available (true = task functions available within the
defined wait time).

Parameters:

 time (type: long): duration of maximum wait time. The
unit is defined by the parameter unit.

 unit (type: TimeUnit): unit of time

public class LEDTask extends RoboticsAPICyclicBackgroundTask {

 // ...

 private IApplicationInformationFunction appInfoFunction;
 private ITaskFunctionMonitor appInfoMonitor;

 public void initialize() {

 // ...

 // Get Task Function Interface

 appInfoFunction =

 getTaskFunction(IApplicationInformationFunction.class);

 /*

 * Create ITaskFunctionMonitor for

 * IApplicationInformationFunction

 */
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

16 Background tasks
Overall example The requesting task “LED Task” is executed cyclically every 500 ms. It first
checks whether the required task functions of the robot application are avail-
able. If they are available, polling is carried out to ascertain whether the as-
sembly process is running and the corresponding LED is activated. The
system then polls whether repositioning of the robot is required. If this is the
case, a further LED is activated.

 appInfoMonitor = TaskFunctionMonitor.create(appInfoFunction);

 // ...

}

 public void runCyclic() {

 // Check if task functions are available

 if(appInfoMonitor.isAvailable()){
 /*

 * Use task function to check if assembly is

 * currently executed

 */

 if(appInfoFunction.isAssemblyRunning()){

 // ...

 }

}

public class LEDTask extends RoboticsAPICyclicBackgroundTask {
 @Inject

 private ProcessParametersLEDsIOGroup LED_IOs;
 private IApplicationInformationFunction appInfoFunction;
 private ITaskFunctionMonitor appInfoMonitor;

 public void initialize() {
 initializeCyclic(0, 500, TimeUnit.MILLISECONDS,

 CycleBehavior.BestEffort);

 // Get Task Function Interface

 appInfoFunction =

 getTaskFunction(IApplicationInformationFunction.class);

 /*

 * Create ITaskFunctionMonitor for

 * IApplicationInformationFunction

 */

 appInfoMonitor = TaskFunctionMonitor.create(appInfoFunction);

 }

 public void runCyclic() {

 // Check if task functions are available

 if(appInfoMonitor.isAvailable()){
 /*

 * Use task function to check if assembly is

 * currently executed

 */

 if(appInfoFunction.isAssemblyRunning()){
 /*

 * If assembly is running, the appropriate LED changes

 * its state with every execution of runCyclic()

 */
471 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

472 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 boolean currentStateAssemblyLED =
 LED_IOs.getLED_Assembly();

 LED_IOs.setLED_Assembly(!currentStateAssemblyLED);

 } else{
 LED_IOs.setLED_Assembly(false);
 }

 /*

 * Use task function to check whether the application

 * requires repositioning

 */

 boolean recoveryRequired =
 appInfoFunction.isManualRepositioningRequired();

 if(recoveryRequired){
 /*

 *If recovery is required, the appropriate LED changes

 * its state with every execution of runCyclic()

 */

 boolean currentStateRecoveryLED =
 LED_IOs.getLED_RecoveryRequired();

 LED_IOs.setLED_ForceExceeded(!currentStateRecoveryLED);

 } else{
 LED_IOs.setLED_RecoveryRequired(false);
 }

 } else{
 // If application is not running, LEDs remain off

 LED_IOs.setLED_Assembly(false);
 LED_IOs.setLED_RecoveryRequired(false);
 }

 }

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
17 Programming with a compliant robot

17.1 Sensors and control

Without additional equipment, a standard industrial robot can only be operated
under position control. The aim of position control is to keep the difference be-
tween the specified and actual robot position as small as possible at all times.

Apart from position sensors for determining the current joint position, the KU-
KA LBR iiwa also has joint torque sensors in every axis, which allow the cur-
rent joint torques to be measured. These data enable the use of an impedance
controller in addition to position control, thus making it possible to implement
compliant behavior of the robot. The underlying model is a virtual spring damp-
er system with configurable values for stiffness and damping. Furthermore,
additional forces and force oscillations can be overlaid.

The special sensor technology and the available controller mechanisms make
the KUKA LBR iiwa highly sensitive and compliant. This enables it to react
very quickly to process forces and makes it particularly suitable for a wide
range of joining tasks and for interaction with humans.

17.2 Available controllers – overview

The KUKA LBR iiwa can be operated with a number of different controllers.
For each control type, a separate class is provided by the RoboticsAPI in the
package com.kuka.roboticsAPI.motionModel.controlModeModel. The shared
superclass is AbstractMotionControlMode.

17.3 Using controllers in robot applications

Description In robot applications, the controller to be used is set separately for every mo-
tion command. The following steps are required by default for this:

Controller Description

Position controller Data type: PositionControlMode

The aim of position control is to execute the specified path with
the maximum possible positional accuracy and without path
deviation. By default, external influences such as obstacles or
process forces are not taken into account.

Cartesian impedance control-
ler

Data type: CartesianImpedanceControlMode

The Cartesian impedance controller is modeled on a virtual
spring damper system with configurable values for stiffness and
damping. This spring is extended between the setpoint and
actual positions of the TCP. This allows the robot to react in a
compliant manner to external influences.

Cartesian impedance control-
ler with overlaid force oscilla-
tion

Data type: CartesianSineImpedanceControlMode

Special form of the Cartesian impedance controller. In addition
to the compliant behavior, constant force setpoints and sinusoi-
dal force oscillations can be overlaid. This controller can be
used to implement force-dependent search runs and vibration
motions for joining processes, for example.

Axis-specific impedance con-
troller

Data type: JointImpedanceControlMode

The axis-specific impedance controller is modeled on a virtual
spring damper system with configurable values for stiffness and
damping for each axis.
473 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

474 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Procedure 1. Create the controller object of the desired controller data type.

2. Parameterize the controller object to define the control response.

3. Set the controller as the motion parameter for a motion command.

17.3.1 Creating a controller object

Description To be able to use a controller, a variable of the desired controller data type
must first be created and initialized. By default, the controller object is gener-
ated using the standard constructor.

Syntax Controller mode controlMode;

controlMode = new Controller mode();

Explanation of

the syntax

Example Creating a Cartesian impedance controller:

17.3.2 Defining controller parameters

The parameters that can be set depend on the type of the controller used. The
individual controller classes in the KUKA RoboticsAPI provide specific “set”
and “get” methods for each parameter.

 (>>> 17.5.2 "Parameterization of the Cartesian impedance controller"
Page 477)

 (>>> 17.6.3 "Parameterization of the impedance controller with overlaid force
oscillation" Page 485)

 (>>> 17.8 "Axis-specific impedance controller" Page 495)

17.3.3 Transferring the controller object as a motion parameter

Description The controller object is transferred to a motion as a parameter using the com-
mand setMode(…). If no controller object is transferred as a parameter to a
motion, the motion is automatically executed with position control.

Syntax movableObject.move(motion.setMode(controlMode));

Explanation of

the syntax

Element Description

Controller
mode

Data type of the controller. Subclass of AbstractMotionCon-
trolMode.

controlMode Name of controller object

CartesianImpedanceControlMode cartImpCtrlMode;

cartImpCtrlMode = new CartesianImpedanceControlMode();

Motions which use the Cartesian impedance controller must not con-
tain any poses in the proximity of singularity positions.

Element Description

motion Type: Motion

Motion to be executed

controlMode Type: Subclass of AbstractMotionControlMode

Name of controller object
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
17.4 Position controller

With position control, the motors are controlled in such a way that the current
position of the robot always matches the setpoint position specified by the con-
troller with just a minimal difference. The position controller is particularly suit-
able in cases where precise positioning is required.

The position controller is represented by the class PositionControlMode. The
data type has no configurable parameters for adapting the robot.

If the controller mode of a motion is not explicitly specified, then the position
controller is used.

17.5 Cartesian impedance controller

The Cartesian impedance controller is represented by the class Cartesian-
ImpedanceControlMode.

The impedance controller refers by default to the coordinate system with which
the motion command is executed.

Examples:

 robot.move(…);

The impedance controller refers to the flange coordinate system of the ro-
bot.

 gripper.move(…);

The impedance controller refers to the standard frame defined for gripper
motions.

 gripper.getFrame("/TipCenter").move(...);

The impedance controller refers to the tool coordinate system that extends
from the “TipCenter” frame on the gripper.

Behavior of the

robot

Under impedance control, the robot’s behavior is compliant. It is sensitive and
can react to external influences such as obstacles or process forces. The ap-
plication of external forces can cause the robot to leave the planned path.

The underlying model is based on virtual springs and dampers, which are
stretched out due to the difference between the currently measured and the
specified position of the TCP. The characteristics of the springs are described
by stiffness values, and those of the dampers are described by damping val-
ues. These parameters can be set individually for every translational and ro-
tational dimension.

17.5.1 Calculation of the forces on the basis of Hooke’s law

If the measured and specified robot positions correspond, the virtual springs
are slack. As the robot’s behavior is compliant, an external force or a motion
command results in a deviation between the setpoint and actual positions of
the robot. This results in a deflection of the virtual springs, leading to a force
in accordance with Hooke’s law.

The resultant force F can be calculated on the basis of Hooke’s law using the
set spring stiffness C and the deflection ∆x:

F = C · ∆x

If the robot is moved under impedance control, the programmed robot
configuration, e.g. the status value, cannot be guaranteed.
475 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

476 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
If the robot is at a resistance, it exerts the calculated force. If it is positioned in
free space, it moves toward the setpoint position. Due to internal friction forces
in the joints, path deviations occur on the way to the setpoint position, whose
magnitude depends on the set spring stiffness. Higher stiffness values lead to
smaller deviations.

If the robot is already at the setpoint position and an external force is applied
to the system, the robot yields to this force until the forces resulting from com-
pliance control cancel out the external forces.

Examples The force exerted at the contact point depends on the difference between the
setpoint position and the actual position and the set stiffness.

As shown in the figure (>>> Fig. 17-2), a large position difference and low
stiffness can result in the same force as a smaller position difference and
greater stiffness. If the force is increased by a motion in a contact situation, the
time required to reach this force differs if the Cartesian velocity is identical.

If higher stiffness values are used, a desired force can be reached earlier, as
only a small position difference is required. Since the setpoint position is
reached quickly, a jerk can be produced in this way.

Fig. 17-1: Virtual spring with spring stiffness C

1 Deflection ∆x 4 Resulting force F

2 Virtual spring 5 Setpoint position

3 Actual position

Fig. 17-2: Force exerted on contact
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
In the case of a large position difference and low stiffness, the force is built up
more slowly. This can be used, for example, if the robot moves to the contact
point and the impact loads are to be reduced.

Setpoint/actual deviations in more than one direction lead to deflection of all
the affected virtual springs. The magnitude and direction of the overall force
results from vector addition of the individual forces for each direction.

The deflection in the X direction by ∆x and in the Y direction by ∆y result in
force Fx in the X direction and Fy in the Y direction. The vector addition results
in the overall force Fres.

17.5.2 Parameterization of the Cartesian impedance controller

Under impedance control, the robot behaves like a spring. The characteristics
of this spring are defined by different parameters. This results in the behavior
of the robot.

With a Cartesian impedance controller, forces can be overlaid for all Cartesian
degrees of freedom. Forces acting about an axis generate a torque. For this
reason, the overlaid torque and not the overlaid force is specified for the rota-

Fig. 17-3: Force over time (high stiffness, small position difference)

Fig. 17-4: Force over time (low stiffness, large position difference)

Fig. 17-5: Overall force in the case of deflection in 2 directions
477 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

478 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
tional degrees of freedom. For the sake of simplification, the terms “force” and
“force oscillation” are taken to include the terms “torque” and “torque oscilla-
tion” for the rotational degrees of freedom in the following text.

The following controller properties can be defined individually for each Carte-
sian degree of freedom:

 Stiffness

 Damping

 Force to be applied in addition to the spring

The following controller properties can be defined irrespective of the degree of
freedom:

 Stiffness of the redundancy degree of freedom

 Damping of the redundancy degree of freedom

 Limitation of the maximum force on the TCP

 Maximum Cartesian velocity

 Maximum Cartesian path deviation

17.5.2.1 Representation of Cartesian degrees of freedom

In the RoboticsAPI, the degrees of freedom of the Cartesian impedance con-
troller are represented by the Enum CartDOF (package: com.kuka.roboticsA-
PI.geometricModel). The values of this Enum can be used to describe either
each degree of freedom individually or the combination of a number of de-
grees of freedom.

17.5.2.2 Defining controller parameters for individual degrees of freedom

Description Some parameters of the Cartesian impedance controller can be defined indi-
vidually for each Cartesian degree of freedom.

During programming, the Cartesian degrees of freedom for which the control-
ler parameter is to apply are specified first. The parametrize(…) method of the
controller data types is used for this purpose. To define the degrees of free-
dom, one or more parameters of the type CartDOF are transferred to this
method.

In impedance control, inaccurate sensor information or
incorrectly selected parameters (e.g. incorrect load data,

incorrect tool) can be interpreted as external forces, resulting in unpredict-
able motions of the robot.

Enum value Description

CartDOF.X Translational degree of freedom in the X direction

CartDOF.Y Translational degree of freedom in the Y direction

CartDOF.Z Translational degree of freedom in the Z direction

CartDOF.
TRANSL

Combination of the translational degrees of freedom in
the X, Y and Z directions

CartDOF.A Rotational degree of freedom about the Z axis

CartDOF.B Rotational degree of freedom about the Y axis

CartDOF.C Rotational degree of freedom about the X axis

CartDOF.ROT Combination of rotational degrees of freedom about the
X, Y and Z axes

CartDOF.ALL Combination of all Cartesian degrees of freedom
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
After this, the “set” method of the desired controller parameter is called via the
point operator. This controller parameter is set to the value specified as the in-
put parameter of the set method for all degrees of freedom specified in param-
etrize(…).

Syntax controlMode.parametrize(CartDOF.degreeOfFreedom_1
<, CartDOF.degreeOfFreedom_2,…>).setParameter(value);

Explanation of

the syntax

Example A LIN motion is to be executed to a defined point under impedance control.
The Cartesian impedance controller is configured in such a way that the cur-
rently used TCP – here the robot flange frame – is compliant in the Z direction.

17.5.2.3 Controller parameters specific to the degrees of freedom

Overview The following methods are available for the parameters of the Cartesian im-
pedance controller that are specific to the degrees of freedom:

Element Description

controlMode Type: CartesianImpedanceControlMode

Name of controller object

degreeOfFree
dom_1,
degreeOfFree
dom_2, …

Type: CartDOF

List of degrees of freedom to be described

setParame-
ter(value)

Method for setting a controller parameter

A separate method is available for each settable parameter
(value = value of the parameter).

CartesianImpedanceControlMode cartImpCtrlMode = new
CartesianImpedanceControlMode();

cartImpCtrlMode.parametrize(CartDOF.X,
CartDOF.Y).setStiffness(3000.0);

cartImpCtrlMode.parametrize(CartDOF.Z).setStiffness(1.0);

cartImpCtrlMode.parametrize(CartDOF.ROT).setStiffness(300.0);

cartImpCtrlMode.parametrize(CartDOF.ALL).setDamping(0.7);

robot.move(lin(getApplicationData().getFrame("/P1")).setCartVelocity(
800).setMode(cartImpCtrlMode));
479 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

480 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
17.5.2.4 Controller parameters independent of the degrees of freedom

Some settings apply irrespective of the Cartesian degrees of freedom. The set
methods used to define these controller parameters belong to the class Car-
tesianImpedanceControlMode and are called directly on the controller object.

Overview The following methods are available for the parameters of the Cartesian im-
pedance controller that are independent of the degrees of freedom:

Method Description

setStiffness(…) Spring stiffness (type: double)

The spring stiffness determines the extent to which the robot yields to an
external force and deviates from its planned path.

Translational degrees of freedom (unit: N/m):

 0.0 … 5000.0

Default: 2000.0

Rotational degrees of freedom (unit: Nm/rad):

 0.0 … 300.0

Default: 200.0

Note: If no spring stiffness is specified for a degree of freedom, the
default value is used for this degree of freedom.

setDamping(…) Spring damping (type: double)

The spring damping determines the extent to which the virtual springs
oscillate after deflection.

For all degrees of freedom (without unit: Lehr’s damping ratio):

 0.1 … 1.0

Default: 0.7

Note: If no spring damping is specified for a degree of freedom, the
default value is used for this degree of freedom.

setAdditionalControl-
Force(…)

Force applied in addition to the spring (type: double)

The additional force results in a Cartesian force at the TCP. This force
acts in addition to the forces resulting from the spring stiffness.

Translational degrees of freedom (unit: N):

 Negative and positive values possible.

Default: 0.0

Rotational degrees of freedom (unit: Nm):

 Negative and positive values possible.

Default: 0.0

Note: If no additional force is specified for a degree of freedom, the
default value is used for this degree of freedom.

Note: The force is overlaid without a delay. If the force to be overlaid is
too great, this can result in overloading of the robot and cancelation of
the program. The class CartesianSineImpedanceControlMode has the
option of overlaying forces after a delay.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
Method Description

setNullSpaceStiff-
ness(…)

Spring stiffness of the redundancy degree of freedom (type: double, unit:
Nm/rad)

The spring stiffness determines the extent to which the robot yields to an
external force and deviates from its planned path.

 ≥ 0.0

Note: If no spring stiffness is specified for the redundancy degree of
freedom, a default value is used for this degree of freedom.

setNullSpaceDamp-
ing(…)

Spring damping of the redundancy degree of freedom (type: double)

The spring damping determines the extent to which the virtual springs
oscillate after deflection.

 0.3 … 1.0

Note: If no spring damping is specified for the redundancy degree of
freedom, a default value is used for this degree of freedom.

setMaxControl-
Force(…)

Limitation of the maximum force on the TCP

The maximum force applied to the TCP by the virtual springs is limited.
The maximum force required to deflect the virtual spring is thus also
defined. Whether or not the motion is to be aborted if the maximum force
at the TCP is exceeded is also defined.

Syntax:

 setMaxControlForce(maxForceX, maxForceY, maxForceZ,
maxTorqueA, maxTorqueB, maxTorqueC, addStopCondition)

Explanation of the syntax:

 maxForceXΙYΙZ: Maximum force at the TCP in the corresponding Car-
tesian direction (type: double, unit: N)

 ≥ 0.0

 maxTorqueAΙBΙC: Maximum torque at the TCP in the corresponding
rotational direction (type: double, unit: Nm)

 ≥ 0.0

 addStopCondition: Cancelation of the motion if the maximum force at
the TCP is exceeded (type: boolean)

 true: Motion is aborted.

 false: Motion is not aborted.

Note: If the force limitation is only to be applied for individual degrees of
freedom, correspondingly high values must be assigned to those
degrees of freedom that are not to be limited.
481 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

482 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example 1 A robot under impedance control is to be compliant in its redundant degree of
freedom in order to be able to respond to obstacles during the motion. For this,
stiffness and damping of the redundant degree of freedom are parameterized
for the impedance controller.

Example 2 A robot is to move along a table plate in compliant mode. A Cartesian imped-
ance controller is parameterized for this. A high stiffness value is set for the Z
direction of the tool coordinate system in the TCP. An additional force of 20 N
is also to be applied. The motion is aborted if a force limit of 50 N in the Z di-
rection is exceeded. A low stiffness value is set in the XY plane. The Cartesian

setMaxCartesianVe-
locity(…)

Maximum Cartesian velocity

The motion is aborted if the defined velocity limit is exceeded.

Syntax:

 setMaxCartesianVelocity(maxVelocityX, maxVelocityY, max-
VelocityZ, maxVelocityA, maxVelocityB, maxVelocityC)

Explanation of the syntax:

 maxVelocityXΙYΙZ: Maximum permissible translational velocity at the
TCP in the corresponding Cartesian direction (type: double, unit:
mm/s)

 ≥ 0.0

 maxVelocityAΙBΙC: Maximum permissible rotational velocity at the TCP
in the corresponding rotational direction (type: double, unit: rad/s)

 ≥ 0.0

Note: If the velocity limitation is only to be applied for individual degrees
of freedom, correspondingly high values must be assigned to those
degrees of freedom that are not to be limited.

setMaxPathDevia-
tion(…)

Maximum Cartesian path deviation

Defines the maximum permissible Cartesian path deviation from the cur-
rently planned setpoint position for a compliant motion. The motion is
aborted if the defined maximum path deviation is exceeded.

Syntax:

 setMaxPathDeviation(maxDeviationX, maxDeviationY, maxDe-
viationZ, maxDeviationA, maxDeviationB, maxDeviationC)

Explanation of the syntax:

 maxDeviationXΙYΙZ: Maximum permissible path deviation at the TCP in
the corresponding Cartesian direction (type: double, unit: mm)

 ≥ 0.0

 maxDeviationAΙBΙC: Maximum permissible rotational deviation at the
TCP in the corresponding rotational direction (type: double, unit:
rad/s)

 ≥ 0.0

Note: If the path deviation is only to be applied for individual degrees of
freedom, correspondingly high values must be assigned to those
degrees of freedom that are not to be limited.

Method Description

CartesianImpedanceControlMode mode = new
CartesianImpedanceControlMode();

mode.setNullSpaceStiffness(10.0);

mode.setNullSpaceDamping(0.7);
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
deviation in the X and Y directions must not exceed 10 mm, however. Suitable
higher values are specified for all other parameters.

17.6 Cartesian impedance controller with overlaid force oscillation

The Cartesian impedance controller with overlaid force oscillation is a special
form of the Cartesian impedance controller. The force can be overlaid sepa-
rately for each Cartesian degree of freedom.

Force oscillations about an axis generate torque oscillations. Overlaying
torque oscillations can result in the generation of rotational oscillations.

Overlaying constant or sinusoidal forces causes the robot to move. Suitable
combinations of oscillations in the individual degrees of freedom can be used
to generate different motion patterns.

Using overlaid oscillations, it is possible to implement compliant pendulum
motions for search runs and vibrations in the tool for joining processes.

The Cartesian impedance controller with overlaid force oscillation is repre-
sented by the class CartesianSineImpedanceControlMode.

Behavior of the

robot

In this form of impedance control, the overlaid force causes the robot to leave
the planned path in a targeted way. The new path is thus determined by a wide
range of different parameters.

In addition to stiffness and damping, further parameters can be defined, e.g.
frequency and amplitude. The programmed velocity of the robot also plays a
significant role for the actual path.

17.6.1 Overlaying a simple force oscillation

By overlaying a simple force oscillation, the working point is diverted from the
planned path (= path without overlaid oscillations) and is instead moved from
the start point to the end point of the motion in a sinusoidal path.

Example The robot executes a relative motion in the Y direction of the tool coordinate
system in the TCP. A sinusoidal force oscillation in the X direction is overlaid.
The result is a wave-like path in the XY plane of the coordinate system.

CartesianImpedanceControlMode mode = new
CartesianImpedanceControlMode();

mode.parametrize(CartDOF.Z).setStiffness(3000.0);

mode.parametrize(CartDOF.Z).setAdditionalControlForce(20.0);

mode.setMaxControlForce(100.0, 100.0, 50.0, 20.0, 20.0, 20.0, true);

mode.parametrize(CartDOF.X, CartDOF.Y).setStiffness(10.0);

mode.setMaxPathDeviation(10.0, 10.0, 50.0, 2.0, 2.0, 2.0);

Overlaying additional forces has a strong influence on the robot mo-
tion and the forces exerted by the robot. For example, low stiffness
and high overlaid forces can cause the robot to accelerate suddenly.

Parameterization must therefore be carried out with caution if working with
force activations. For example, begin by overlaying low forces and approach
the appropriate force values step by step. In addition, the motion resulting
from the overlaid force must always be tested in T1 mode first.
483 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

484 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The maximum deflection ∆x is the deviation from the original path in the posi-
tive and negative X directions. The maximum deflection is determined by the
stiffness and amplitude which are defined for the impedance controller in the
Cartesian X direction, e.g.:

 Cartesian stiffness: C = 500 N/m

 Amplitude: F = 5 N

The maximum deflection results from Hooke’s law:

∆x = F / C = 5 N / (500 N/m) = 1 / (100 1/m) = 1 cm

The wavelength can be used to determine how many oscillations the robot is
to execute between the start point and end point of the motion. The wave-
length is determined by the frequency which is defined for the impedance con-
troller with overlaid force oscillation, as well as by the programmed robot
velocity.

Wavelength λ is calculated as follows:

λ = c / f = robot velocity / frequency

17.6.2 Overlaying superposed force oscillations (Lissajous curves)

Lissajous curves result when a sinusoidal force oscillation is overlaid in 2 dif-
ferent Cartesian directions. The superposition of the two oscillations makes it
possible to create very different forms for the path. The exact path depends on
a number of parameters.

Application Two sinusoidal force oscillations of different frequencies can be superposed
to generate vibrations at the TCP. For example, such vibrations can remove
tension and jamming which occur during an assembly process.

Example A sinusoidal force oscillation is overlaid in both the X and Y directions of the
tool coordinate system in the TCP. The maximum deflections ∆x and ∆y are
determined by the stiffness and amplitude, which are defined for the imped-
ance controller in the Cartesian X and Y directions.

In addition to the known parameters of the impedance controller, the phase
offset between the two oscillations plays a significant role in the path.

Fig. 17-6: Overlaying a simple force oscillation

1 Original path 4 Amplitude

2 Deflection ∆x 5 New path

3 Wavelength
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
The form of the path is mainly determined by the ratio of the two frequencies
and the phase offset between the two oscillations. The resulting curve is al-
ways axisymmetric and point-symmetric. The set power amplitude and stiff-
ness for an oscillation direction results in its position amplitude. The ratio
between the two position amplitudes determines the ratio between the width
to the height of the curve.

17.6.3 Parameterization of the impedance controller with overlaid force oscillation

The Cartesian impedance controller with overlaid force oscillation is a special
form of the standard impedance controller.

With a Cartesian impedance controller with overlaid force oscillation, forces
can be overlaid for all Cartesian degrees of freedom. Forces acting about an
axis generate a torque. For this reason, the overlaid torque and not the over-
laid force is specified for the rotational degrees of freedom. For the sake of
simplification, the terms “force” and “force oscillation” are taken to include the
terms “torque” and “torque oscillation” for the rotational degrees of freedom in
the following text.

The Cartesian impedance controller with overlaid force oscillation is parame-
terized in the same way as the standard impedance controller. The controller
parameters specific to the degrees of freedom and the controller parameters
independent of the degrees of freedom as described for the standard imped-
ance controller can be used in the same way for the impedance controller with
overlaid force oscillation.

 (>>> 17.5.2 "Parameterization of the Cartesian impedance controller"
Page 477)

Fig. 17-7: Path of a Lissajous curve

1 Path without phase offset (frequency ratio X:Y = 2:1)

2 Path with phase offset (frequency ratio X:Y = 3:1)

In impedance control, inaccurate sensor information or
incorrectly selected parameters (e.g. incorrect load data,

incorrect tool) can be interpreted as external forces, resulting in unpredict-
able motions of the robot.
485 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

486 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The following additional controller properties can be defined individually for
each Cartesian degree of freedom:

 Amplitude of the force oscillation

 Frequency of the force oscillation

 Phase offset of the force oscillation

 Superposed constant force

 Force limitation of the force oscillation

 Limitation of the deflection due to the force oscillation

The following additional controller properties can be defined irrespective of the
degree of freedom:

 Rise time of the force oscillation

 Hold time of the force oscillation

 Fall time of the force oscillation

 Overall duration of the force oscillation

17.6.3.1 Controller parameters specific to the degrees of freedom

Overview The following methods are available for the parameters of the Cartesian im-
pedance controller with overlaid force oscillation that are specific to the de-
grees of freedom:

Exception: The setAdditionalControlForce(…) method of the class
CartesianImpedanceControlMode for overlaying a force to be applied
in addition to the spring is available for the class CartesianSineImped-

anceControlMode, but should not be used.
The setBias(…) method is available for overlaying constant forces in the
class CartesianSineImpedanceControlMode.

Method Description

setAmplitude(…) Amplitude of the force oscillation (type: double)

Amplitude and stiffness determine the position amplitude.

Translational degrees of freedom (unit: N):

 ≥ 0.0

Default: 0.0

Rotational degrees of freedom (unit: Nm):

 ≥ 0.0

Default: 0.0

Note: If no amplitude is specified for a degree of freedom, the default
value is used for this degree of freedom.

setFrequency(…) Frequency of the force oscillation (type: double; unit: Hz)

Frequency and Cartesian velocity determine the wavelength of the force
oscillation.

 0.0 … 15.0

Default: 0.0

Note: If no frequency is specified for a degree of freedom, the default
value is used for this degree of freedom.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
setPhaseDeg(…) Phase offset of the force oscillation at the start of the force overlay (type:
double; unit: °)

 ≥ 0.0

Default: 0.0

Note: If no phase offset is specified for a degree of freedom, the default
value is used for this degree of freedom.

setBias(…) Constant force overlaid (type: double)

Using setBias(…), a constant force can be overlaid in addition to the
overlaid force oscillation. This force adds to the force resulting from the
spring stiffness and defined force oscillation.

If a constant force is overlaid without an additional force oscillation, this
results in a force characteristic which rises as a function of the rise time
defined with setRiseTime(…) and then remains constant. setRise-
Time(…) belongs to the controller parameters independent of the
degrees of freedom (>>> 17.6.3.1 "Controller parameters specific to the
degrees of freedom" Page 486).

If a constant force is overlaid in addition to a force oscillation, the force
oscillation is offset in the defined direction.

Translational degrees of freedom (unit: N):

 Negative and positive values possible.

Default: 0.0

Rotational degrees of freedom (unit: Nm):

 Negative and positive values possible.

Default: 0.0

Note: If no additional constant force is overlaid for a degree of freedom,
the default value is used for this degree of freedom.

Method Description
487 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

488 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example During a joining process, an oscillation about the Z axis of the tool coordinate
system in the TCP is to be generated. The Cartesian impedance controller
with overlaid force oscillation is used for this. With a stiffness of 10 Nm/rad and
an amplitude of 15 Nm, the position amplitude is approx. 1.5 rad. The frequen-
cy is set to 5 Hz. In order to exert an additional pressing force in the direction
of motion, a constant force of 5 N is generated in the Z direction and super-
posed on the overlaid force oscillation about the Z axis.

17.6.3.2 Controller parameters independent of the degrees of freedom

Some settings apply irrespective of the Cartesian degrees of freedom. The set
methods used to define these controller parameters belong to the class Car-

setForceLimit(…) Force limitation of the force oscillation (type: double)

Defines the limit value that the overall force, i.e. the sum of the ampli-
tude of the force oscillation and additionally overlaid constant force,
must not exceed. If the overall force exceeds the limit value, the overlaid
force is reduced to the limit value.

Translational degrees of freedom (unit: N):

 ≥ 0.0

Default: Not limited.

Rotational degrees of freedom (unit: Nm):

 ≥ 0.0

Default: Not limited.

Note: If no force limit is specified for a degree of freedom, the default
value is used for this degree of freedom.

setPositionLimit(…) Maximum deflection due to the force oscillation (type: double)

If the maximum permissible deflection is exceeded, the force is deacti-
vated. The force is reactivated as soon as the robot is back in the per-
missible range.

Translational degrees of freedom (unit: mm):

 ≥ 0.0

Default: Not limited.

Rotational degrees of freedom (unit: rad):

 ≥ 0.0

Default: Not limited.

Note: If no maximum deflection is specified for a degree of freedom, the
default value is used for this degree of freedom.

Method Description

CartesianSineImpedanceControlMode sineMode = new
CartesianSineImpedanceControlMode();

sineMode.parametrize(CartDOF.Z).setStiffness(4000.0);

sineMode.parametrize(CartDOF.Z).setBias(5.0);

sineMode.parametrize(CartDOF.A).setStiffness(10.0);

sineMode.parametrize(CartDOF.A).setAmplitude(15.0);

sineMode.parametrize(CartDOF.A).setFrequency(5.0);

tool.getFrame("/TCP").move(linRel(0.0, 0.0,
10.0).setCartVelocity(10.0).sineMode(sineMode));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
tesianSineImpedanceControlMode and are called directly on the controller ob-
ject.

Overview The following methods are available for the parameters of the Cartesian im-
pedance controller with overlaid force oscillation that are independent of the
degrees of freedom:

Overall duration

of the force oscil-

lation

The overall duration is the sum of the rise time, hold time and fall time of the
force oscillation:

 Rise time

Time in which the amplitude of the force oscillation is built up.

 Hold time

Time in which the force oscillation is executed with the defined amplitude.

Method Description

setTotalTime(…) Overall duration of the force oscillation (type: double; unit: s)

 (>>> "Overall duration of the force oscillation" Page 489)

 ≥ 0.0

Default: Unlimited

setRiseTime(…) Rise time of the force oscillation (type: double; unit: s)

 ≥ 0.0

Default: 0.0

Note: If no rise time is specified for a degree of freedom, the default
value is used. This means that the amplitude rises abruptly to the
defined value without a transition. If the force to be overlaid is too great,
this can result in overloading of the robot and cancelation of the pro-
gram.

setHoldTime(…) Hold time of the force oscillation (type: double; unit: s)

 ≥ 0.0

Default: Unlimited

Note: If no hold time is specified for a degree of freedom, the default
value is used. This means that the overlaid force oscillation ends with
the corresponding motion.

setFallTime(…) Fall time of the force oscillation (type: double; unit: s)

 ≥ 0.0

Default: 0.0

Note: If no fall time is specified for a degree of freedom, the default
value is used. This means that the amplitude falls abruptly to zero with-
out a transition. If the drop in force is too great, this can result in over-
loading of the robot and cancelation of the program.

setStayActiveUntil-
PatternFinished(…)

Response if the motion duration is exceeded (type: boolean)

If the force oscillation lasts longer than the motion, it is possible to define
whether the oscillation is terminated or continued after the end of the
motion.

 true: Oscillation is continued after the end of the motion.

 false: Oscillation is terminated at the end of the motion.

Default: false

Note: If the response when the motion duration is exceeded is not spec-
ified, the default value is used.
489 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

490 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
 Fall time

Time in which the amplitude of the force oscillation is reduced back to zero.

Rise time, hold time and fall time of the force oscillation can be defined indi-
vidually, or indirectly by defining the overall duration of the force oscillation.

If the overall duration is defined using setTotalTime(…), the rise time and fall
time are defined automatically.

Calculation:

 Rise time = fall time = (1/frequency) 0.5

 Of the frequencies defined for the force oscillation (relative to all degrees
of freedom), the frequency that results in the largest possible rise and fall
times is used for the calculation.

 If exclusively constant forces are overlaid, the frequency of all degrees of
freedom is 0.0 Hz. Rise and fall time are set to 0.0 s.

 If the calculated sum of rise time and fall time exceeds the defined overall
duration, the rise time and fall time are each set to 25% of the overall du-
ration and the hold time to 50%.

If the overall duration of the force oscillation is shorter than the duration of the
corresponding motion, the force oscillation ends before the end of the motion.
The response if the motion duration is exceeded is defined using setStayAc-
tiveUntilPatternFinished(…).

17.7 Static methods for impedance controller with superposed force oscillation

Overview The Cartesian impedance controller with overlaid force oscillation can also be
configured via static methods of the class CartesianSineImpedanceControl-
Mode. This simplifies the programming, in particular of Lissajous curves, as
the user only has to specify a few parameters. The remaining parameters
which are important for the implementation are calculated and set automati-
cally. Default values are used for all other parameters. Additional settings are
made as described using the parametrize(…) function and the set methods of
CartesianSineImpedanceControlMode.

 createDesiredForce(…): Static method for constant force

 createSinePattern(…): Static method for simple force oscillations

 createLissajousPattern(…): Static method for Lissajous curves

 createSpiralPattern(…): Static method for spirals

Specification of

Cartesian planes

In contrast to simple oscillations, no individual degree of freedom is transferred
to Lissajous curves and spirals, but rather the plane in which the path is to run.
The plane is specified via the Enum CartPlane (the package com.kuka.robot-
icsAPI.geometricModel).

17.7.1 Overlaying a constant force

Description The createDesiredForce(…) method overlays a constant force, that does not
change over time, in one Cartesian direction.

Syntax controlMode = CartesianSineImpedanceControlMode.createDesi-
redForce(CartDOF.degreeOfFreedom, force, stiffness);

Enum value Description

CartPlane.XY Path in the XY plane

CartPlane.XZ Path in the XZ plane

CartPlane.YZ Path in the YZ plane
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
Explanation of

the syntax

17.7.2 Overlaying a simple force oscillation

Description The createSinePattern(…) method overlays a simple force oscillation in one
Cartesian direction.

Syntax controlMode = CartesianSineImpedanceControlMode.create-
SinePattern(CartDOF.degreeOfFreedom, frequency, amplitude,
stiffness);

Explanation of

the syntax

Element Description

controlMode Type: CartesianSineImpedanceControlMode

Name of the controller object

degreeOfF-
reedom

Type: CartDOF

Degree of freedom for which the constant force is to be
overlaid.

force Type: double

Value of the overlaid constant force. Corrsponds to the call
of setBias(…) for the specified degree of freedom.

Translational degrees of freedom (unit: N):

 ≥ 0.0

Rotational degrees of freedom (unit: Nm):

 ≥ 0.0

stiffness Type: double

Stiffness value for the specified degree of freedom

Translational degrees of freedom (unit: N/m):

 0.0 … 5000.0

Rotational degrees of freedom (unit: Nm/rad):

 0.0 … 300.0

Element Description

controlMode Type: CartesianSineImpedanceControlMode

Name of controller object

degreeOfF-
reedom

Type: CartDOF

Degree of freedom for which the force oscillation is to be
overlaid.

frequency Type: double

Frequency of the oscillation (unit: Hz)

 0.0 … 15.0
491 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

492 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Example From the current position, a relative motion of 15 cm is to be executed in the
Y direction. The motion is to run in a wave path with a deflection of approx.
10 cm (derived from the amplitude and stiffness) and a frequency of 2 Hz in
the X direction.

17.7.3 Overlaying a Lissajous oscillation

Description The createLissajousPattern(…) method is used to generate a 2-dimensional
oscillation in one plane. The plane is transferred as a value of type CartPlane.
The other transferred parameters refer to the first degree of freedom of the
specified plane (example: for CartPlane.XY, the specified values are relative
to CartDOF.X).

The parameters of the second degree of freedom of the plane are calculated
to produce a Lissajous curve with the following characteristics:

 Amplitude ratio, 1st degree of freedom : 2nd degree of freedom: 1 : 1

 Frequency ratio, 1st degree of freedom : 2nd degree of freedom: 1 : 0.4

 Phase offset between 1st and 2nd degree of freedom: ½ · pi

Syntax controlMode = CartesianSineImpedanceControlMode.crea-
teLissajousPattern(CartPlane.plane, frequency, amplitude,
stiffness);

Explanation of

the syntax

amplitude Type: double

Amplitude of the oscillation which is overlaid in the direc-
tion of the specified degree of freedom

Translational degrees of freedom (unit: N):

 ≥ 0.0

Rotational degrees of freedom (unit: Nm):

 ≥ 0.0

stiffness Type: double

Stiffness value for the specified degree of freedom

Translational degrees of freedom (unit: N/m):

 0.0 … 5000.0

Rotational degrees of freedom (unit: Nm/rad):

 0.0 … 300.0

Element Description

CartesianSineImpedanceControlMode sineMode;

sineMode =
CartesianSineImpedanceControlMode.createSinePattern(CartDOF.X, 2.0,
50.0, 500.0);

robot.move(linRel(0.0, 150.0,
0.0).setCartVelocity(100).setMode(sineMode));

Element Description

controlMode Type: CartesianSineImpedanceControlMode

Name of controller object

plane Type: Enum of type CartPlane

Plane in which the Lissajous oscillation is to be overlaid
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
Example An oscillation in the form of a Lissajous curve with a frequency ratio X : Y of
1 : 0.4 and a phase offset in Y of pi/2 is to be generated on the robot flange.
Path without phase offset (= blue line (>>> Fig. 17-7)).

17.7.4 Overlaying a spiral-shaped force oscillation

Description The createSpiralPattern(…) method is used to generate a spiral-shaped force
oscillation in one plane.

The force characteristic is created by overlaying 2 sinusoidal force oscillations.
The oscillations are shifted in phase by π/2 (90°). The amplitudes of the oscil-
lations rise constantly up to the defined value and then return to zero. This re-
sults in a spiral pattern which extends up to the defined amplitude value and
then contracts again.

In the resulting robot motion, the TCP moves along this spiral. The Cartesian
extent of the spiral depends on the values defined for stiffness and amplitude
as well as any obstacles present.

The plane in which the spiral-shaped oscillation is to be overlaid is transferred
as a value of type CartPlane. The values defined for the parameters stiffness,
frequency and amplitude are identical for both degrees of freedom of the
plane.

In addition, a value is transferred for the total time of the force oscillation. The
time is divided evenly between the upward and downward motion of the oscil-
lation:

Rise time = Total time / 2

Hold time = 0

Fall time = Total time / 2

frequency Type: double

Frequency of the oscillation for the first degree of freedom
of the specified plane (unit: Hz)

 0.0 … 15.0

The frequency for the second degree of freedom is calcu-
lated as follows:

 frequency · 0.4

amplitude Type: double

Amplitude of the oscillation for both degrees of freedom of
the specified plane (unit: N)

 ≥ 0.0

stiffness Type: double

Stiffness values for both degrees of freedom of the speci-
fied plane (unit: N/m)

 0.0 … 5000.0

Element Description

CartesianSineImpedanceControlMode lissajousMode;

lissajousMode =
CartesianSineImpedanceControlMode.createLissajousPattern(CartPlane.XY
, 10.0, 50.0, 500.0);

robot.move(linRel(0.0, 150.0,
0.0).setCartVelocity(100).setMode(lissajousMode));
493 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

494 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Syntax controlMode = CartesianSineImpedanceControlMode.createS-
piralPattern(CartPlane.plane, frequency, amplitude, stiffness,
totalTime);

Explanation of

the syntax

Example At the current position of the robot flange, a spiral-shaped force oscillation is
to be overlaid in the XY plane of the flange coordinate system. The force is to
rise helically up to a maximum value of 100 N. Once per second, the force
characteristic is to turn around the start point of the spiral (frequency of the
force oscillation: 1.0 Hz). The force spiral must rise and fall within 10 seconds.

The number of turns is a function of the total time for a turn (tperiod). The time
for a turn corresponds to the duration of an oscillation period, e.g.:

 Frequency of the force oscillation: f = 1.0 Hz

 Total time: t = 10 s

The number of turns is calculated as follows:

NumberTurns = Total time / tPeriod = 10 s / 1 s = 10

tPeriod = 1 / f = 1 / 1.0 Hz = 1 s

The maximum deflection results from Hooke’s law:

∆x = F / C = 100 N / (500 N/m) = 0.2 m = 20 cm

Element Description

controlMode Type: CartesianSineImpedanceControlMode

Name of controller object

plane Type: Enum of type CartPlane

Plane in which the spiral-shaped oscillation is to be over-
laid

frequency Type: double

Frequency of the oscillation for both degrees of freedom of
the specified plane (unit: N)

 0.0 … 15.0

amplitude Type: double

Amplitude of the oscillation for both degrees of freedom of
the specified plane (unit: N)

 ≥ 0.0

stiffness Type: double

Stiffness values for both degrees of freedom of the speci-
fied plane (unit: N/m)

 0.0 … 5000.0

totalTime Type: double

Total time for the spiral-shaped oscillation. The time is
divided evenly between the upward and downward motion
of the oscillation (unit: s).

 ≥ 0.0

CartesianSineImpedanceControlMode spiralMode;

spiralMode =
CartesianSineImpedanceControlMode.createSpiralPattern(CartPlane.XY,
1.0, 100, 500, 10);

robot.move(positionHold(spiralMode, 10, TimeUnit.SECONDS));
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
17.8 Axis-specific impedance controller

The axis-specific impedance controller is represented by the class Joint-
ImpedanceControlMode. In this control mode, the robot’s behavior is compli-
ant.

The underlying model uses virtual springs and dampers. Unlike with the Car-
tesian impedance controller, however, these springs and dampers are
stretched out due to the difference between the currently measured and the
specified axis positions. For this reason, singularity positions of the robot have
no influence on the impedance behavior.

17.8.1 Parameterization of the axis-specific impedance controller

The following controller properties can be defined individually for each axis:

 Stiffness

 Damping

17.8.2 Methods of the axis-specific impedance controller

Overview

In impedance control, inaccurate sensor information or
incorrectly selected parameters (e.g. incorrect load data,

incorrect tool) can be interpreted as external forces, resulting in unpredict-
able motions of the robot.

If the application is paused with the spring tensioned under imped-
ance control, the motion command is interrupted. When the applica-
tion is resumed, the spring is tensioned again. This can result in jerky

motion of the robot.

Method Description

setStiffness(…) Spring stiffness (type: double[]; unit: Nm/rad)

The axis-specific spring stiffness determines the degree of compliance
of an axis when force is applied.

 ≥ 0.0

Note: The spring stiffness must be specified for every axis.

setDamping(…) Spring damping (type: double[]; without unit: Lehr’s damping ratio)

The axis-specific spring damping determines the extent to which the vir-
tual springs oscillate after deflection.

 0.0 … 1.0

Default: 0.7

Note: The spring damping must be specified for every axis.

setStiffness
ForAllJoints(…)

Spring stiffness (type: double; unit: Nm/rad)

A value determines the degree of compliance of all axes when force is
applied.

 ≥ 0.0

setDamping
ForAllJoints(…)

Spring damping (type: double; without unit: Lehr’s damping ratio)

A value determines the extent to which the virtual springs in all axes
oscillate after deflection.

 0.0 … 1.0
495 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

496 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Constructor

syntax

JointImpedanceControlMode jointImp = new JointImpedanceCont-
rolMode(A1, A2, ... A7);

Explanation of

the syntax

Example 1 7 axes are to be controlled using the axis-specific impedance controller. Initial
values for the axis-specific spring stiffnesses are defined in the constructor of
the controller. The stiffness for axis A4 is to be modified subsequently. The
spring damping is to be identical for all axes.

Example 2 7 axes are to be controlled using the axis-specific impedance controller. Initial
values for the axis-specific spring stiffnesses are defined in the constructor of
the controller. The spring stiffness and spring damping are subsequently to be
identical for all axes.

17.9 Holding the position under servo control

Description Using the motion command positionHold(…), the robot can hold its Cartesian
setpoint position over a set period of time and remain under servo control.

If the robot is operated in compliance control, it can remove itself from its set-
point position. Whether, how far and in which direction the robot moves from
the current Cartesian setpoint position (= position at the start of the command
positionHold(…)) depends on the set controller parameters and the resulting
forces. In addition, the compliant robot under servo control can be forced off
its setpoint position by external forces.

Syntax object.move(positionHold(controlMode, time, unit));

Explanation of

the syntax

Element Description

jointImp Type: JointImpedanceControlMode

Name of the controller object

A1 … A7 Type: double; unit: Nm/rad

Axis-specific spring stiffnesses

The number of values is dependent on the axis selection
(here: 7 axes).

JointImpedanceControlMode jointImp

 = new JointImpedanceControlMode(2000.0, 2000.0, 2000.0, 2000.0,
100.0, 100.0, 100.0);

...

jointImp.setStiffness(2000.0, 2000.0, 2000.0, 1500.0, 100.0, 100.0,
100.0);

jointImp.setDampingForAllJoints(0.5);

JointImpedanceControlMode jointImp

 = new JointImpedanceControlMode(2000.0, 2000.0, 2000.0, 2000.0,
100.0, 100.0, 100.0);

...

jointImp.setStiffnessForAllJoints(100);

jointImp.setDampingForAllJoints(0.5);

Element Description

controlMode Type: Subclass of AbstractMotionControlMode

Name of controller object
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

17 Programming with a compliant robot
Example The robot is to be held in its current position for 10 seconds. During this time,
the robot is switched to “soft” mode in the Cartesian X direction.

time Type: long

Indicates how long the specified controlMode is to be held.
The value must be >= 0. A value of < 0 indicates infinite.

unit Type: Enum of type TimeUnit

Unit of the specified time

The Enum TimeUnit is an integral part of the standard Java
library.

Element Description

CartesianImpedanceControlMode controlMode = new
CartesianImpedanceControlMode();

controlMode.parametrize(CartDOF.X).setStiffness(1000.0);

controlMode.parametrize(CartDOF.ALL).setDamping(0.7);

robot.move(positionHold(controlMode, 10, TimeUnit.SECONDS));
497 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

498 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

18 Diagnosis
18 Diagnosis

18.1 Field bus diagnosis

18.1.1 Displaying general field bus errors

Description The general error state of the connected field buses can be displayed on the
smartHMI.

Procedure 1. Select the KUKA_Sunrise_Cabinet_1 tile at the Station level.

The status indicator of the Field buses tile indicates the collective state of
all field buses connected to the controller.

2. Select the Field buses tile.

The detail view opens with error information about the currently connected
field buses.

18.1.2 Displaying the error state of I/Os and I/O groups

Description The status indicator in the I/O groups area of the navigation bar of the smartH-
MI displays the state of the configured I/O groups.

 The lower indicator shows the collective state of all configured I/O groups.

 The upper indicator shows the state of the selected I/O group.

Procedure In the navigation bar, select the desired I/O group from I/O groups.

The detail view of the I/O group opens. Any faulty inputs/outputs are indi-
cated.

18.2 Displaying the protocol

A protocol of the events and changes in state of the system can be displayed
on the smartHMI.

Procedure 1. Open the Station level or the Robot level.

2. Select the Protocol tile. The Protocol view opens.

If the view is opened via the Robot level, only those log entries are dis-
played by default which affect the robot selected in the navigation bar.

s

s

WorkVisual can be used for precise error analysis. Additional infor-
mation about field bus diagnosis with WorkVisual is contained in the
WorkVisual documentation.

If the robot controller is used as a PROFINET master or device, hard-
ware problems can result in an inability to access bus devices. In this
case, use of a diagnostic tool, such as WorkVisual, Step 7 or Wire-

Shark, is recommended.

If PROFINET is used and errors occur at individual terminals, not only
the affected inputs/outputs, but all configured PROFINET I/Os are
marked as faulty.
499 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

500 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
18.2.1 “Protocol” view

Overview

Log event The protocol entries contain various information pertaining to each log event.

Fig. 18-1: “Protocol” view

Item Description

1 Refresh button

Refreshes the displayed protocol entries. After refreshing, the
most recent entry is shown by default at the top of the list. If a time
filter is active, the oldest entry is shown at the top of the list.

2 List of protocol entries

 (>>> "Log event" Page 500)

3 Filter settings button

Opens the Filter settings window in which the protocol entries
can be filtered according to various criteria.

4 Filter settings display

The currently active filters are displayed here.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

18 Diagnosis
Log level The following icons display the log level of an event:

18.2.2 Filtering log entries

Precondition The Protocol view is open.

Procedure 1. Touch the Filter settings button. The Filter settings window opens.

2. Select the desired filters with the appropriate buttons.

3. Touch the Filter settings button or an area outside the window.

The Filter settings window is closed and the selected filters are activated.

Fig. 18-2: Information about the log event

Item Description

1 Log level of the event

 (>>> "Log level" Page 501)

2 Date and time of the log event (system time of the robot controller)

3 Source of the log event (robot or station)

4 Button to maximize/minimize the detail view

The button is only available if more than 2 symptoms are present.

5 Symptoms of the log event (detail view)

By default, up to 2 symptoms are displayed per event.

6 Category or brief description of the log event

Icon Description

Error

Critical event which results in a system error state

Warning

Critical event which can result in an error

Information

Non-critical event or information pertaining to the change in
state

The filters are reset when the Protocol view is closed. When the view
is re-opened, the default settings are reactivated.
501 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

502 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Description

18.3 Display of error messages (Applications view)

If errors occur while an application is being executed, the corresponding error
messages are displayed on the smartHMI.

Fig. 18-3: “Filter settings” window

Item Description

1 Filter Source(s)

The log entries can be filtered according to the sources that
caused the log event.

 Station: All log entries are displayed which affect the station
and the inputs/outputs of field buses.

 Robot: Only those log entries are displayed which affect the
robot selected in the navigation bar, here an LBR iiwa 7 R800.

Default for log at Station level: Both sources are selected.

Default for log at Robot level: The source is the robot selected in
the navigation bar.

2 Filter Timespan

A time filter can be activated to display only the log entries of a
specific timespan.

Default: All (no time filter active)

3 Filter Level

The log entries can be filtered according to their log level.

Default: Info, warning, error (no filter active for log level)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

18 Diagnosis
Fig. 18-4: Configuration of error message (example)

Item Description

1 Time stamp

Time at which the error occurred

2 Level

Log level of the message. Errors have the log level Error.

3 Error message

4 Information when application is terminated, e.g. following a real-
time error
503 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

504 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Often, an error is the result of a chain of preceding errors. In this case, the en-
tire error chain is displayed in descending order.

5 Error type

Errors are defined as Java classes. The name of the class and the
corresponding package are displayed. The error message follows
(see item 3).

6 Stack trace

The method calls which led to the error are displayed in ascending
order. The methods are specified with their full identifiers. In addi-
tion, the number of the program line in which the error occurred is
displayed.

The stack trace can be used to determine the program position at
which the method which ultimately caused the error was called.

Example, read from the bottom to the top:

 Origin of the error: Method run() of the application Inexecut-
ableMotion.java, line 37

 In line 37 of the application, the method move(…) of the robot
class was called. In the source code of the class robot.java, the
error occurred in line 612 when the method move(…) of the
class PhysicalObject was called.

 ...

 The actual error occurred in line 220 in the source code of the
class ExecutionContainer.java when the method validate(…)
was called.

Fig. 18-5: Display of error chain (example)

Item Description

1 Consequential error

The last element in the error chain is displayed here. In the exam-
ple, this is an error of type RuntimeException which occurred dur-
ing execution of the method run() in line 38 of the application
EmbeddedExceptionApplication.java.

2 Causative error

The display of the causative error is always initiated as follows:

 Caused by: Error type

In the example, the causative error is of type Exception and
occurred when the method calculateValue(…) of the class Utils
was called. The entire error chain is thus displayed up to the
actual cause of error.

Item Description
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

18 Diagnosis
18.4 Displaying messages of the virus scanner

Precondition Virus scanner is installed.

 (>>> 10.5.2 "Installing or updating the virus scanner" Page 176)

Procedure Select > KUKA_Sunrise_Cabinet_1 > Virus scanner at the Station lev-
el. The Virus scanner view opens.

Description The Virus scanner view contains the following data:

 Virus scanner state: active / inactive

 Version of virus definition file: version of the virus scanner

 Messages about detected viruses: The message generated when a virus
is found contains the following data:

 Name of the virus

 Name of the file in which the virus is located, including path specifica-
tion

 Date and time of detection

If viruses are found, the status display of the Virus scanner tile switches
to “Warning”. The status of the files affected by the viruses is automatically
set to “Quarantine”.

18.5 Collecting diagnostic information for error analysis at KUKA

For error analysis, KUKA Customer Support requires diagnostic data from the
robot controller.

For this purpose, a ZIP file called KRCDiag is created, which can be archived
on the robot controller under D:\DiagnosisPackages or on a USB stick con-
nected to the robot controller. The diagnosis package KRCDiag contains the
data which KUKA Customer Support requires to analyze an error. These in-
clude information about the system resources, machine data and much more.

Sunrise.Workbench can also be used to access the diagnostic information.
For this purpose, either an existing diagnosis package is loaded from the robot
controller or a new package is created.

Messages from the virus scanner can also be displayed using the
Protocol tile.

If the robot can no longer be moved due to a virus infection, the fol-
lowing options are available to the user:

Reinstall the system software on the robot controller.

 If the robot can still not be moved, create the diagnosis package KRCDi-
ag and contact KUKA Service.

Projects and applications are not included in the diagnosis package.
It is advisible to transfer these data separately, as they can contain
important information for troubleshooting.

Recommendation: If possible, only collect diagnostic information
when the robot is stationary.

If the collection of diagnostic information fails while an application is
running, stop and cancel the application and restart the diagnostic
process.
505 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

506 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
18.5.1 Creating a diagnosis package with the smartHMI

Description With this procedure, the diagnois package KRCDiag can be created and ar-
chived on the robot controller under D:\DiagnosisPackages or on a USB stick.

Procedure 1. For archiving to a USB stick: Plug the USB stick into the robot controller
and wait until the LED on the USB stick remains permanently lit.

2. In the main menu, select Diagnosis > Create diagnosis package and se-
lect the desired file location.

 Hard disk

 USB stick

The diagnostic information is compiled. Progress is displayed in a window.
Once the operation has been completed, this is also indicated in the win-
dow. The window is then automatically hidden again.

18.5.2 Creating a diagnosis package with the smartPAD

Description This procedure uses keys on the smartPAD instead of menu items. It can thus
also be used if the smartHMI is not available.

The KRCDiag diagnosis package is created and archived on the robot con-
troller under D:\DiagnosisPackages.

 Procedure 1. Press the “Main menu” key and hold it down.

2. Press the keypad key twice.

3. Release the “Main menu” key.

The diagnostic information is grouped. Progress is displayed in a window.
Once the operation has been completed, this is also indicated in the win-
dow. The window is then automatically hidden again.

18.5.3 Creating a diagnosis package with Sunrise.Workbench

Precondition Network connection to the robot controller

Procedure 1. Right-click on the project in the Package Explorer and select Sunrise >
Create diagnosis package from the context menu. The wizard for creat-
ing the diagnosis package opens.

2. Select Browse... and navigate to the directory in which the diagnosis
package KRCDiag is to be created. If necessary, create a folder for the
diagnosis package by clicking on Create new folder. Click on OK to con-
firm.

3. Click on Next >. The diagnosis package is created in the specified folder.

4. To navigate to the folder in which the diagnosis package was created, e.g.
to send it directly by e-mail, click on Open target folder in Windows Ex-
plorer.

5. Click on Finish. The wizard is closed.

The key sequence described in the procedure must be executed with-
in 2 seconds.

Projects and applications are not included in the diagnosis package.
It is advisible to transfer these data separately, as they can contain
important information for troubleshooting.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

18 Diagnosis
18.5.4 Loading existing diagnosis packages from the robot controller

Precondition Network connection to the robot controller

Procedure 1. Right-click on the project in the Package Explorer and select Sunrise >
Create diagnosis package from the context menu. The wizard for creat-
ing the diagnosis package opens.

2. Select Browse... and navigate to the directory in which the diagnosis
package KRCDiag is to be copied. If necessary, create a folder for the di-
agnosis package by clicking on Create new folder. Click on OK to con-
firm.

3. Activate the radio button Load existing diagnosis packages from con-
troller and select the desired diagnosis packages.

4. Click on Next >. The diagnosis package is copied into the specified folder.

If the folder already contains a diagnosis package of the same name, a
user dialog is displayed. The copying operation can be canceled.

5. To navigate to the folder into which the diagnosis package was copied,
e.g. to send it directly by e-mail, click on Open target folder in Windows
Explorer.

6. Click on Finish. The wizard is closed.
507 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

508 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19 Remote debugging

Remote debugging is used for the discovery and diagnosis of errors in pro-
grams.

Remote debugging is carried out using Sunrise.Workbench for applications
and background tasks running on the controller.

Since remote debugging is largely identical for applications and background
tasks, the term “task” is used generically below.

19.1 Debugging session sequence

t

Advanced Java Eclipse programming skills are a prerequisite for use
of remote debugging.

Step Description

1 Starting a debugging session

When starting a debugging session, a remote connection is
established between Sunrise.Workbench and the robot con-
troller. The project in the workspace of Sunrise.Workbench
and the active project on the robot controller are automatically
checked for consistency and synchronization is requested if
required.

 (>>> 19.1.2 "Starting the debugging session" Page 511)

2 Performing remote debugging of the task

The programmer uses break points to define the positions in
the program code at which execution of the task is to be inter-
rupted during remote debugging.

If remote debugging is to be carried out for an application that
has not yet been started, the application must be started man-
ually via the smartPAD once the remote connection has been
established.

Once task execution has been stopped at a break point, fur-
ther program execution can be controlled by Sunrise.Work-
bench by executing the source code of the task step by step.
On completion of a step, task execution is automatically
stopped.

 (>>> 19.3.2 "Break points" Page 515)
509 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

510 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
19.1.1 Remote debugging of tasks

Description Remote debugging is used to detect and diagnose errors in programs and
tasks.

Tools that support this process are called debuggers. The remote debugger
integrated into Sunrise.Workbench is based on the standard Java and Eclipse
debugger.

In the case of remote debugging of programs, the debugger is run on a differ-
ent computer than the program that is to be checked. In the case of remote
debugging of tasks, the Sunrise.Workbench debugger is used; the task itself
is executed on the controller.

During remote debugging, a connection is established between Sunrise.Work-
bench and the robot controller. A debugging session is started in this way. Dur-
ing remote debugging, the execution of tasks running on the controller can be
monitored via Sunrise.Workbench and it is possible to influence program exe-
cution. Errors can be diagnosed and the source code can be optimized.

The Debugging perspective contains the most important views for remote de-
bugging.

Remote debugging of tasks running on the controller is described below. Gen-
eral knowledge of remote debugging is assumed. The most important funda-
mentals are summarized in the chapters. (>>> 19.3 "Fundamentals of remote
debugging" Page 514)

Overview The functionalities offered by the debugger include the following:

 Performance of online diagnosis

 Stopping program execution at defined positions using break points

 Line-by-line or section-by-section execution of the source code of running
tasks

3 Using debugging functions

While task execution is interrupted, debugger functions, such
as the observation and modification of variable values, can be
used. Adaptation of the source code is also possible.

 (>>> 19.3.6 "Variables view" Page 529)

 (>>> 19.3.7 "Monitoring processes" Page 533)

 (>>> 19.3.8 "Modifying source code" Page 536)

4 Ending a debugging session

When ending a debugging session, the remote connection to
the controller is disconnected. Execution of the running task
can now no longer be influenced by Sunrise.Workbench. If
modifications have been made to the code, project synchroni-
zation is offered.

 (>>> 19.1.3 "Ending the debugging session" Page 511)

Step Description

While a debugging session is running, the smartPAD is used for start-
ing applications and issuing the motion enable signal.

All safety functions configured for the project are also active during re-
mote debugging.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
 Tracking of the process by means of observation of variables and monitor-
ing expressions

 Modification of variable values

19.1.2 Starting the debugging session

Description To start a debugging session, a remote connection must be established be-
tween Sunrise.Workbench and the robot controller.

The Java processes running on the controller can then be viewed.

Once the first active break point has been reached, execution of the corre-
sponding task is paused and the functions of the debugger can be used.

 (>>> 19.3.2 "Break points" Page 515)

Precondition Network connection between robot controller and development computer.

 The project that is active on the robot controller is located in the workspace
of Sunrise.Workbench.

Procedure 1. Select the desired project in the Package Explorer.

2. Click on the Debug project button.

The system scans the robot controller for existing project data. If the scan
fails, the cause of the error is displayed in a message.

3. If the scan is successful, the Project synchronization window opens. Se-
lect the desired synchronization direction.

4. Click on Execute.

5. The system signals that the remote connection to the robot controller has
been established successfully.

 The remote connection is established with OK and the debugging ses-
sion is started.

 Transfer of the project can be stopped with Cancel.

6. When the first active break point is reached, the corresponding task is
paused.

If the Debugging perspective is not active, the dialog Confirm change of
perspective is displayed in Sunrise.Workbench. It is recommended that
the dialog is ended with Yes to switch to the Debugging perspective of
Sunrise.Workbench.

 (>>> 19.3.1 "Overview of user interface – “Debugging” perspective"
Page 514)

Once the task has been paused, its source code is opened in the editor
area. The current position of the command pointer is indicated by the fact
that the next command line to be executed is selected.

19.1.3 Ending the debugging session

Description In order to end the debugging session correctly, the remote connection be-
tween Sunrise.Workbench and the robot controller must be disconnected. If
modifications have been made to the code during remote debugging, synchro-
nization of the project is offered.

Precondition Network connection between robot controller and development computer.

 The project that is active on the controller is located in the workspace of
Sunrise.Workbench.

 No application is running on the controller.
511 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

512 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Procedure 1. Click on Stop debug mode.

During an active debugging session, this replaces the Debug project but-
ton.

2. If modifications were made to the source code of the task during the de-
bugging session, the Retain project changes dialog opens:

 Synchronize project is used to synchronize the project and transfer
the changes to the controller.

 With Cancel, the changes are only saved permanently for the project
in the workspace of Sunrise.Workbench. On the controller, the chang-
es are deleted after switching off and back on.

19.2 Debugging tasks

Overview Debugging can be performed for all tasks running on the controller. In order to
debug an application, it may be necessary to start the application via the
smartPAD.

It is advisable to use the Synchronize project option, as
the system response may otherwise be different after a

reboot. If the reboot is not carried out immediately, these changes in behavior
may be unexpected and could result in damage to the machine.

If execution of a task is paused when the connection is
disconnected, task execution is resumed automatically

immediately after disconnection. This also applies to the running application.
In Automatic mode, and in the Test modes if the enabling switch and Start
button are pressed, the robot may move. It is thus advisable to disconnect
the remote connection only if the application has been terminated, or to
pause motion execution first by pressing the Start button on the smartPAD.

Remote debugging influences the time response of tasks. The time
response may therefore deviate from the real time response during
normal execution of the task.

Irrespective of the mode, the system response may
change. Debugging of a task in Automatic mode must be

carried out with particular care.
Interventions that result in a change of state must be tested in Manual Re-
duced Velocity mode (T1).
Interventions and commands that cause a change of state include:

 Modification of program execution

 Execution of additional commands

 Motion commands

 Modification of variables

 Modification of the source code during debugging

 Setting inputs/outputs

 Changes of values, e.g. by calling set methods

This can lead to deviations from the program execution of the task. The de-
viations may have an effect beyond the duration of the debugging session.
Unexpected robot motions are also possible.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
As soon as the first active break point is reached after the remote connection
has been established, execution of the corresponding task can be controlled
via Sunrise.Workbench. Various functions are available for this. The selected
function determines the command line up to which the task is continued.

If task execution is paused during debugging, additional functions are avail-
able and changes can be made to the source code:

 Available functions:

 (>>> 19.3.5 "Overview of the toolbar in the “Debugging” view" Page 523)

 Additional functions of the debugger:

 (>>> 19.3.6 "Variables view" Page 529)

 (>>> 19.3.7 "Monitoring processes" Page 533)

 Information about modification of the source code during debugging:

 (>>> 19.3.8 "Modifying source code" Page 536)

19.2.1 Remote debugging of a robot application

Description A possible procedure for debugging a robot application is described below.

Precondition Debugging session started

 Application started in accordance with the selected operating mode

Procedure 1. On reaching an active break point, the application is stopped by the de-
bugger. Program execution can now be influenced by Sunrise.Work-
bench.

2. At the break point, pressing the corresponding button in the toolbar of the
Debugging view or using the corresponding keyboard shortcut defines
the step at which the application is to be resumed.

3. The application is resumed until the command line defined by selecting the
function is reached. If a code section to be executed contains motion com-
mands, this has a special effect on the sequence.

4. In order to continue the application on reaching a synchronous motion
command or to execute an asynchronous motion command, the following
actions must additionally be carried out on the smartPAD in accordance
with the operating mode:

 T1, T2:

 Press and hold down the enabling switch.

 Press and hold down the Start key.

 AUT:

The smartPAD is also required during the debugging of tasks, e.g.:

Issuing motion enable signal

Starting applications

 Pausing motion commands

 Executing motion commands in the test modes

 Stopping an application prematurely

A running application can be ended via the smartPAD during debug-
ging. In this case, all break points are temporarily deactivated to en-
sure that the application is terminated correctly.

If the application for which debugging is being carried out does not
contain any active break points, it is executed completely without
stopping and then terminated.
513 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

514 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
In AUT mode, no additional operator action is required. The motion is
executed immediately.

5. Once the program section has been executed, the application is stopped.

Exception: With Resume, the application is continued until the next break
point or the end of the application is reached.

6. Debugging functions, such as the observation of variables or the changing
of values, can be used between the individual steps.

19.2.2 Remote debugging of a background task

Description Debugging can also be carried out for background tasks. If a background task
contains active break points, execution of the background task is stopped at
these points during a debugging session.

Debugging of background tasks is essentially carried out in the same way as
debugging of applications. Background tasks do not have to be started sepa-
rately. Furthermore, background tasks should not contain motion commands.
Debugging of background tasks is thus not affected by the selected operating
mode.

Precondition Remote connection has been established.

 All background tasks are running automatically on the controller.

Procedure 1. On reaching an active break point, the background task is stopped by the
debugger. Program execution can now be influenced by Sunrise.Work-
bench.

2. At the break point, pressing the corresponding button in the toolbar of the
Debugging view or using the corresponding keyboard shortcut defines
the step at which the application is to be resumed.

3. The background task is resumed until the command line defined by select-
ing the function is reached.

4. Once the program section has been executed, the background task is
stopped.

Exception: With Resume, the background task is continued until the next
break point or the end of a non-cyclical background task is reached.

5. Debugging functions, such as the observation of variables or the changing
of values, can be used between the individual steps.

19.3 Fundamentals of remote debugging

19.3.1 Overview of user interface – “Debugging” perspective

The Debugging perspective contains a suitable arrangement of views that are
useful for remote debugging.

The standard configuration of the Debugging perspective is displayed below.
The Debugging perspective can be expanded to include additional views.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.2 Break points

Overview The use of break points is a major component of remote debugging. The pro-
grammer uses break points in the source code to define specific points in the
program at which the program is to be stopped during remote debugging.

Break points are created and managed in Sunrise.Workbench. Break points
only pause the task during a debugging session. It is not taken into consider-
ation during normal program execution.

Fig. 19-1: Overview of user interface – “Debugging” perspective

Item Description

1 Debugging view

Displays the Java processes running on the controller.

2 Debugging toolbar

Program execution during remote debugging is controlled by
means of the buttons.

3 Variables view

If task execution is paused during remote debugging, the vari-
ables valid at the current position of the command pointer are dis-
played together with their current values. Modification of values is
possible.

4 Break points view

Break points are displayed and managed here.

5 Editor area

During remote debugging, the source code currently being execut-
ed can be displayed here. If task execution is paused, the current
command line is highlighted. Modification of the source code is
possible.
515 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

516 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The creation, deletion, activation and deactivation of break points and the
modification of their properties are possible before and during remote debug-
ging.

Depending on the position in the code at which the break point is used, a dis-
tinction is made between different types of break point.

 Line break point

The line break point is the most commonly used break point. The line
break point is placed next to a command line. Program execution is
stopped when the break point is reached. The command line next to it is
not executed until remote debugging is resumed.

 Monitoring point

A monitoring point is placed next to the declaration of a field. Program ex-
ecution is stopped before read and/or write access to the field.

 Method break point

A method break point is placed next to the header of a method. Program
execution before the method is entered and/or left.

 Exception break point

An exception break point stops program execution when an error occurs.
Exception break points are displayed and created in the Break points
view.

In order to define more precisely the response on reaching the break point,
certain properties can be parameterized for each break point. Different set-
tings are possible, depending on the type of break point.

19.3.2.1 Creating and deleting break points

Description Break points are created in the editor area of Sunrise.Workbench.

Fig. 19-2: Creating break points
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
Procedure 1. Open the class in the editor area of Sunrise.Workbench.

2. Search for the command line next to which a break point is to be set.

3. Double-click next to the desired command line in the editor bar. A new
break point is inserted and indicated by the corresponding icon on the bar.

4. To remove a break point for a command line, double-click on the corre-
sponding icon.

19.3.2.2 Deactivating and activating break points

Description If a break point is not to be deleted completely, but merely ignored temporarily
during remote debugging, deactivation of the break point is possible. It re-
mains available with all its properties and can be reactivated again if required.

Procedure 1. Open the class in the editor area.

2. Search for the command line containing the break point that is to be deac-
tivated.

3. Right-click on the icon of the break point and select Deactivate break
point from the context menu. The break point is deactivated. The icon for
the break point is grayed out.

4. To activate a deactivated break point, right-click on the icon of the break
point and select Activate break point from the context menu. The break
point is active again.

19.3.2.3 Editing the properties of the break points

Description The properties of a break point define the conditions for stopping a task when
the break point is reached. The settings are dependent on the type of break
point.

Procedure 1. Open the class in the editor area.

2. Search for the command line containing the break point whose properties
are to be edited.

Item Description

1 Editor bar

Break points are displayed next to the corresponding command
line in the bar with a gray background at the left-hand edge of the
editor. Break points can be added to the editor bar, deleted, acti-
vated or deactivated.

2 Monitoring point (in this case for the array “robot”)

 Break point inserted next to the declaration of an array

 Indicated by means of a pair of glasses and/or a pencil

3 Line break point (in this case for the command
robot.move(ptpHome());)

 Break point inserted next to a command line

 Indicated by a blue circle

4 Method break point (in this case for the method mainTask())

 Break point inserted next to the header of a method

 Indicated by a blue circle with arrow

Break points can also be added and removed by right-clicking on the
corresponding point of the editor bar. Select the entry Break point
on/off in the context menu that appears.
517 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

518 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
3. Right-click on the icon of the break point and select Breakpoint proper-
ties from the context menu. The Properties dialog opens.

4. Select Breakpoint properties. Edit the properties of the break point.

5. Confirm with OK. The dialog is closed.

19.3.2.4 Overview of the “Break points” view

The view contains a list of the break points of all classes in the workspace of
Sunrise.Workbench. The view offers the following functions:

 Display of all break points

 Activation, deactivation and deletion of break points

 Modification of break point properties

 Addition of exception break points

Overview

The functionalities offered by the buttons in the toolbar include the following:

Fig. 19-3: “Break points” view

Item Description

1 Activation of the break point

Check box active: Break point is activated.

Check box not active: Break point is not activated.

2 Designation of the break point

The designation is composed of special properties of the break
point in order to enable unambiguous identification.

3 Break point list

List of the break points of all classes in the workspace

4 Break point properties

The properties of the break point selected in the list can be dis-
played and edited in this area.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.2.5 Conditional break point

Description For break points, a condition can be formulated as an additional property.
Such a conditional break point only causes the corresponding task to stop if a
condition defined by the user is met when the break point is reached.

Conditions can be defined for the following break points:

 Line break point

 Method break point

In the case of a conditional break point, a question mark is added next to the
icon for the break point in the editor bar.

Button Description

Remove selected break points

Deletes the break points selected in the break point list.

Remove all break points

Deletes all break points in the list.

Go to file for break point

The class containing the break point selected in the list is
opened in the editor area in the foreground and the corre-
sponding command line is selected.

Skip all break points

If this button is active, all break points are suppressed and do
not cause the execution of the corresponding task to be
stopped.

Add break point for Java exception condition

Opens the dialog for adding an exception break point.

The condition is evaluated every time the break point is
reached. This influences the time response of the task.

It is recommended not to use state-changing commands in the condition. In-
terventions and commands that cause a change of state include:

 Motion commands

 Modification of variables

 Modification of the source code

 Setting inputs/outputs

 Changes of values, e.g. by calling set methods

Fig. 19-4: Setting the properties
519 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

520 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Overview

Example An application is to be interrupted before the start of a joining operation if the
applied force is insufficient. In this example, the applied force is considered to
be insufficient if the force acting on the Z axis of the flange is less than 5 N.

The following break point properties are set for this:

Item Description

1 Check box for activation of the condition

 Check box not active: The condition is not active.

The corresponding task is stopped every time the break point
is reached.

 Check box active: The condition is active.

Depending on the result of the evaluated condition, the corre-
sponding task is stopped when the break point is reached.

2 Selection of the event

Defines the event that causes the corresponding task to be
stopped.

 Suspend when 'true'

The task is stopped exactly on reaching the break point if the
defined condition is met (return value TRUE).

 Suspend when value changes

The task is stopped exactly on reaching the break point if the
state of the condition has changed since the last time the break
point was reached (change of state from condition met to con-
dition not met or vice versa).

3 List of recently entered conditions

If a condition is selected from the list, it is entered in the editor box
and the previous contents of the box are deleted.

4 Editor box

The condition is entered in the editor box.

Certain rules must be observed. Simple Boolean expressions can
be entered, e.g.:

 input == FALSE

 counter <= 510

Complex Java instructions can also be formulated. The commands
are then executed every time the break point is reached. A Bool-
ean value must be returned at the end of the sequence of instruc-
tions in order to enable evaluation of the condition. Correct syntax
must be observed.

Variables and commands that are also available at the position of
the break point in the source code of the task or class can be used
when formulating the conditions.

Evaluation of the conditions results in a significant change in the
time response. It is advisable to limit the number and duration of
the commands used to an absolute minimum, as the conditions are
evaluated every time the break point is reached.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
The application is only stopped if the result of evaluation of the condition is
TRUE. The condition consists of a sequence of instructions that are executed
every time the break point is reached. First of all, the calculated force at the
robot flange is polled. The system then checks whether the Z component of
the force vector falls below -5 Nm. The result of the evaluation is returned.

19.3.2.6 Suspend thread property

Description The selection of Suspend thread in the properties of a break point must not
be changed.

19.3.3 Command pointer

During debugging, program execution is controlled manually.

The command pointer indicates the current position in the source code and the
next command to be executed. During program execution, the command
pointer jumps from one command line to the next.

During remote debugging, the command pointer is moved through the source
code of the task, and the classes used by it, by Sunrise.Workbench. The com-
mand lines that the command pointer moves past are executed.

Fig. 19-5: Conditional break point

Suspend VM must not be selected. Otherwise, all Java
processes are stopped and the robot controller must be

restarted.

Fig. 19-6: Defining processes

Fig. 19-7: Command pointer
521 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

522 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
19.3.4 Overview of the “Debugging” view

Description The Debug view contains the toolbar and a list of all Java processes running
on the controller. These processes are referred to as threads. The task for
which debugging is carried out is one of the threads running on the controller.

In the Debug view, the corresponding stack trace is displayed beneath a
thread. The stack trace contains the current method calls of a thread and is
used for tracking program execution.

Example In a robot application, the method assembly() is called in the method run() in
order to assemble a component. The method assembly() then calls the meth-
od checking() to check whether the assembly process has been successfully
completed:

Item Description

1 Position of the command pointer (blue arrow)

The command pointer indicates the next command to be executed.
The current position of the command pointer in the source code is
indicated by a blue arrow.

2 Next command line to be executed

The next command line to be executed is highlighted in color.

Fig. 19-8: Overview of “Debugging” view

Item Description

1 Toolbar

Program execution during remote debugging is controlled by
means of the buttons.

2 Task thread

Thread of the executed task. The designation contains the name
of the executed tasks (here application.ExampleApplication). The
corresponding stack trace is located beneath the thread.

3 Stack trace

The stack trace of the task thread contains the methods that are
relevant for execution of the task. The called methods are specified
with their identifiers. In this way, the user can identify the relevant
methods.

The methods are specified in the order in which they are called.

public void run(){
 // ...

 assembly();

 // ...

}

Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
Execution is interrupted at a break point in the method checking(). The com-
mand pointer is located before the next command line to be executed. The
method checking() is selected in the stack trace of the task thread:

If the method run() is selected in the stack trace of the task thread, the current
position of the command pointer in the method run() is displayed:

The filled white arrow icon does not indicate the call of assembly() here, but
the progress of the task in the method run().

19.3.5 Overview of the toolbar in the “Debugging” view

Program execution is controlled by means of the buttons in the toolbar. Key-
board commands can alternatively be used for most functions.

public void assembly(){
 // ...

 boolean result = checking();
 // ...

}

public boolean checking(){
 // ...

 return result;
}

Fig. 19-9: Position of command pointer in the checking() method

Fig. 19-10: Position of command pointer in the run() method
523 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

524 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
19.3.5.1 Continuing execution (Resume)

The Resume button is used to continue execution of a task until the next break
point or the end of the task is reached.

Button Name/description

Resume

Key: F8

Execution of a task is continued until the next break point or
the end of the task is reached.

 (>>> 19.3.5.1 "Continuing execution (Resume)" Page 524)

Step in

Key: F5

If the current command line contains an individual instruction,
it is executed.

If the current command line is a method call, the command
pointer jumps to the start of the called method.

 (>>> 19.3.5.2 "Jump into the method (Step in)" Page 525)

Step over

Key: F6

The current command line is executed completely. If the line
contains a method call, the method is executed completely.

 (>>> 19.3.5.3 "Executing a method completely (Step over)"
Page 525)

Step back

Key: F7

The method currently being executed is executed through to
the end. Task execution then stops in the calling method.

 (>>> 19.3.5.4 "Terminating the executed method (Step back)"
Page 526)

Back to frame

No key assigned

This function can be used to jump to a point in the source code
that has already been executed.

 (>>> 19.3.5.5 "Executing code sections again (Back to
frame)" Page 527)

Pause

No key assigned

Pauses execution.

 (>>> 19.3.5.7 "Pausing debugging (Pause)" Page 529)

--- Execution to line (only available as a keyboard shortcut)

Key combination: Ctrl+R

Task execution is resumed until the command pointer reaches
a command line defined by the user.

 (>>> 19.3.5.6 "Defining the code section to be executed (Ex-
ecution to line)" Page 528)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.5.2 Jump into the method (Step in)

Description If the current command line contains a method call, the command pointer
jumps to the start of the called method when Step in is used.

If the current command line contains not a method call, but an individual in-
struction, the command line is executed and the command pointer jumps to
the next command line.

Example The application was interrupted before the call of the pickupWorkpiece() meth-
od. Step in causes the command pointer to jump to the start of the method:

19.3.5.3 Executing a method completely (Step over)

Description Step over executes the current command line and the command pointer
jumps to the next program line.

If the command line contains a method call, the method is executed complete-
ly as long as it does not contain a break point.

Formatting Since the source code is executed step by step during remote debugging, the
formatting of the source text influences the number of steps required for com-
plete execution of the commands when using Step over.

Formatting example: Object of type CartesianImpedanceControlMode

With the following formatting, 3 steps are required when using Step over:

The source code of the called method is only displayed if the source
code of this method is available. If the source code is not available,
the warning Source not found is displayed.

 Execution can be resumed.

 The user has no way of viewing the command currently being executed.

 In this case, Step back takes the user back to source code that can be
displayed.

 (>>> 19.3.5.4 "Terminating the executed method (Step back)"
Page 526)

 Use of Step over is recommended for jumping into a motion command
(robot.move(…)).

 (>>> 19.3.5.3 "Executing a method completely (Step over)" Page 525)

Fig. 19-11: Jump to method

CartesianImpedanceControlMode mode =
525 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

526 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
If the code is divided by further line breaks, the code section is completely ex-
ecuted after a total of 4 steps with the following formatting when using Step
over:

Example The application was interrupted before execution of the pickupWorkpiece()
method. Step over completely executes the method and the command pointer
jumps to the following command line.

19.3.5.4 Terminating the executed method (Step back)

Description Step back causes the method in which the command pointer is currently lo-
cated to be executed completely. The command pointer returns to the calling
method and jumps to the following command line. Program execution is
paused.

Example The command pointer is located inside the method pickupWorkpiece() that
was called by the method run(). With Step back, the method pickupWork-
piece() is executed completely and execution of the application is stopped be-
fore the next command line in the method run():

new CartesianImpedanceControlMode();
mode.parametrize(CartDOF.Z).setStiffness(500);

CartesianImpedanceControlMode mode =

new CartesianImpedanceControlMode();
mode.parametrize(CartDOF.Z)

 .setStiffness(500);

Fig. 19-12: “Step over” method

If, when Step back is used, program execution is interrupted before
the end of the method has been reached and resumed with Resume,
the pause requested by Step back is invalidated. In this case, execu-

tion of the task is not interrupted at the end of the method.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.5.5 Executing code sections again (Back to frame)

Editing

Back to frame can be used to run program sections that have already been
executed again. By default, the command pointer jumps to the start of the
method that is currently being executed. Program execution is then paused.

In the Debugging view, it is possible to return to each call level of the task us-
ing the stack trace. To do so, the desired method is selected in the stack trace.
Back to frame causes the command pointer to jump to the start of this meth-
od.

Once the command pointer has been placed at a previously executed position
in the code by means of Back to frame, the following code can be executed
(again).

Example The command pointer is currently located in the pickupWorkpiece() method.
By default, Back to frame causes it to jump back to the start of the method.
Execution of the task is resumed from there.

Fig. 19-13: “Step back” to calling method

Back to frame changes the normal program execution.
If state-changing interventions are carried out in the cur-

rent method or its submethods, this can result in unexpected system behav-
ior and unexpected robot motions.
Interventions and commands that cause a change of state include:

 Motion commands

 Modification of variables

 Modification of the source code

 Setting inputs/outputs

 Changes of values, e.g. by calling set methods

When Back to frame is used, modifications to arrays or external data
that were not carried out in the affected code section are not undone.
527 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

528 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
If the run() method is first selected in the stack trace of the task, Back to frame
causes the command pointer to jump to the start of the run() method:

19.3.5.6 Defining the code section to be executed (Execution to line)

Description With Execution to line, the program is resumed until the command pointer
reaches a command line defined by the user. Execution to line is not avail-
able in the Debugging view.

Procedure 1. Left-click into the line to which the task is to be executed. The line is high-
lighted with a blue background.

2. Task execution is resumed as far as the selected line or a preceding break
point by means of the keyboard shortcut Ctrl+R.

Alternatively, the function can be selected from the context menu Execution
to line after right-clicking into the desired command line.

Fig. 19-14: Back to frame (jump to start of current method)

Fig. 19-15: Back to frame (jump to start of run() method)
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.5.7 Pausing debugging (Pause)

Task execution can be paused manually by pressing the Pause button.

When pausing, as when reaching a break point, the current command line is
displayed in the editor area. If the corresponding source code is not available
when using Pause, the warning Source not found is displayed in the editor
area.

19.3.6 Variables view

The Variables view is integrated into the Debugging perspective.

It contains a table with all variables that are available at the currently indicated
position of the command pointer.

The variables are not available during execution of a task. The updated values
are only displayed while execution is paused.

The request for pausing task execution at the selected command line
is only valid once. If execution is stopped before the command line is
reached, and then resumed with Resume, execution is not stopped

when the command line is reached.

If the Pause function is used, the user must ensure that the corre-
sponding thread task is selected in the Debugging view. The func-
tioning of the controller may otherwise be adversely affected to such

an extent that a reboot of the controller is required.
Motion commands that have already been sent to the controller are not
paused by the Pause function, but processed in the controller and executed.

The Start/Pause key on the smartPAD is only used to pause motion
commands. Pausing via the smartPAD only affects execution of the
application if a synchronous motion command is due to be executed,

as the command pointer only jumps to the next motion line after the motion
command has been completed.

If variable values change during remote debugging, program execu-
tion will be modified.
529 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

530 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Fig. 19-16: Variables view

Item Description

1 Table of available variables

The table contains the currently available arrays and local vari-
ables and their values. Only those variables that are available at
the position of the command pointer in the selected method in the
stack trace of the Debugging view are displayed.

The Name column contains the variable name. Variables with a
complex type are displayed hierarchically. Variables with complex
data types can be expanded and their arrays displayed using the
icon to the left of the name.

The current value of the variable is displayed in the Value column.
In the case of variables with complex data types, the result of the
call of the toString() method is displayed by default. The values of
primitive data types and string values can be modified directly in
the table.

2 Detailed information

This area contains detailed information about the variable selected
in the table. The variable value is displayed for primitive data types
and strings. In the case of complex data types, the result of the call
of the toString() method is displayed by default.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.6.1 Displaying and modifying variables

Description Irrespective of their visibility, variables and their values can be displayed and
modified in the Variables view.

Precondition Task execution is paused.

Procedure By default, only those variables that are available at the position of the com-
mand pointer in the selected method in the stack trace of the Debugging view
are displayed:

1. In order to display variables that are available in a different method, select
the method in the stack trace of the Debugging view.

Fig. 19-17: Displaying variables

Item Description

1 Instance

The variable this refers to the instance of the class whose method
has been selected in the stack trace and in whose source code the
command pointer is currently displayed. During remote debugging
of a task, the robot that is being used can be accessed, e.g. via the
instance of the class. Here is the application for which remote de-
bugging is being carried out.

2 Representation of complex data types

Variables with a complex data type (here the class CartesianSin-
eImpedanceControlMode) are displayed in a hierarchical struc-
ture. Expanding the structure displays the fields of the referenced
object. Fields of primitive data types and strings are at the bottom
level.

3 Changes of values

The values of primitive data types and string values can be modi-
fied directly in the table. Once a value has been modified, the vari-
able is highlighted in yellow in the table.
531 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

532 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
2. In order to modify variables of primitive data types, left-click on the value
of the variable displayed in the Value column.

3. Enter the new value and confirm with the Enter key.

New values can be assigned to variables with complex data types in the dialog
Change object value:

1. Right-click on the desired variable in the table and select Change value...
from the context menu. The Change object valie dialog opens.

2. Enter the corresponding instructions in the editor field.

19.3.6.2 Expanded context help for variables

If task execution is paused during remote debugging, the Java editor has ex-
panded context help for variables. The expanded context help is then available
for all variables that are available at the position of the command pointer in the
selected method in the stack trace.

To display the context help, the mouse pointer is moved over the desired vari-
able in the source code. A window opens displaying information about the vari-
ables (data type, name, current value).

Complex data types are displayed in a hierarchical structure, like in the Vari-
ables view. Expanding the structure displays the fields of the referenced ob-
ject. Elementary data types and strings are located at the bottom hierarchy
level.

If incorrect values are entered, a message is displayed and the old
value is retained. However, only incorrect entries that are recognized
as such by the autocorrect function of the Java editor are prevented.

When making entries, it must be ensured that syntactically correct
Java source code is used and that a value with a suitable data type is
returned at the end of the sequence of instructions.

Fig. 19-18: Advanced context help
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.7 Monitoring processes

Description During remote debugging, data can also be monitored that are not available
as variables. These include, for example, the current position of the robot.

Monitoring expressions can be formulated in Sunrise.Workbench. The moni-
toring expressions are managed in the Expressions view and evaluated each
time task execution is stopped during a debugging session. Both individual ex-
pressions and more complex instruction sequences can be entered. Correct
syntax must be observed.

Configured monitoring expressions are not deleted after the end of the debug-
ging session and are thus also taken into consideration in subsequent debug-
ging sessions.

Procedure Display the Expressions view:

 Menu sequence Window > Show View

 The Expressions view can be selected via the Other… menu item.

Item Description

1 Variable (source code)

Variable in the source code for which the expanded context help is
displayed.

2 Variable (context help)

Expanded context help for the variable. The designation and value
are displayed. In the case of complex data types, the data type is
also specified.

Variables with a complex type are displayed hierarchically in a tree
structure.

3 Details

Details of the selected component are displayed here. In the case
of variables with primitive data types and strings, the correspond-
ing value is displayed; in the case of variables with a complex data
type, the result of the call of toString() is displayed by default.

It is recommended that monitoring expressions are only
used for polling states and that no state-changing com-

mands are used in the expressions.
Interventions and commands that cause a change of state include:

 Motion commands

 Modification of variables

 Modification of the source code

 Setting inputs/outputs

 Changes of values, e.g. by calling set methods
533 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

534 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Overview

19.3.7.1 Adding new monitoring expressions

Precondition Expressions view opened.

Procedure 1. Left-click into the first blank line (indicated by a green + symbol) in the
Name column.

2. Enter the monitoring expression in the Name column and confirm with the
Enter key. The monitoring expression is added.

If a debugging session is active and task execution has been stopped, the
expression is evaluated immediately.

Fig. 19-19: “Expressions” view

Item Description

1 Table of created monitoring expressions

The Name column contains the source code of the monitoring ex-
pression. If available, the return value of the expression is specified
under Value.

2 Line for new expression

New expressions can be entered in the first unoccupied line of the
table.

3 Details

Detailed information about the selected expression is displayed in
this area. By default, complex data types are the result of the call
of toString() on the return value of the monitoring expression. For
variables of primitive data types and strings, the corresponding val-
ue is displayed.

4 Evaluation error

If an expression cannot be evaluated, an error message is dis-
played in the Value column.

Monitoring expressions are not automatically deleted af-
ter the end of the debugging session and are thus also

active in subsequent debugging sessions. The use of monitoring expressions
modifies program execution. It is recommended not to use state-changing
commands in monitoring expressions. Unexpected behavior may otherwise
result.
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
19.3.7.2 Deleting monitoring expressions

Monitoring expressions can be deleted.

Precondition Expressions view opened.

Procedure Right-click in the line with the monitoring expression that is to be deleted.

Select the entry Delete from the context menu.

19.3.7.3 Evaluating monitoring expressions

Description During remote debugging of a task, monitoring expressions are automatically
re-evaluated and updated in the following situations:

 On stopping execution at a break point

 On stopping execution by means of the debugging function Pause

 At the end of execution of one of the following debugging functions:

 Step in

 Step over

 Step back

 Back to frame

 Execute to line

If task execution is interrupted during debugging, evaluation of a monitoring
expression can be explicitly requested.

Procedure Right-click in the line with the expression that is to be monitored.

Select the entry Re-evaluate monitoring expression in the context
menu.

Evaluation of a monitoring expression is only successful if the command at the
current position of the command pointer in the method selected in the stack
trace of the task thread can be executed.

Example During remote debugging of a task, the current Cartesian position of the tool
TCP is to be displayed after every execution step. A monitoring expression is
formulated for this.

The identifier of the robot array of the application is robot (data type: LBR).
The gripper is represented by the gripper array (data type: com.kuka.robot-
icsAPI.geometricModel.Tool). The following command call is thus required for
polling the current position of the gripper TCP:

This command is entered in the Name column in the Expressions view:

robot.getCurrentCartesianPosition(gripper.getDefaultMotionFrame());

Fig. 19-20: Entering a monitoring expression
535 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

536 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
The monitoring expression is re-evaluated every time task execution is
paused. The returned value is of type com.kuka.geometricModel.Frame.
Complex data types are displayed hierarchically. Expanding the tree structure
displays the arrays of the returned object.

19.3.8 Modifying source code

During an active debugging session, it is possible to perform certain modifica-
tions in the source code of tasks and other classes.

The following must always be observed in the case of modifications to the
source code during an active debugging session:

 Only modify source code while execution of the task is paused. Do not
modify source code during execution of the task.

 Save modifications to the source code before starting or resuming execu-
tion of the task.

19.3.8.1 Impermissible modification of the source code

The following modifications to the source code may lead to complications and
should thus not be made during an active debugging session:

 Addition of new methods or fields

 Modification of the designation of a method or field

 Modification of the data type of a field

 Modification of the return type of a method

 Modification of the number of transfer parameters of a method

 Modification of the data type of transfer parameters of a method

Fig. 19-21: Evaluating a monitoring expression
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

19 Remote debugging
 Generation of syntax errors in the code

19.3.8.2 Permissible modification of the source code

The following must be taken into consideration if, during debugging of a task,
modifications are made in the source code of this task or in the source code of
the classes used in it:

 If modifications are made to the source code in a method that is currently
located in the stack trace of the task thread, the command pointer jumps
to the start of this method after saving the change.

After saving an impermissible modification of the source code during
remote debugging, a dialog opens with a corresponding warning
message.

 Next button: The debugging session can be resumed.

 Disconnect button: The debugging session can be aborted and the re-
mote connection disconnected. It is advisable to abort the debugging
session and reestablish the remote connection.

The jump by the command pointer to the start of a meth-
od on saving modifies the normal program sequence.

This can result in unexpected system behavior and unexpected robot mo-
tions.
537 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

538 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

20 Appendix
20 Appendix

20.1 Compatibility and migration of projects

From Version 1.8 onwards, KUKA Sunrise.OS contains new features that af-
fect the upward compatibility of projects created using an earlier software ver-
sion (< 1.8).

 Task functions in the RoboticsAPI

Some task functions have been renamed or are now used differently.

The migration of projects that use these task functions can thus lead to
compiler errors. The programming must be adapted.

 (>>> 20.1.1 "Modified task functions – adapting the programming"
Page 539)

 I/O configuration

The current version of WorkVisual generates a changed folder structure
when exporting the I/O configuration in Sunrise.Workbench (the folder
generatedFiles now contains the folder IOConfiguration).

If a project is synchronized that still has the old folder structure, the I/O
configuration is not transferred and no I/Os are available on the robot con-
troller.

In order to generate the new folder, the I/O configuration of the project
must be opened in WorkVisual and exported again in Sunrise.Workbench.
Precondition: The option package supplied with the new software (KOP
file Sunrise) is installed in WorkVisual. Only then is the new folder gener-
ated on exporting.

If, following the export, the folder generatedFiles contains the folder IO-
Configuration, the project can be synchronized on the robot controller.

20.1.1 Modified task functions – adapting the programming

The modified task functions and the adaptations required in the tasks are de-
scribed here in order to be able to continue using tasks created with a software
version < 1.8.

ITaskLogger If using ITaskLogger references:

Modify the package name for ITaskLogger:

 Previously: import com.kuka.roboticsAPI.applicationModel
.tasks.ITaskLogger;

 Now: import com.kuka.task.ITaskLogger;

ITaskFunction If using the interface ITaskFunction (>>> 16.4 "Data exchange between
tasks" Page 464):

The interface ITaskFunction has been dispensed with. The following referenc-
es in the interface in which the task functions are declared must therefore be
deleted:

 Delete the following addition in the header of the interface:

extends ITaskFunction

 Delete the following import:

import com.kuka.roboticsAPI.applicationMo-
del.tasks.ITaskFunction;

The interface ITaskFunctionProvider and the @ProvidedFunctions annotation
have been replaced by the @TaskFunctionProvider annotation. For this rea-

2

A

x

539 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

540 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
son, the following changes are required in the task that provides the task func-
tions (providing task):

 Delete the following annotation: @ProvidedFunctions(…)

 Delete the following addition in the header of the task:

implements ITaskFunctionProvider

 Delete the method createTaskFunctions() and the corresponding Map in-
stance:

public Map<Class<? extends ITaskFunction>, ITaskFunc-
tion> createTaskFunctions(){
...
}

 For each interface whose task functions the task provides, insert a param-
eterless public method with the annotation @TaskFunctionProvider that
returns implementation of the interface:

@TaskFunctionProvider

public Interface Method name()

return Interface instance;

}

 Interface: Interface whose task functions the task provides

 Method name: Name of the method that returns the implementation of
the interface (the name can be freely selected)

 Interface instance: Instance of the implementing class

 Delete the following import:

import com.kuka.roboticsAPI.applicationModel.tasks.*

The method getTaskFunction(…) now directly returns the interface in which
the task functions are declared. For this reason, the following changes are re-
quired in the task that accesses the task functions (requesting task):

 Change the type of data array used to access the task functions:

 Data type previously: ITaskFunctionAccessor<Interface>

 Interface: Interface in which the task functions are declared.

 Data type now: Interface

The method getTaskFunction(…) now directly returns the interface.

 Remove the .get() method from the calls of the modified variable.

 If the accessor methods isAvailable() or await(…) have been used, create
a new data array of type ITaskFunctionMonitor and initialize it with the
method TaskFunctionMonitor.create(…). The instance of the interface in
which the task functions are declared is transferred to the method as a pa-
rameter.

private ITaskFunctionMonitor Monitor;

Monitor = TaskFunctionMonitor.create(Interface instance);

If the providing task implements the interface itself, transfer the in-
stance of the task for the parameter Interface instance:
return this;
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

21 KUKA Service
21 KUKA Service

21.1 Requesting support

Introduction This documentation provides information on operation and operator control,
and provides assistance with troubleshooting. For further assistance, please
contact your local KUKA subsidiary.

Information The following information is required for processing a support request:

 Description of the problem, including information about the duration and
frequency of the fault

 As comprehensive information as possible about the hardware and soft-
ware components of the overall system

The following list gives an indication of the information which is relevant in
many cases:

 Model and serial number of the kinematic system, e.g. the manipulator

 Model and serial number of the controller

 Model and serial number of the energy supply system

 Designation and version of the system software

 Designations and versions of other software components or modifica-
tions

 Diagnostic package KRCDiag

Additionally for KUKA Sunrise: Existing projects including applications

For versions of KUKA System Software older than V8: Archive of the
software (KRCDiag is not yet available here.)

 Application used

 External axes used

21.2 KUKA Customer Support

Availability KUKA Customer Support is available in many countries. Please do not hesi-
tate to contact us if you have any questions.

Argentina Ruben Costantini S.A. (Agency)

Luis Angel Huergo 13 20

Parque Industrial

2400 San Francisco (CBA)

Argentina

Tel. +54 3564 421033

Fax +54 3564 428877

ventas@costantini-sa.com

Australia KUKA Robotics Australia Pty Ltd

45 Fennell Street

Port Melbourne VIC 3207

Australia

Tel. +61 3 9939 9656

info@kuka-robotics.com.au

www.kuka-robotics.com.au

2

A

v

541 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

542 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Belgium KUKA Automatisering + Robots N.V.

Centrum Zuid 1031

3530 Houthalen

Belgium

Tel. +32 11 516160

Fax +32 11 526794

info@kuka.be

www.kuka.be

Brazil KUKA Roboter do Brasil Ltda.

Travessa Claudio Armando, nº 171

Bloco 5 - Galpões 51/52

Bairro Assunção

CEP 09861-7630 São Bernardo do Campo - SP

Brazil

Tel. +55 11 4942-8299

Fax +55 11 2201-7883

info@kuka-roboter.com.br

www.kuka-roboter.com.br

Chile Robotec S.A. (Agency)

Santiago de Chile

Chile

Tel. +56 2 331-5951

Fax +56 2 331-5952

robotec@robotec.cl

www.robotec.cl

China KUKA Robotics China Co., Ltd.

No. 889 Kungang Road

Xiaokunshan Town

Songjiang District

201614 Shanghai

P. R. China

Tel. +86 21 5707 2688

Fax +86 21 5707 2603

info@kuka-robotics.cn

www.kuka-robotics.com

Germany KUKA Roboter GmbH

Zugspitzstr. 140

86165 Augsburg

Germany

Tel. +49 821 797-1926

Fax +49 821 797-41 1926

Hotline.robotics.de@kuka.com

www.kuka-roboter.de
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

21 KUKA Service
France KUKA Automatisme + Robotique SAS

Techvallée

6, Avenue du Parc

91140 Villebon S/Yvette

France

Tel. +33 1 6931660-0

Fax +33 1 6931660-1

commercial@kuka.fr

www.kuka.fr

India KUKA Robotics India Pvt. Ltd.

Office Number-7, German Centre,

Level 12, Building No. - 9B

DLF Cyber City Phase III

122 002 Gurgaon

Haryana

India

Tel. +91 124 4635774

Fax +91 124 4635773

info@kuka.in

www.kuka.in

Italy KUKA Roboter Italia S.p.A.

Via Pavia 9/a - int.6

10098 Rivoli (TO)

Italy

Tel. +39 011 959-5013

Fax +39 011 959-5141

kuka@kuka.it

www.kuka.it

Japan KUKA Robotics Japan K.K.

YBP Technical Center

134 Godo-cho, Hodogaya-ku

Yokohama, Kanagawa

240 0005

Japan

Tel. +81 45 744 7691

Fax +81 45 744 7696

info@kuka.co.jp

Canada KUKA Robotics Canada Ltd.

6710 Maritz Drive - Unit 4

Mississauga

L5W 0A1

Ontario

Canada

Tel. +1 905 670-8600

Fax +1 905 670-8604

info@kukarobotics.com

www.kuka-robotics.com/canada
543 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

544 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Korea KUKA Robotics Korea Co. Ltd.

RIT Center 306, Gyeonggi Technopark

1271-11 Sa 3-dong, Sangnok-gu

Ansan City, Gyeonggi Do

426-901

Korea

Tel. +82 31 501-1451

Fax +82 31 501-1461

info@kukakorea.com

Malaysia KUKA Robot Automation (M) Sdn Bhd

South East Asia Regional Office

No. 7, Jalan TPP 6/6

Taman Perindustrian Puchong

47100 Puchong

Selangor

Malaysia

Tel. +60 (03) 8063-1792

Fax +60 (03) 8060-7386

info@kuka.com.my

Mexico KUKA de México S. de R.L. de C.V.

Progreso #8

Col. Centro Industrial Puente de Vigas

Tlalnepantla de Baz

54020 Estado de México

Mexico

Tel. +52 55 5203-8407

Fax +52 55 5203-8148

info@kuka.com.mx

www.kuka-robotics.com/mexico

Norway KUKA Sveiseanlegg + Roboter

Sentrumsvegen 5

2867 Hov

Norway

Tel. +47 61 18 91 30

Fax +47 61 18 62 00

info@kuka.no

Austria KUKA Roboter CEE GmbH

Gruberstraße 2-4

4020 Linz

Austria

Tel. +43 7 32 78 47 52

Fax +43 7 32 79 38 80

office@kuka-roboter.at

www.kuka.at
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

21 KUKA Service
Poland KUKA Roboter Austria GmbH

Spółka z ograniczoną odpowiedzialnością

Oddział w Polsce

Ul. Porcelanowa 10

40-246 Katowice

Poland

Tel. +48 327 30 32 13 or -14

Fax +48 327 30 32 26

ServicePL@kuka-roboter.de

Portugal KUKA Robots IBÉRICA, S.A.

Rua do Alto da Guerra n° 50

Armazém 04

2910 011 Setúbal

Portugal

Tel. +351 265 729 780

Fax +351 265 729 782

info.portugal@kukapt.com

www.kuka.com

Russia KUKA Robotics RUS

Werbnaja ul. 8A

107143 Moskau

Russia

Tel. +7 495 781-31-20

Fax +7 495 781-31-19

info@kuka-robotics.ru

www.kuka-robotics.ru

Sweden KUKA Svetsanläggningar + Robotar AB

A. Odhners gata 15

421 30 Västra Frölunda

Sweden

Tel. +46 31 7266-200

Fax +46 31 7266-201

info@kuka.se

Switzerland KUKA Roboter Schweiz AG

Industriestr. 9

5432 Neuenhof

Switzerland

Tel. +41 44 74490-90

Fax +41 44 74490-91

info@kuka-roboter.ch

www.kuka-roboter.ch
545 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

546 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Spain KUKA Robots IBÉRICA, S.A.

Pol. Industrial

Torrent de la Pastera

Carrer del Bages s/n

08800 Vilanova i la Geltrú (Barcelona)

Spain

Tel. +34 93 8142-353

Fax +34 93 8142-950

comercial@kukarob.es

www.kuka.es

South Africa Jendamark Automation LTD (Agency)

76a York Road

North End

6000 Port Elizabeth

South Africa

Tel. +27 41 391 4700

Fax +27 41 373 3869

www.jendamark.co.za

Taiwan KUKA Robot Automation Taiwan Co., Ltd.

No. 249 Pujong Road

Jungli City, Taoyuan County 320

Taiwan, R. O. C.

Tel. +886 3 4331988

Fax +886 3 4331948

info@kuka.com.tw

www.kuka.com.tw

Thailand KUKA Robot Automation (M)SdnBhd

Thailand Office

c/o Maccall System Co. Ltd.

49/9-10 Soi Kingkaew 30 Kingkaew Road

Tt. Rachatheva, A. Bangpli

Samutprakarn

10540 Thailand

Tel. +66 2 7502737

Fax +66 2 6612355

atika@ji-net.com

www.kuka-roboter.de

Czech Republic KUKA Roboter Austria GmbH

Organisation Tschechien und Slowakei

Sezemická 2757/2

193 00 Praha

Horní Počernice

Czech Republic

Tel. +420 22 62 12 27 2

Fax +420 22 62 12 27 0

support@kuka.cz
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

21 KUKA Service
Hungary KUKA Robotics Hungaria Kft.

Fö út 140

2335 Taksony

Hungary

Tel. +36 24 501609

Fax +36 24 477031

info@kuka-robotics.hu

USA KUKA Robotics Corporation

51870 Shelby Parkway

Shelby Township

48315-1787

Michigan

USA

Tel. +1 866 873-5852

Fax +1 866 329-5852

info@kukarobotics.com

www.kukarobotics.com

UK KUKA Robotics UK Ltd

Great Western Street

Wednesbury West Midlands

WS10 7LL

UK

Tel. +44 121 505 9970

Fax +44 121 505 6589

service@kuka-robotics.co.uk

www.kuka-robotics.co.uk
547 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

548 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Index
Index

Symbols
“Ready for motion”, polling 381

Numbers
2006/42/EC 43
2014/30/EU 43
3-point method 119
95/16/EC 43

A
ABC 2-point method 116
ABC world method 118
Accessories 21, 25
Activation delay, for safety function 259
Actual position, axis-specific 101
Actual position, Cartesian 101
addCartesianForce(…) 424
addCartesianTorque(…) 425
addCommandedCartesianPositionXYZ(…) 425
addCommandedJointPosition(…) 425
addControllerListener(…) 381, 385
addCurrentCartesianPositionXYZ(…) 426
addCurrentJointPosition(…) 425
addDoubleUserKey(…) 432
addExternalJointTorque(…) 424
addInternalJointTorque(…) 424
addUserKey(…) 432
Administrator 160
Allow muting via input 299
AMF 18
ANSI/RIA R.15.06-2012 43
API 18
App_Enable 190, 198
App_Start 190, 452
Appendix 539
Application data (view) 49
Application mode 83
Application override 82, 97, 99, 388
Application tool 86
Application, pausing 442
Applied norms and directives 43
Approximate positioning 312
Approximate positioning point 312
areAllAxesGMSReferenced() 385
areAllAxesPositionReferenced() 385
areDataValid() 133
Asynchronous motion execution 342
attachTo(…) 358
AUT 27
AutExt_Active 191
AutExt_AppReadyToStart 191, 452
Auto-complete 326
Automatic 27
Automatic mode 41
Automatic mode (standard AMF) 208, 209, 235
Auxiliary point 304, 344
awaitFileAvailable(…) 429
Axis limit 255

Axis range 27, 255
Axis range monitoring (parameterizable AMF)
208, 211, 255
Axis torque condition 391
Axis torque monitoring 260
Axis torque monitoring (parameterizable AMF)
209, 212, 260
Axis torques, polling 371
Axis velocity monitoring (parameterizable AMF)
209, 211, 241
Axis-specific impedance controller 473, 495
Axis-specific monitoring spaces, defining 255
Axis-specific position, polling 376

B
Background application, starting 99
Background application, stopping 99
Background task, new 55
Background tasks 459
Backup Manager 106
Backup manager 174
Backup Manager, configuration 171
Base coordinate system 81, 119
Base for jogging 144
Base-related TCP force component (AMF) 296
Base-related TCP force component (paramete-
rizable AMF) 209, 212, 266
Base, calibration 119
Blocking wait 421
BooleanIOCondition 390
Brake defect 37
Brake test 125
Brake test application, template 127
Brake test, evaluation 136
Brake test, performing 140
Brake test, polling results 138
Brake test, programming interface 131
Brake test, results (display) 141
Brake test, start of execution 135
Brake test, starting position 131
Brake, defective 126
BrakeState (enum) 138
BrakeTest (class) 131, 134
BrakeTestResult (class) 137
Braking distance 27
Break conditions for motions 409
Break conditions, evaluating 410
Break point, conditional 519
Break point, view 518
Break points 515
breakWhen(…) 411
breakWhen() 409
Bus I/Os, mapping 185

C
Calibration 113
Calibration, base 119
Calibration, tool 113
549 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

550 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Cartesian impedance controller 473, 475, 483
Cartesian position, polling 377
Cartesian protected space monitoring (parame-
terizable AMF) 209, 211, 252
Cartesian protected spaces, defining 252
Cartesian setpoint/actual value difference, pol-
ling 378
Cartesian velocity monitoring (parameterizable
AMF) 209, 211, 242
Cartesian workspace monitoring (parameteriz-
able AMF) 209, 211, 250
Cartesian workspaces 250
CartesianTorqueCondition 390
CE mark 26
Checksum, safety configuration 233
CIRC 344
CIRC, motion type 304
Circular motion 344
Cleaning work 42
clipApplicationOverride(…) 388
clipManualOverride(…) 388
Collision detection 261
Collision detection (parameterizable AMF) 209,
212, 262
Command pointer 521
Compatibility 539
Complex conditions 391
Complex data types 335
Condition for Boolean signals 408
Condition for the range of values of a signal 408
Condition, Cartesian torque 400
Conditional branch 445
Connecting cables 21, 25
Constant force, overlaying 490
Continuous Path 303
Controller object, creating 474
Controller parameters, defining 474
Controllers, overview 473
Coordinate system, for jog keys 68
Coordinate systems 80
Counting loop 443
CP motion 303
CP spline block 303
CP Spline block, creating 348
Create child frame (button) 90
Create frame (button) 90
createAndEnableConditionObserver(…) 419
createConditionObserver(…) 419
createDesiredForce(…) 490
createLissajousPattern(…) 490
createNormalForceCondition(…) 393, 395
createShearForceCondition(…) 393, 396
createSinePattern(…) 490
createSpatialForceCondition(…) 393, 394
createSpatialTorqueCondition(…) 401
createSpiralPattern(…) 490
createTiltingTorqueCondition(…) 401, 403
createTurningTorqueCondition(…) 401, 402
createUserKeyBar(…) 431
CRR 27, 77
Cyclic background task 461

D
Danger zone 27
Data types 333
Data, backing up manually 109
Data, recording and evaluating 423
Data, restoring manually 109
DataRecorder 423
Debug (perspective) 49
Debug project (button) 50
Debugging session, ending 511
Debugging session, starting 511
Debugging, view 522
Declaration 334
Declaration of conformity 26
Declaration of incorporation 25, 26
Decommissioning 42
Default application 54, 189, 193, 202
Default frame for motions 152
DefaultApp_Error 191
Dependency Injection 336
Dependency injection 336, 339
Deselect (button) 95
detach() 361
Diagnosis 499
Diagnosis package, creating 506
Diagnosis package, loading from the robot cont-
roller 507
Diagnostic information, collecting 505
Display child frames (button) 91
Displaying, robot controller information 105
Displaying, robot information 105
displayModalDialog(…) 441
Disposal 42
DO WHILE loop 445
Documentation, industrial robot 17

E
EC declaration of conformity 26
Effective program override 97, 99, 388
Electromagnetic compatibility (EMC) 43, 44
EMC Directive 26, 43
EMERGENCY STOP 64
EMERGENCY STOP device 30, 31, 32
EMERGENCY STOP smartPAD (standard AMF)
208, 209, 234
EMERGENCY STOP, external 30, 32
EN 60204-1 + A1 44
EN 61000-6-2 43
EN 61000-6-4 + A1 44
EN 614-1 + A1 43
EN 62061 + A1 44
EN ISO 10218-1 43
EN ISO 12100 43
EN ISO 13849-1 43
EN ISO 13849-2 43
EN ISO 13850 43
enable(), DataRecorder 426
Enabling device 30, 31
Enabling device, external 30, 33
Enabling switch 65, 66
Enabling switches 31
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Index
equals(…) 411
Error treatment 452
ESM 18, 222
ESM mechanism 227
ESM state, deleting 229
ESM state, new 227
Event-driven Safety Monitoring 207
Exception 18
External control 189
External E-STOP 236
External position referencing 271, 275

F
Fast entry, Java 327
Faults 38
Field bus diagnosis 499
Field bus, Ethernet-based 169
Field buses, overview 179
File, closing 49
Filter settings 500
Flange coordinate system 81
Fonts 333
FOR loop 443
Force component condition 398
Force condition 392
ForceComponentCondition 390
ForceCondition 390
Frame 18
Frame management 143
Frame, deleting 145
Frame, designation as base 144
Frame, moving 145
Frame, properties, application data 146
Frame, properties, object templates 151
Frames, addressing 93
Frames, teaching 91
Frames, teaching with hand guiding device 93
Frames, view 89
FSoE 18
Function test 39

G
General safety measures 37
Get_State 190
getAlphaRad() 378
getApplicationData().getFrame() 148
getApplicationOverride() 388
getApplicationUI() 431
getAxis() 137
getBetaRad() 378
getBrakeIndex() 137
getCommandedCartesianPosition(…) 375
getCommandedCartesianPosition() 416
getCommandedJointPosition() 375, 416
getCurrentCartesianPosition() 375, 416
getCurrentJointPosition() 376, 416
getEffectiveOverride() 388
getEmergencyStopEx() 383
getEmergencyStopInt() 383
getEnablingDeviceState() 384
getExecutionMode() 386

getExternalForceTorque(…) 372, 373
getExternalTorque() 371
getFiredBreakConditionInfo() 410
getFiredCondition() 411, 412, 416
getFlange() 358
getForce() 373
getForceInaccuracy() 374
getFrame(…) 359, 362
getFriction() 137
getGammaRad() 378
getGravity() 137
getHomePosition() 380
getLogLevel() 138
getManualOverride() 388
getMaxAbsTorqueValues() 133
getMaxBrakeHoldingTorque() 137
getMeasuredBrakeHoldingTorque() 137
getMeasuredTorque() 371
getMinBrakeHoldingTorque() 137
getMissedEvents() 416
getMotion() 451
getMotionContainer() 416
getMotorHoldingTorque() 137
getMotorIndex() 137
getMotorMaximalTorque() 137
getObserverManager() 419, 421
getOperationMode() 384
getOperatorSafetyState() 384
getPositionInfo() 411
getPositionInformation(…) 376
getPositionInformation() 378, 416
getRecovery() 450
getRecoveryStrategy(…) 451
getRotationOffset() 378
getSafetyState() 383
getSafetyStopSignal() 384
getSingleMaxAbsTorqueValue(...) 133
getSingleTorqueValue(…) 371
getStartPosition() 451
getStartTimestamp() 133
getState() 137, 138
getStoppedMotion() 411, 412
getStopTimestamp() 133
getTestedTorque() 138
getTimestamp() 138
getTorque() 373
getTorqueInaccuracy() 374
getTorqueValues() 371
getTranslationOffset() 378
getTriggerTime() 416
Graphics card 45

H
halt() 442
Hand guiding device enabling activated
(parameterizable AMF) 209, 210, 238
Hand guiding device enabling deactivated
(parameterizable AMF) 209, 210, 237
Hand-held control panel 21, 25
handGuiding() 311, 352
Handling of failed motion commands 452
551 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

552 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Hard disk space 45
Hardware 45
hasActiveMotionCommand() 382
High-velocity mode (standard AMF) 208, 210,
235
HOME position 379
HOME position, changing 379
HOME position, polling 380
Hooke’s law 475
HRC 18, 19

I
I/O configuration, exporting 187
I/O configuration, new 180
I/O configuration, opening 180
I/O group, creating 183
I/O group, deleting 184
I/O group, editing 184
I/O group, exporting as a template 184
I/O group, importing from a template 185
I/O Mapping (window) 185, 186
IAnyEdgeListener 418
IApplicationOverrideControl (interface) 387
ICallbackAction, interface 414
ICondition (inferface) 389
IControllerStateListener 381
Identification plate 65
IF ELSE branch 445
IFallingEdgeListener 418
IForceSensitiveRobot (interface) 372
Industrial robot 25
Initialization 334
initialize() 326, 461, 464
initializeCyclic(…) 461
Input signal (parameterizable AMF) 208, 210,
236
Inputs/outputs, display 103
Installation 167
Installation direction 167
Installation, KUKA Sunrise.Workbench 45
Intended use 24, 25
Introduction 17
IORangeCondition 390
IP address, robot controller 105
IP addresses 51
IRecovery, interface 450
IRisingEdgeListener 418
ISafetyState (interface) 383
isAxisGMSReferenced(…) 385
isAxisPositionReferenced(…) 385
isEnabled() 428
isFileAvailable() 429
isForceValid(…) 374
isInHome() 380
isMastered() 381
isReadyToMove() 381
isRecording() 428
isRecoveryRequired(…) 451
isRecoveryRequired() 451
isTorqueMeasured() 133
isTorqueValid(…) 374

ISunriseControllerStateListener 385
ITaskFunction 539
ITaskFunctionMonitor 469
ITaskLogger 539
ITorqueSensitiveRobot (interface) 371
ITriggerAction, interface 414
IUserKeyBar (interface) 432

J
Java Editor 325
Java Editor, opening 325
Java file, renaming 59
Java package, new 54
Java project, new 58
Java projects, referencing 59
Javadoc 18
Javadoc (view) 49
Javadoc browser, configuration 330
Javadoc information, displaying 329
Jog keys 64, 87
Jog mode 36
Jog override 82, 86
Jogging options (button) 68, 85
Jogging type (button) 69, 83
Jogging, axis-specific 84, 87
Jogging, Cartesian 84, 87
Jogging, robot 84
JointTorqueCondition 390
JP motionJoint Path 303
JP spline block 303
JP Spline block, creating 349
JRE 18

K
Keyboard key 64
Keypad 71
KLI 18, 167, 168
KMP 18
Knowledge, required 17
KRCDiag 505
KUKA Customer Support 105, 541
KUKA Line Interface 168
KUKA PSM 222, 234
KUKA RoboticsAPI 18
KUKA smartHMI 18, 68
KUKA smartPAD 18, 28, 63
KUKA Sunrise Cabinet 18, 21
KUKA Sunrise.OS 19

L
Labeling 36
Language 69, 76
Language package, installing 176
Language selection (button) 69
Liability 25
LIN 344
LIN REL 345
LIN, motion type 304
Linear motion 344, 345
Lissajous oscillation, overlaying 492
Load data 153
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Index
Load data, entering 154
Log entries, filtering 501
Loops, nesting 449
Low Voltage Directive 26

M
Machinery Directive 26, 43
Main menu key 64
Main menu, calling 75
Maintenance 41
Manipulator 21, 25, 28, 30
Manual guidance mode 352
Manual guidance support 167, 169
Manual guidance, motion type 311
Manual guidance, programming 352
Manual guidance, velocity limitation 355
Manual mode 40
Manual override 82, 97, 99, 388
Mapping, inputs/outputs 187
Mastering 112
Mastering state, polling 381
Mastering, deleting 113
Media flange Touch 236, 237
Menu bar 48
Message programming 439
Message window 95
Methods, extracting 328
Mode selection 34
Monitoring 390, 417
Monitoring of processes 390
Monitoring processes 417
Monitoring spaces 248
Monitoring, physical safeguards 32
Motion enable (standard AMF) 208, 210, 235
Motion execution, pausing 442
Motion parameters 350
Motion programming, basic principles 303
Motion types 303
MotionBatch 346
MotionPathCondition 390
Mounting orientation 51, 81
move(…) 342, 361, 452
moveAsync(…) 342, 361, 454
Multiple branches 447

N
Navigation bar 69
New frame, creating 90, 144
New Java class (button) 50
New Java package (button) 50
Non-cyclic background task 463
Non-safety-oriented functions 34
Normal force 393
NotificationType, Enum 420
Null space motion 88

O
Object management 148
Object templates (view) 49
Object templates, copying 160
ObserverManager 419, 421

onIsReadyToMoveChanged(…) 381
onKeyEvent(…), IUserKeyListener 433
onSafetyStateChanged(…) 385
onTriggerFired(…) 414
Operating mode, changing 78
Operating time 106
Operation, KUKA smartPAD 63
Operation, KUKA Sunrise.Workbench 47
Operator 27, 29, 161
Operator safety 30, 32
Operators 391
Options 21, 25
Orientation control 351
Orientation control, LIN, CIRC, SPL 314
Output, change 103
Overload 37
Override 86, 97, 388
Override (button) 69, 82
Override, changing and polling 387
Overview of the robot system 21

P
Package Explorer (view) 48
Panic position 31
Password, changing 161
Path-related condition 405
Path-related switching actions 390, 413
Pausing, robot application 98
PDS firmware update 112
Performance Level 26
Permanent Safety Monitoring 206
Personnel 28
Perspective, selection 48
Perspectives, display 49
Plant integrator 28
Point-to-point 303
Point-to-point motion 343
Pollling, robot position 375
Position and torque referencing 271
Position controller 473, 475
Position referencing 271
Position referencing (parameterizable AMF)
208, 211, 239
positionHold(…) 496
Post-test loop 445
Preventive maintenance work 42
Primitive data types 335
Processor 45
Product description 21
PROFINET 19
PROFIsafe 19
Program execution 94
Program execution control 442
Program run mode, changing and polling 386
Program run mode, setting 96
Program run modes 97
Programming 325
Programming (perspective) 49
Project management 143
Project synchronization 161
Project, loading from the robot controller 164
553 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

554 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Project, synchronization 161
Project, synchronizing 162, 163
Projects, archiving 57
Projects, loading to workspace 57
Properties (view) 49
Protected space 248, 252
Protective equipment 36
Protocol, display 499
Protocol, view 500
PSM 19
PSM mechanism 224
PTP 343
PTP, motion type 303
PTPRecoveryStrategy (class) 451

R
RAM 45
Reaction distance 27
Ready for motion signal, reacting to change 381
Recommissioning 38, 111
Reduced-velocity mode (standard AMF) 208,
210, 235
Redundancy angle 320
Redundancy information 147, 319
Reference, canceling 59
Referencing state, polling 384
Rejecting loop 444
Release notes, displaying 61
Remote debugging 509
Renaming, variable 326
Repair 41
Reset (button) 95
Resetting, robot application 98
Retraction, robot 77
Robot activity, polling 382
Robot application, new 54
Robot application, pausing 98
Robot application, resetting 95, 98
Robot application, selecting 94, 95
Robot application, starting automatically 98
Robot application, starting manually 98
Robot base coordinate system 81
Robot controller 25
Robot controller, switching on/off 111
Robot level 73
Robot position, polling 375
Robot, repositioning 98
RoboticsAPI 18
run() 326, 464
runCyclic() 461

S
Safe operational stop 259
Safe operational stop, external 30, 33
Safeguards, external 36
Safety 25
Safety acceptance overview 275
Safety concept 203
Safety configuration 203
Safety configuration, activating 233
Safety configuration, conversion 164

Safety configuration, deactivating 233
Safety configuration, opening 222
Safety configuration, restoring 234
Safety controller, resuming 80
Safety function, new for ESM 229
Safety function, new for PSM 226
Safety functions 26
Safety functions, configuration 224, 227
Safety functions, deactivation via an input 219
Safety instructions 17
Safety maintenance technician 77, 161
Safety of machinery 43, 44
Safety signal, state, polling 382
Safety stop 28
Safety stop 0 28
Safety stop 1 28
Safety stop 1 (path-maintaining) 28
Safety stop, external 30, 32, 33
Safety zone 28, 29, 30
Safety-oriented functions 30
Safety-oriented stop reactions 33
Safety-oriented tool, configuring 155
Safety-oriented tools 154
Safety-oriented tools, mapping 231
Safety-oriented workpiece, configuring 159
Safety-oriented workpieces 158
Safety, legal framework 25
SafetyConfiguration.sconf (file) 53, 222
Serial number, robot 106
Serial number, robot controller 105
Service life 27
Service, KUKA Roboter GmbH 541
Set base for jogging (button) 91
Set methods 350
setAdditionalControlForce(…) 480
setAmplitude(…) 486
setApplicationOverride(…) 388
setAxisLimitsEnabled(…) 356
setAxisLimitsMax(…) 356
setAxisLimitsMin(…) 356
setAxisLimitViolationFreezesAll(…) 356
setAxisSpeedLimit(…) 356
setBias(…) 487
setBlendingCart(…) 351
setBlendingOri(…) 351
setBlendingRel(…) 351
setCartAcceleration(…) 350
setCartJerk(…) 351
setCartVelocity(…) 350
setCriticalText(…), IUserKey 438
setDamping(…) 480, 495
setDampingForAllJoints(…) 495
setExecutionMode(…) 386
setFallTime(…) 489
setForceLimit(…) 488
setFrequency(…) 486
setHoldTime(…) 489
setHomePosition(…) 379
setJointAccelerationRel(…) 350, 352
setJointJerkRel(…) 351, 352
setJointVelocityRel(…) 350, 352
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

Index
setLED(…), IUserKey 437
setMaxCartesianVelocity(…) 482
setMaxControlForce(…) 481
setMaxPathDeviation(…) 482
setNullSpaceDamping(…) 481
setNullSpaceStiffness(…) 481
setOrientationReferenceSystem(…) 317, 351
setOrientationType(…) 314, 351
setPermanentPullOnViolationAtStart(…) 356
setPhaseDeg(…) 487
setPositionLimit(…) 488
setRiseTime(…) 489
setSafetyWorkpiece(…) 365
setStayActiveUntilPatternFinished(…) 489
setStiffness(…) 480, 495
setStiffnessForAllJoints(…) 495
setText(…), IUserKey 436
setTotalTime(…) 489
Shear force 393
Simple force oscillation, overlaying 491
Single point of control 42
Singletons 339, 363
Singularities 321
Singularity 315
smartHMI 19, 68
smartPAD 19, 28, 37, 63
smartPAD enabling switch deactivated
(standard AMF) 209, 234
smartPAD enabling switch panic activated
(standard AMF) 209, 234
smartPAD unplugging allowed 299
smartPAD, disconnecting/connecting 66
smartPAD, software update 111
Software 21, 25, 45
Software components 21
Software limit switches 35
Software option, installing 174
Software option, uninstalling 176
Software options 174
Space Mouse 64
Spiral-shaped force oscillation, overlaying 493
SPL, motion type 305
Spline segment 305
Spline, motion type 305
SPOC 42
SPS (PLC) 19
Standstill monitoring 259
Standstill monitoring of all axes (extended AMF)
209, 212, 259
Start backwards key 64
Start key 64, 65
Start-up 38, 111
startEvaluation() 132
Starting, robot application 98
Starting, System Software 111
startRecording() 426
StartRecordingAction 427
Station configuration 167
Station configuration, overview 167
Station level 71
Station_Error 191

StationSetup.cat (file) 53, 167
Status 320
Status display 70
Stop category 0 28
Stop category 1 28
Stop category 1 (path-maintaining) 28
STOP key 64
Stop reactions, safety-oriented 33
stopEvaluation() 132
Stopping distance 27, 30, 250
stopRecording() 428
StopRecordingAction 428
Storage 42
Structure, robot application 325
Sunrise I/Os, changing 184
Sunrise I/Os, creating 181
Sunrise I/Os, deleting 184
Sunrise project (button) 50
Sunrise project, new 51
Sunrise.Workbench, starting 47
Sunrise.Workbench, user interface 47
SunriseExecutionService 386
SunriseSafetyState (class) 383
Support request 541
Surface normal 393
SWITCH branch 447
Switching off, robot controller 111
Switching on, robot controller 111
Symbols 333
Synchronize project (button) 50
Synchronous motion execution 342
System integrator 26, 28, 29
System requirements, PC 45
System software, installing 172
System states, polling 380

T
T1 28
T2 28
Target group 17
Task functions 539
Task, remote debugging 510
Tasks (view) 49
TCP 19, 113, 150
TCP force monitoring 262
TCP force monitoring (parameterizable AMF)
209, 212, 263
Template, for Sunrise project 51
Templates 327
Templates, user-specific 328
Terms used 18
Terms used, safety 27
Terms, used 18
Test mode (standard AMF) 208, 209, 235
Tilting torque 400
Time delay (extended AMF) 208, 212, 260
Tool calibration 113
Tool Center Point 113
Tool coordinate system 81, 113
Tool frame, creating 150
Tool load data, determining 121
555 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

556 / 557

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...
Tool orientation (parameterizable AMF) 209,
211, 257
Tool orientation, monitoring 256
Tool-specific velocity component (parameteriz-
able AMF) 209, 211, 245
Tool, creating 150
Tool, integrating 357
Tool, switching off 235
Toolbar 48
Torque 400
Torque component condition 404
Torque referencing 273
Torque referencing (parameterizable AMF) 209,
211, 240
Torque value determination 130
TorqueComponentCondition 390
TorqueEvaluator (class) 129, 131, 132
Torques, axis-specific 102
TorqueStatistic (class) 129, 132, 133
Touch screen 63
Trademarks 18
Training 17
Transportation 38
Trigger 390, 413
Trigger information, evaluating 415
Triggers, programming 413
triggerWhen(…) 413
Turn 321
Type, robot 106

U
Uninstallation, Sunrise.Workbench 45
Unmastering 113
USB connection 65
Use, contrary to intended use 25
Use, improper 25
User 27, 29
User administration 160
User dialogs, programming 441
User group (button) 69
User group, changing 77
User group, default 77, 161
User interface, KUKA smartHMI 68
User interface, Sunrise.Workbench 47
User key bar, creating 431
User key selection (button) 80
User keys 64
User keys (button) 69
User keys, activation 79
User keys, defining 430
User messages, programming 439
User PSM 222
UserKeyAlignment (enum) 435

V
Variable, renaming 326
Velocity 86
Velocity monitoring functions 240
Version, System Software 105
View, frames 89
View, protocol 500

Views, repositioning 49
Virus scanner 174
Virus scanner, displaying messages 505
Virus scanner, installing 176

W
waitFor(…) 421
Warnings 17
WHILE loop 444
Workpiece frame, creating 150
Workpiece, creating 150
Workpiece, integrating 357
Workspace 27, 29, 30, 248, 250, 255
Workspace, new 56
Workspace, Sunrise.Workbench 56
Workspace, switching 56
Workspaces, switching 56
World coordinate system 80

X
XYZ 4-point method 114
Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

557 / 557Issued: 29.07.2016 Version: KUKA Sunrise.OS 1.11 SI V1

KUKA Sunrise.OS 1.11 KUKA Sunrise.Wor...

	KUKA Sunrise.OS 1.11 KUKA Sunrise.Workbench 1.11
	1 Introduction
	1.1 Target group
	1.2 Industrial robot documentation
	1.3 Representation of warnings and notes
	1.4 Trademarks
	1.5 Terms used

	2 Product description
	2.1 Overview of the robot system
	2.2 Overview of the software components
	2.3 Overview of KUKA Sunrise.OS
	2.4 Overview of KUKA Sunrise.Workbench
	2.5 Intended use of the system software

	3 Safety
	3.1 Legal framework
	3.1.1 Liability
	3.1.2 Intended use of the industrial robot
	3.1.3 EC declaration of conformity and declaration of incorporation

	3.2 Safety functions
	3.2.1 Terms used
	3.2.2 Personnel
	3.2.3 Workspace, safety zone and danger zone
	3.2.4 Safety-oriented functions
	3.2.4.1 EMERGENCY STOP device
	3.2.4.2 Enabling device
	3.2.4.3 “Operator safety” signal
	3.2.4.4 External EMERGENCY STOP device
	3.2.4.5 External safety stop 1 (path-maintaining)
	3.2.4.6 External enabling device
	3.2.4.7 External safe operational stop

	3.2.5 Triggers for safety-oriented stop reactions
	3.2.6 Non-safety-oriented functions
	3.2.6.1 Mode selection
	3.2.6.2 Software limit switches

	3.3 Additional protective equipment
	3.3.1 Jog mode
	3.3.2 Labeling on the industrial robot
	3.3.3 External safeguards

	3.4 Safety measures
	3.4.1 General safety measures
	3.4.2 Transportation
	3.4.3 Start-up and recommissioning
	3.4.4 Manual mode
	3.4.5 Automatic mode
	3.4.6 Maintenance and repair
	3.4.7 Decommissioning, storage and disposal
	3.4.8 Safety measures for “single point of control”

	3.5 Applied norms and directives

	4 Installing KUKA Sunrise.Workbench
	4.1 PC system requirements
	4.2 Installing Sunrise.Workbench
	4.3 Uninstalling Sunrise.Workbench

	5 Operation of KUKA Sunrise.Workbench
	5.1 Starting Sunrise.Workbench
	5.2 Overview of the user interface of Sunrise.Workbench
	5.2.1 Repositioning the views
	5.2.2 Closing views and files
	5.2.3 Displaying different perspectives on the user interface
	5.2.4 Toolbar – Programming perspective

	5.3 Creating a Sunrise project with a template
	5.4 Creating a new robot application
	5.4.1 Creating a new Java package
	5.4.2 Creating a robot application with a package
	5.4.3 Creating a robot application for an existing package

	5.5 Setting the robot application as the default application
	5.6 Creating a new background task
	5.6.1 Creating a background task with a package
	5.6.2 Creating a background task for an existing package

	5.7 Workspace
	5.7.1 Creating a new workspace
	5.7.2 Switching to an existing workspace
	5.7.3 Switching between the most recently opened workspaces
	5.7.4 Archiving projects
	5.7.5 Loading projects from archive to the workspace
	5.7.6 Loading projects from the directory to the workspace

	5.8 Sunrise projects with referenced Java projects
	5.8.1 Creating a new Java project
	5.8.1.1 Inserting robot-specific class libraries in a Java project

	5.8.2 Referencing Java projects
	5.8.3 Canceling the reference to Java projects

	5.9 Renaming an element in the Package Explorer
	5.9.1 Renaming a project or Java package
	5.9.2 Renaming a Java file

	5.10 Removing an element from Package Explorer
	5.10.1 Deleting an element from a project
	5.10.2 Removing a project from Package Explorer
	5.10.3 Deleting a project from the workspace

	5.11 Activating the automatic change recognition
	5.12 Displaying release notes

	6 Operating the KUKA smartPAD
	6.1 KUKA smartPAD control panel
	6.1.1 Front view
	6.1.2 Rear view
	6.1.3 Disconnecting and connecting the smartPAD

	6.2 KUKA smartHMI user interface
	6.2.1 Navigation bar
	6.2.2 Status display
	6.2.3 Keypad
	6.2.4 Station level
	6.2.5 Robot level

	6.3 Calling the main menu
	6.4 Setting the user interface language
	6.5 Changing user group
	6.6 CRR mode – controlled robot retraction
	6.7 Changing the operating mode
	6.8 Activating the user keys
	6.9 Resuming the safety controller
	6.10 Coordinate systems
	6.11 “Override” window
	6.12 “Jogging type” window
	6.13 Jogging the robot
	6.13.1 “Jogging options” window
	6.13.2 Setting the jog override
	6.13.3 Axis-specific jogging with the jog keys
	6.13.4 Cartesian jogging with the jog keys
	6.13.4.1 Null space motion

	6.14 Manually guiding the robot
	6.15 Frame management
	6.15.1 “Frames” view
	6.15.2 Teaching frames
	6.15.3 Teaching frames with the hand guiding device
	6.15.4 Manually addressing frames

	6.16 Program execution
	6.16.1 Selecting a robot application
	6.16.2 Setting the program run mode
	6.16.2.1 Program run modes

	6.16.3 Setting the manual override
	6.16.4 Starting a robot application forwards (manually)
	6.16.5 Starting a robot application forwards (automatically)
	6.16.6 Resetting a robot application
	6.16.7 Repositioning the robot after leaving the path
	6.16.8 Stopping a background application manually
	6.16.9 Starting a background application manually

	6.17 Display functions
	6.17.1 Displaying the end frame of the motion currently being executed
	6.17.2 Displaying the axis-specific actual position
	6.17.3 Displaying the Cartesian actual position
	6.17.4 Displaying axis-specific torques
	6.17.5 Displaying an I/O group and changing the value of an output
	6.17.6 Displaying information about the robot and robot controller

	6.18 Backup Manager
	6.18.1 Overview of Backup Manager
	6.18.2 Backing up data manually
	6.18.3 Restoring data manually
	6.18.4 Configuring the network path for restoration

	7 Start-up and recommissioning
	7.1 Switching the robot controller on/off
	7.1.1 Switching on the robot controller and starting the System Software
	7.1.2 Switching off the robot controller

	7.2 smartPAD software update
	7.3 Performing a PDS firmware update
	7.4 Position mastering
	7.4.1 Mastering axes
	7.4.2 Manually unmastering axes

	7.5 Calibration
	7.5.1 Tool calibration
	7.5.1.1 TCP calibration: XYZ 4-point method
	7.5.1.2 Defining the orientation: ABC 2-point method
	7.5.1.3 Defining the orientation: ABC world method

	7.5.2 Calibrating the base: 3-point method

	7.6 Determining tool load data

	8 Brake test
	8.1 Overview of the brake test
	8.2 Creating the brake test application from the template
	8.2.1 Adapting the brake test application for testing against the minimum brake holding torque
	8.2.2 Changing the motion sequence for torque value determination
	8.2.3 Changing the starting position for the brake test

	8.3 Programming interface for the brake test
	8.3.1 Evaluating the torques generated and determining the maximum absolute value
	8.3.2 Polling the evaluation results of the maximum absolute torques
	8.3.3 Creating an object for the brake test
	8.3.4 Starting the execution of the brake test
	8.3.5 Evaluating the brake test
	8.3.5.1 Polling the results of the brake test

	8.4 Performing a brake test
	8.4.1 Evaluation results of the maximum absolute torques (display)
	8.4.2 Results of the brake test (display)

	9 Project management
	9.1 Sunrise projects – overview
	9.2 Frame management
	9.2.1 Creating a new frame
	9.2.2 Designating a frame as a base
	9.2.3 Moving a frame
	9.2.4 Deleting a frame
	9.2.5 Displaying/editing frame properties
	9.2.6 Properties view for frames in application data
	9.2.6.1 “General” tab
	9.2.6.2 “Transformation” tab
	9.2.6.3 “Redundancy” tab
	9.2.6.4 “Teach information” tab
	9.2.6.5 “Measurement” tab

	9.2.7 Inserting a frame in a motion instruction

	9.3 Object management
	9.3.1 Geometric structure of tools
	9.3.2 Geometric structure of workpieces
	9.3.3 Creating a tool or workpiece
	9.3.4 Creating a frame for a tool or workpiece
	9.3.5 Displaying/editing frame properties
	9.3.6 Properties view for frames in object templates
	9.3.6.1 “General” tab
	9.3.6.2 “Transformation” tab
	9.3.6.3 “Safety” tab
	9.3.6.4 “Measurement” tab

	9.3.7 Defining a default motion frame
	9.3.8 Load data
	9.3.8.1 Entering load data

	9.3.9 Safety-oriented tools
	9.3.9.1 Configuring a safety-oriented tool
	9.3.9.2 Tool properties – Load data tab
	9.3.9.3 Tool properties – Safety tab

	9.3.10 Safety-oriented workpieces
	9.3.10.1 Configuring a safety-oriented workpiece
	9.3.10.2 Workpiece properties – Load data tab

	9.3.11 Copying object templates

	9.4 User administration
	9.4.1 Changing the password

	9.5 Project synchronization, overview
	9.5.1 Transferring the project to the robot controller
	9.5.2 Synchronizing a project

	9.6 Loading the project from the robot controller
	9.7 Converting the safety configuration to a new software version

	10 Station configuration and installation
	10.1 Station configuration overview
	10.2 “Software” tab
	10.2.1 Eliminating errors in the software catalog

	10.3 “Configuration” tab
	10.3.1 IP address range for KUKA Line Interface (KLI)
	10.3.2 Manual guidance support
	10.3.3 General safety settings
	10.3.4 Configuration parameters for calibration
	10.3.5 Configuration parameters for Backup Manager

	10.4 “Installation” tab
	10.4.1 Installing system software on the robot controller

	10.5 Software options
	10.5.1 Installing a software option
	10.5.2 Installing or updating the virus scanner
	10.5.3 Installing a language package
	10.5.4 Uninstalling a software option

	11 Bus configuration
	11.1 Configuration and I/O mapping in WorkVisual – overview
	11.2 Overview of field buses
	11.3 Creating a new I/O configuration
	11.4 Opening an existing I/O configuration
	11.5 Creating Sunrise I/Os
	11.5.1 “Create I/O signals” window
	11.5.2 Creating an I/O group and inputs/outputs within the group
	11.5.3 Editing an I/O group
	11.5.4 Deleting an I/O group
	11.5.5 Changing an input/output of a group
	11.5.6 Deleting an input/output of a group
	11.5.7 Exporting an I/O group as a template
	11.5.8 Importing an I/O group from a template

	11.6 Mapping the bus I/Os
	11.6.1 I/O Mapping window
	11.6.2 Buttons in the “I/O Mapping” window
	11.6.3 Mapping Sunrise I/Os

	11.7 Exporting the I/O configuration to the Sunrise project

	12 External control
	12.1 Overview of external controller
	12.2 Configuring the external controller via the I/O system
	12.3 Configuring the external controller via the UDP interface
	12.4 External controller input signals
	12.5 External controller output signals
	12.6 Signal diagrams
	12.7 Configuring the external controller in the project settings
	12.7.1 Input/output parameters of the I/O interface
	12.7.2 Input/output parameters of the UDP interface

	12.8 Formatting of the UDP data packets
	12.8.1 Status messages of the robot controller
	12.8.2 Controller messages of the external client

	12.9 External control via UDP – Start-up example
	12.9.1 Starting up the external controller
	12.9.2 Programming the external controller

	12.10 Configuring the signal outputs for a project that is not externally controlled
	12.10.1 Output parameters of the I/O interface
	12.10.2 Output parameters of the UDP interface

	13 Safety configuration
	13.1 Overview of safety configuration
	13.2 Safety concept
	13.3 Permanent Safety Monitoring
	13.4 Event-driven Safety Monitoring
	13.5 Atomic Monitoring Functions
	13.5.1 Standard AMFs
	13.5.2 Parameterizable AMFs
	13.5.3 Extended AMFs
	13.5.4 Availability of the AMFs depending on the kinematic system

	13.6 Worst-case reaction times of the safety functions in the case of a single fault
	13.6.1 Worst-case reaction times of the LBR iiwa monitoring functions
	13.6.2 Worst-case reaction times of the KMP 400 monitoring functions

	13.7 Deactivation of safety functions via an input
	13.8 Safety configuration (SafetyConfiguration.sconf file)
	13.8.1 Overview of safety configuration and start-up
	13.8.2 Opening the safety configuration
	13.8.2.1 Evaluating the safety configuration
	13.8.2.2 Overview of the graphical user interface for the safety configuration

	13.8.3 Configuring the safety functions of the PSM mechanism
	13.8.3.1 Opening the Customer PSM table
	13.8.3.2 Creating safety functions for the PSM mechanism
	13.8.3.3 Deleting safety functions of the PSM mechanism
	13.8.3.4 Editing existing safety functions of the PSM mechanism

	13.8.4 Configuring the safe states of the ESM mechanism
	13.8.4.1 Adding a new ESM state
	13.8.4.2 Opening a table for an ESM state
	13.8.4.3 Deleting an ESM state
	13.8.4.4 Creating a safety function for the ESM state
	13.8.4.5 Deleting a safety function of an ESM state
	13.8.4.6 Editing an existing safety function of an ESM state
	13.8.4.7 Deactivating the ESM mechanism
	13.8.4.8 Switching between ESM states

	13.8.5 Mapping safety-oriented tools

	13.9 Activating the safety configuration
	13.9.1 Deactivating the safety configuration
	13.9.2 Restoring the safety configuration

	13.10 Using and parameterizing the AMFs
	13.10.1 Evaluating the safety equipment on the KUKA smartPAD
	13.10.2 Evaluating the operating mode
	13.10.3 Evaluating the motion enable
	13.10.4 Monitoring safe inputs
	13.10.5 Manual guidance with enabling device and velocity monitoring
	13.10.5.1 Monitoring of enabling switches on hand guiding devices
	13.10.5.2 Monitoring functions during manual guidance
	13.10.5.3 Velocity monitoring during manual guidance

	13.10.6 Evaluating the position referencing
	13.10.7 Evaluating the torque referencing
	13.10.8 Velocity monitoring functions
	13.10.8.1 Defining axis-specific velocity monitoring
	13.10.8.2 Defining Cartesian velocity monitoring
	13.10.8.3 Direction-specific monitoring of Cartesian velocity

	13.10.9 Monitoring spaces
	13.10.9.1 Defining Cartesian workspaces
	13.10.9.2 Defining Cartesian protected spaces
	13.10.9.3 Defining axis-specific monitoring spaces

	13.10.10 Monitoring the tool orientation
	13.10.11 Standstill monitoring (safe operational stop)
	13.10.12 Activation delay for safety function
	13.10.13 Monitoring of forces and torques
	13.10.13.1 Axis torque monitoring
	13.10.13.2 Collision detection
	13.10.13.3 TCP force monitoring
	13.10.13.4 Direction-specific monitoring of the external force on the TCP

	13.11 Example of a safety configuration
	13.11.1 Task
	13.11.2 Requirement
	13.11.3 Suggested solution for the task

	13.12 Position and torque referencing
	13.12.1 Position referencing
	13.12.2 Torque referencing
	13.12.3 Creating an application for position and torque referencing
	13.12.4 External position referencing
	13.12.4.1 Configuring the input for external position referencing

	13.13 Safety acceptance overview
	13.13.1 Checklist – System safety functions
	13.13.2 Checklist for tool selection table
	13.13.3 Checklists for safety-oriented tools
	13.13.3.1 Pickup frame for fixed tools
	13.13.3.2 Pickup frame for activatable tools
	13.13.3.3 Tool orientation
	13.13.3.4 Tool-specific velocity component
	13.13.3.5 Geometry data of the tool
	13.13.3.6 Load data of the tool

	13.13.4 Checklist for safety-oriented workpieces
	13.13.5 Checklist for rows used in the PSM tables
	13.13.6 Checklists for ESM states
	13.13.6.1 Used ESM states
	13.13.6.2 Non-used ESM states

	13.13.7 Checklists for AMFs used
	13.13.7.1 AMF smartPAD Emergency Stop
	13.13.7.2 AMF smartPAD enabling switch inactive
	13.13.7.3 AMF smartPAD enabling switch panic active
	13.13.7.4 AMF Hand guiding device enabling inactive
	13.13.7.5 AMF Hand guiding device enabling active
	13.13.7.6 AMF Test mode
	13.13.7.7 AMF Automatic mode
	13.13.7.8 AMF Reduced-velocity mode
	13.13.7.9 AMF High-velocity mode
	13.13.7.10 AMF Motion enable
	13.13.7.11 AMF Input signal
	13.13.7.12 AMF Standstill monitoring of all axes
	13.13.7.13 AMF Axis torque monitoring
	13.13.7.14 AMF Axis velocity monitoring
	13.13.7.15 AMF Position referencing
	13.13.7.16 AMF Torque referencing
	13.13.7.17 AMF Axis range monitoring
	13.13.7.18 AMF Cartesian velocity monitoring
	13.13.7.19 AMF Cartesian workspace monitoring / Cartesian protected space monitoring
	13.13.7.20 AMF Collision detection
	13.13.7.21 AMF TCP force monitoring
	13.13.7.22 Base-related TCP force component AMF
	13.13.7.23 AMF Time delay
	13.13.7.24 AMF Tool orientation
	13.13.7.25 AMF Tool-related velocity component

	13.13.8 Checklists – General safety settings
	13.13.8.1 smartPAD unplugging allowed
	13.13.8.2 Allow muting via input
	13.13.8.3 Allow external position referencing

	13.13.9 Creating a safety configuration report

	14 Basic principles of motion programming
	14.1 Overview of motion types
	14.2 PTP motion type
	14.3 LIN motion type
	14.4 CIRC motion type
	14.5 SPL motion type
	14.6 Spline motion type
	14.6.1 Velocity profile for spline motions
	14.6.2 Modifications to spline blocks
	14.6.3 LIN-SPL-LIN transition

	14.7 Manual guidance motion type
	14.8 Approximate positioning
	14.9 Orientation control with LIN, CIRC, SPL
	14.9.1 CIRC – reference system for the orientation control
	14.9.2 CIRC – combinations of reference system and type for the orientation control

	14.10 Redundancy information
	14.10.1 Redundancy angle
	14.10.2 Status
	14.10.3 Turn

	14.11 Singularities
	14.11.1 Kinematic singularities
	14.11.2 System-dependent singularities

	15 Programming
	15.1 Java Editor
	15.1.1 Opening a robot application in the Java Editor
	15.1.2 Structure of a robot application
	15.1.3 Edit functions
	15.1.3.1 Renaming a variable
	15.1.3.2 Auto-complete
	15.1.3.3 Templates – Fast entry of Java statements
	15.1.3.4 Creating user-specific templates
	15.1.3.5 Extracting methods

	15.1.4 Displaying Javadoc information
	15.1.4.1 Configuration of the Javadoc browser

	15.2 Symbols and fonts
	15.3 Data types
	15.3.1 Declaration
	15.3.2 Initialization
	15.3.2.1 Primitive data types
	15.3.2.2 Complex data types

	15.3.3 Dependency Injection
	15.3.3.1 Dependency injection for Sunrise types
	15.3.3.2 Dependency injection for dedicated types

	15.4 Polling individual values of a vector
	15.5 Network communication via UDP and TCP/IP
	15.6 Motion programming: PTP, LIN, CIRC
	15.6.1 Synchronous and asynchronous motion execution
	15.6.2 PTP
	15.6.3 LIN
	15.6.4 CIRC
	15.6.5 LIN REL
	15.6.6 MotionBatch

	15.7 Motion programming: spline
	15.7.1 Programming tips for spline motions
	15.7.2 Creating a CP spline block
	15.7.3 Creating a JP spline block
	15.7.4 Using spline in a motion instruction

	15.8 Motion parameters
	15.8.1 Programming axis-specific motion parameters

	15.9 Programming manual guidance
	15.9.1 Axis-specific limits for manual guidance

	15.10 Using tools and workpieces in the program
	15.10.1 Integrating tools and workpieces
	15.10.2 Attaching tools and workpieces to the robot
	15.10.2.1 Attaching a tool to the robot flange
	15.10.2.2 Attaching a workpiece to other objects
	15.10.2.3 Detaching objects

	15.10.3 Moving tools and workpieces
	15.10.4 Integrating dedicated object classes with dependency injection
	15.10.5 Commanding load changes to the safety controller

	15.11 Using inputs/outputs in the program
	15.11.1 Integrating an I/O group
	15.11.2 Reading inputs/outputs
	15.11.3 Setting outputs

	15.12 Polling axis torques
	15.13 Reading Cartesian forces and torques
	15.13.1 Polling external Cartesian forces and torques
	15.13.2 Polling forces and torques individually
	15.13.3 Checking the reliability of the calculated values

	15.14 Polling the robot position
	15.14.1 Polling the axis-specific actual or setpoint position
	15.14.2 Polling the Cartesian actual or setpoint position
	15.14.3 Polling the Cartesian setpoint/actual value difference

	15.15 HOME position
	15.15.1 Changing the HOME position

	15.16 Polling system states
	15.16.1 Polling the HOME position
	15.16.2 Polling the mastering state
	15.16.3 Polling “ready for motion”
	15.16.3.1 Reacting to changes in the “ready for motion” signal

	15.16.4 Polling the robot activity
	15.16.5 Polling the state of safety signals
	15.16.5.1 Polling the referencing state
	15.16.5.2 Reacting to a change in state of safety signals

	15.17 Changing and polling the program run mode
	15.18 Changing and polling the override
	15.18.1 Reacting to an override change

	15.19 Conditions
	15.19.1 Complex conditions
	15.19.2 Axis torque condition
	15.19.3 Force condition
	15.19.3.1 Condition for Cartesian force from all directions
	15.19.3.2 Condition for normal force
	15.19.3.3 Condition for shear force

	15.19.4 Force component condition
	15.19.5 Condition for Cartesian torque
	15.19.5.1 Condition for Cartesian torque from all directions
	15.19.5.2 Condition for torque
	15.19.5.3 Condition for tilting torque

	15.19.6 Torque component condition
	15.19.7 Path-related condition
	15.19.8 Condition for Boolean signals
	15.19.9 Condition for the range of values of a signal

	15.20 Break conditions for motion commands
	15.20.1 Defining break conditions
	15.20.2 Evaluating the break conditions
	15.20.2.1 Polling a break condition
	15.20.2.2 Polling the robot position at the time of termination
	15.20.2.3 Polling a terminated motion (spline block, MotionBatch)

	15.21 Path-related switching actions (Trigger)
	15.21.1 Programming triggers
	15.21.2 Programming a path-related switching action
	15.21.3 Evaluating trigger information

	15.22 Monitoring processes (Monitoring)
	15.22.1 Listener for monitoring conditions
	15.22.2 Creating a listener object to monitor the condition
	15.22.3 Registering a listener for notification of change in state
	15.22.4 Activating or deactivating the notification service for listeners
	15.22.5 Programming example for monitoring

	15.23 Blocking wait for condition
	15.24 Recording and evaluating data
	15.24.1 Creating an object for data recording
	15.24.2 Specifying data to be recorded
	15.24.3 Starting data recording
	15.24.4 Ending data recording
	15.24.5 Polling states from the DataRecorder object
	15.24.6 Example program for data recording

	15.25 Defining user keys
	15.25.1 Creating a user key bar
	15.25.2 Adding user keys to the bar
	15.25.3 Defining the function of a user key
	15.25.4 Labeling and graphical assignment of the user key bar
	15.25.4.1 Assigning a text element
	15.25.4.2 Assigning an LED icon

	15.25.5 Identifying safety-critical user keys
	15.25.6 Publishing a user key bar

	15.26 Message programming
	15.26.1 Programming user messages
	15.26.2 Programming user dialogs

	15.27 Program execution control
	15.27.1 Pausing an application
	15.27.2 Pausing motion execution
	15.27.3 FOR loop
	15.27.4 WHILE loop
	15.27.5 DO WHILE loop
	15.27.6 IF ELSE branch
	15.27.7 SWITCH branch
	15.27.8 Examples of nested loops

	15.28 Continuing a paused application in Automatic mode (recovery)
	15.29 Error treatment
	15.29.1 Handling of failed motion commands
	15.29.2 Handling of failed synchronous motion commands
	15.29.3 Handling of failed asynchronous motion commands

	16 Background tasks
	16.1 Using background tasks
	16.2 Cyclic background task
	16.3 Non-cyclic background task
	16.4 Data exchange between tasks
	16.4.1 Declaring task functions
	16.4.2 Implementing task functions
	16.4.3 Creating the providing task
	16.4.4 Using task functions

	17 Programming with a compliant robot
	17.1 Sensors and control
	17.2 Available controllers – overview
	17.3 Using controllers in robot applications
	17.3.1 Creating a controller object
	17.3.2 Defining controller parameters
	17.3.3 Transferring the controller object as a motion parameter

	17.4 Position controller
	17.5 Cartesian impedance controller
	17.5.1 Calculation of the forces on the basis of Hooke’s law
	17.5.2 Parameterization of the Cartesian impedance controller
	17.5.2.1 Representation of Cartesian degrees of freedom
	17.5.2.2 Defining controller parameters for individual degrees of freedom
	17.5.2.3 Controller parameters specific to the degrees of freedom
	17.5.2.4 Controller parameters independent of the degrees of freedom

	17.6 Cartesian impedance controller with overlaid force oscillation
	17.6.1 Overlaying a simple force oscillation
	17.6.2 Overlaying superposed force oscillations (Lissajous curves)
	17.6.3 Parameterization of the impedance controller with overlaid force oscillation
	17.6.3.1 Controller parameters specific to the degrees of freedom
	17.6.3.2 Controller parameters independent of the degrees of freedom

	17.7 Static methods for impedance controller with superposed force oscillation
	17.7.1 Overlaying a constant force
	17.7.2 Overlaying a simple force oscillation
	17.7.3 Overlaying a Lissajous oscillation
	17.7.4 Overlaying a spiral-shaped force oscillation

	17.8 Axis-specific impedance controller
	17.8.1 Parameterization of the axis-specific impedance controller
	17.8.2 Methods of the axis-specific impedance controller

	17.9 Holding the position under servo control

	18 Diagnosis
	18.1 Field bus diagnosis
	18.1.1 Displaying general field bus errors
	18.1.2 Displaying the error state of I/Os and I/O groups

	18.2 Displaying the protocol
	18.2.1 “Protocol” view
	18.2.2 Filtering log entries

	18.3 Display of error messages (Applications view)
	18.4 Displaying messages of the virus scanner
	18.5 Collecting diagnostic information for error analysis at KUKA
	18.5.1 Creating a diagnosis package with the smartHMI
	18.5.2 Creating a diagnosis package with the smartPAD
	18.5.3 Creating a diagnosis package with Sunrise.Workbench
	18.5.4 Loading existing diagnosis packages from the robot controller

	19 Remote debugging
	19.1 Debugging session sequence
	19.1.1 Remote debugging of tasks
	19.1.2 Starting the debugging session
	19.1.3 Ending the debugging session

	19.2 Debugging tasks
	19.2.1 Remote debugging of a robot application
	19.2.2 Remote debugging of a background task

	19.3 Fundamentals of remote debugging
	19.3.1 Overview of user interface – “Debugging” perspective
	19.3.2 Break points
	19.3.2.1 Creating and deleting break points
	19.3.2.2 Deactivating and activating break points
	19.3.2.3 Editing the properties of the break points
	19.3.2.4 Overview of the “Break points” view
	19.3.2.5 Conditional break point
	19.3.2.6 Suspend thread property

	19.3.3 Command pointer
	19.3.4 Overview of the “Debugging” view
	19.3.5 Overview of the toolbar in the “Debugging” view
	19.3.5.1 Continuing execution (Resume)
	19.3.5.2 Jump into the method (Step in)
	19.3.5.3 Executing a method completely (Step over)
	19.3.5.4 Terminating the executed method (Step back)
	19.3.5.5 Executing code sections again (Back to frame)
	19.3.5.6 Defining the code section to be executed (Execution to line)
	19.3.5.7 Pausing debugging (Pause)

	19.3.6 Variables view
	19.3.6.1 Displaying and modifying variables
	19.3.6.2 Expanded context help for variables

	19.3.7 Monitoring processes
	19.3.7.1 Adding new monitoring expressions
	19.3.7.2 Deleting monitoring expressions
	19.3.7.3 Evaluating monitoring expressions

	19.3.8 Modifying source code
	19.3.8.1 Impermissible modification of the source code
	19.3.8.2 Permissible modification of the source code

	20 Appendix
	20.1 Compatibility and migration of projects
	20.1.1 Modified task functions – adapting the programming

	21 KUKA Service
	21.1 Requesting support
	21.2 KUKA Customer Support

	Index

