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In many situations it is not possible for an adaptive optics system to use a point source to measure the
phase derivative, such as imaging along slant paths through the atmosphere and observation of the earth
from space with a lightweight optic. Instead, small subimages of the observed scene can be used in a
scene-based wave-front sensing technique. This study presents three important advances in the un-
derstanding of this technique. Rigorous analysis shows how slope estimation performance depends
precisely on scene content and illumination. Scaling laws for changes in illumination are derived. The
technique, when applied to point sources, is more robust to detect size changes and background levels
than current methods. © 2003 Optical Society of America

OCIS codes: 010.1080, 010.7350.
1. Problem Description and Background

Adaptive optics �AO� systems work by estimating and
correcting for the phase aberration along the optical
path. The performance improvements obtained
with AO can be quite dramatic.1 Normally a deriv-
ative of the phase is measured, and the phase is
reconstructed from those measurements. A point
source of light is in most cases used as the reference.

There are many situations, however, when a point
source is not available but AO correction is desirable.
Of prime interest are two situations. The first is
that imaging conducted along horizontal or slant
paths through the atmosphere could be improved
with AO correction for the turbulent atmosphere.
Note that because in this paper we are concerned
with how to measure the phase, not how to correct it,
we will not discuss whether scintillation or refraction
will inhibit the performance of multiwavelength AO
along slant paths. The second situation is the ob-
servation of the Earth from space with lightweight
optics. These optics are less expensive but can suf-
fer from time-varying aberrations due to thermal ef-
fects and vibration.2 AO could correct these phase
aberrations. In both cases, observations of an ex-
tended scene do not provide a point source. Instead
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of trying to create an artificial point source, the scene
itself can be used to make phase estimates.

There are two major ways to use images to esti-
mate phase. The first is called phase retrieval.3
This method uses multiple images, some with a
known additional phase aberration, to iteratively de-
termine the phase. This method is commonly used
in telescope alignment. In addition, phase-diversity
methods can be used to correct for atmospheric aber-
rations with image post processing.4 These methods
are normally quite computationally intensive. In-
stead, we chose to investigate in detail a second
approach that is very similar to current point-source-
based AO systems. In fact, the only difference is
how the slope estimates are computed.

The second option is the use of small images as
produced by a Shack–Hartmann sensor array. In-
stead of forming a spot �an image of the point-source
reference�, the lenslets form small images of the ob-
served scene. The subimage is at lower resolution
because of the smaller size of the subaperture. Each
subimage will have a field of view that is restricted by
two main considerations. First, the field will need to
be large enough to contain scenes capable of being
used for slope estimation given the subaperture dif-
fraction limit. Second, the field must be small
enough that the subimages will not overlap on the
wave-front sensing �WFS� camera. This maximum
size is set by the physical separation of the lenslets in
the WFS array and the magnification. The exact
specifications are a systems-design issue, and most
likely will vary depending on the remote imaging
scheme. Each of these subimages will be shifted by
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a small amount due to the local phase distortion
across each lenslet, just as a point source is. The
problem is then how to best estimate the shifts be-
tween the images.

This Shack–Hartmann approach, which we refer to
as scene-based wave-front sensing �SBWFS�, is used
successfully at the National Solar Observatory5 and
other solar observatories. For the case of solar gran-
ulation, the scene has very specific characteristics.
For the special case of low-contrast solar granulation,
the error standard deviation �x of the slope was es-
timated to be proportional to the background noise
standard deviation divided by the image contrast.5
However, no rigorous performance analysis of wave
front slope estimation based on arbitrary scene con-
tent and illumination has been published. A sens-
ing system could look at an arbitrary scene, whether
it contains buildings in a city or a road in the desert.
The illumination, which is due to time of day, angle of
observation, and atmospheric characteristics, is
highly variable. Intuitively, the performance of a
given scene depends on the content of the scene as
well as the illumination characteristics. The more
features and high-spatial-frequency content and the
more light, the better the performance.

This intuitive understanding needs to be rigorously
quantified for several reasons. First, a system can
be specifically designed to meet performance criteria
given expected illumination and scene content. Sec-
ond, as the system is built and tested, analysis en-
ables confirmation of performance. Finally, real-
time knowledge of scene quality could be used to
optimize AO system performance by adjusting sys-
tem parameters, such as frame rate or changing the
scene that is used. For all of these reasons, detailed
analysis of the scene-based slope estimation problem
has been carried out and is presented here. Simu-
lation confirms the analytic predictions, showing that
SBWFS is a viable technique that will enable AO to
be used in a broad range of new situations.

2. Slope Estimation from a Scene

As described above, multiple subimages of the ob-
served scene are formed for use on the WFS camera,
just as multiple images of the point source are. The
basic concept of SBWFS is to then compare the image
in a given subaperture to a reference image and es-
timate the shift between the two images. This shift
could be determined by cross correlating a reference
image with each subaperture image.6 However,
many different methods exist for aligning images.7
Several were analyzed as candidates for obtaining
slope information. This section describes the model
of the subimages and discusses possible algorithms
for slope estimation. Based on both performance
with noise and computational simplicity, periodic cor-
relation was chosen as the preferred method.

A. Definition of Terms

Consider two discrete images �made of pixels on the
WFS camera� that are formed by distinct subaper-
tures. One image is the reference, r�m, n�, which

will be used in comparison with all the other subap-
ertures. The second image is s�m, n�. The two sig-
nals are shifted slightly from each other by x0 and y0
samples, which are not necessarily integer amounts.
For now, consider the signals as being infinite in
extent, and as sampled versions of the same under-
lying continuous signal. The sample interval is D.
Given the high-resolution base signal i�x, y�, the ref-
erence signal is

r�m, n� � i�mD, nD�. (1)

The subaperture image is assumed to be simply a
shifted version

s�m, n� � i�mD � x0 D, nD � y0 D�. (2)

The shifts we desire to find are x0, y0. Because x0
and y0 are in general not integers, the expression

s�m, n� � r�m � x0, n � y0� (3)

has no meaning except in the model described above.
We also have the frequency domain counterparts of
the above equations. Where Ĩ� fx, fy� is the
continuous-time Fourier transform of i�x, y�, we can
write expressions for the discrete-time Fourier trans-
form of the other signals �which use frequency vari-
ables �x, �y�

R̃��x, �y� �
1

T 2 Ĩ��x

D
,

�y

D� , (4)

S̃��x, �y� � R̃��x, �y�exp��j2�� x0�x � y0�y��. (5)

In reality, the two images r and s are of small finite
extent N 	 N pixels and Ĩ is not necessarily band
limited. Converting the above equation for use with
discrete Fourier transform produces

S̃�k, l� � R̃�k, l�exp��j2�� x0 k � y0 l �

N � . (6)

B. Derivation of Algorithm

Based on this model, three possible methods to de-
termine x0 and y0 were analyzed. They are
maximum-likelihood estimation, deconvolution, and
correlation. These methods are applied to the finite,
discrete signals obtained from the WFS camera.
The reference subaperture image r�m, n� and the
subaperture image for slope estimation s�m, n� are
both N 	 N pixels. Note that N may be preferen-
tially a power-of-2 for some of the algorithms.

Because the two images are in fact noisy realiza-
tions, we can regard the search for x0 and y0 as a
nonrandom parameter estimation problem. Given a
noise model for both images and the actual scene
content, the probability distribution for each could in
principle be derived. The maximum-likelihood esti-
mate is then determined. This technique has been
applied to point-source WFS.8 However, this esti-
mator is directly dependent on scene content, mean-
ing it would have to be recalculated for every scene.
Furthermore, since this is not a linear function of the
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nonrandom parameters x0 and y0, producing the es-
timator is nontrivial computationally. This method
of estimation was therefore discarded as being too
computationally intensive.

The second method is deconvolution. This
method exploits the frequency-domain relationship
between the two images �Eq. �6��. With use of the
discrete Fourier transform, S̃�k, l� is known, and if
R̃�k, l� is nonzero at all k, l, division produces

F̃�k, l� � exp��j2�� x0 k � y0 l �

N � . (7)

If x0, y0 are integers, the signal f �m, n� �obtained by
inverse transforming the above� is simply a unit im-
pulse at x0, y0. If x0, y0 are not integers, f �m, n� is a
shifted sampling of a unit impulse. Based on this
signal, the shifts can be estimated.9 This deconvo-
lution method is sensitive to noise, particularly when
the spatial frequency content of the images is mainly
low frequency. Tests of this method in our applica-
tion showed it to be highly susceptible to noise.

The final method under consideration is correla-
tion. This method is an implementation of a mini-
mal mean-squared error �MSE� metric. The shift
with the least-squared difference between the two
images r and s is the best answer. Formulated ex-
plicitly, the MSE e�m, n� of the two images at dis-
placement m, n is

e�m, n� � �
 
 �r�i � m, j � n� � s�i, j��2�
� ��N � m��N � n���1, (8)

where the summation is, for m � 0, from i � m to i �
N � 1, and for m � 0, from i � 0 to i � N � 1 � m.
This holds likewise for n with index j. Note that
e�m, n� is defined only over the range ��N � 1� � m,
n � N � 1. Expanding the terms produces

e�m, n� � �
 
 r�i � m, j � n�2 � s�i, j�2

� 2r�i � m, j � n�s�i, j��
� ��N � m��N � n���1. (9)

The last term in the summation in Eq. �9� looks like
a correlation. But simply calculating the correlation
is not a shortcut to calculating this metric. Because
of the limits of summation, all the terms are depen-
dent on m and n. Minimizing the MSE is not equiv-
alent to maximizing the correlation between r and s,
even when it is calculated with energy normalization.

Instead, the finite signals can be treated as a single
period of an infinite periodic signal �just as for the

discrete Fourier transform.� Now the limits of sum-
mation are constant for all values of m and n

e�m, n� � �

i�0

N�1



j�0

N�1

r�i � m, j � n�2 � s�i, j�2

� 2r�i � m, j � n�s�i, j��N�2. (10)

Owing to the periodicity of the signals, as one end of
the signal moves away, it wraps around from the
other side. In this case the formula simplifies dra-
matically as the two energy terms remain constant.
The MSE equation now becomes

e�m, n� � � 

i�0

N�1



j�0

N�1

r�i � m, j � n�s�i, j�, (11)

which is exactly the correlation of the two signals
calculated with periodic convolution. Minimizing
the MSE �as given by Eq. �11�� is the same as maxi-
mizing the correlation. This correlation can be cal-
culated quickly in the frequency domain by use of
conjugation and the correlation theorem.

Computing the exact MSE for all possible overlaps
is O�N4� in FLOPs, where N is the number of pixels
along each dimension of the square image. The pe-
riodic correlation method can employ fast fourier
transforms �FFT�, so it is O�N2 log2N�. Except for
the case where the shifts are known to be small and
only a few points of the MSE must be calculated, the
periodic correlation method is significantly faster.
For a 16 by 16 pixel subaperture image, the periodic
correlation requires a factor of 16 times less compu-
tation than calculating the MSE for all possible over-
laps. However, the periodic correlation technique is
susceptible to errors due to the wraparound of pixels.
For low-quality images there is a trade-off: MSE pro-
vides better estimates but with more computation.

Despite this wraparound effect, the periodic corre-
lation technique can work just as well as the exact
MSE method. As shown in Fig. 1, Monte Carlo sim-
ulation demonstrates the comparable estimate error
and standard deviation for the same image with both
the MSE technique and periodic correlation. For
high-quality images, this overlap effect is negligible,
and both methods perform equally well. For poorer
quality images, the non-common image content at the
edges has a significant effect.

It is important to note that the answer we want out
of this technique is not the whole-pixel shift with the
best value of the metric, but rather an estimation of
the best sub-pixel shift. In the general case the shift
will not be a whole-pixel amount. The correlation is
actually just the scaled sampling of the autocorrela-
tion of the base signal sampled at the shift x0 and y0

C�m, n� �
1

D2 C� x, y��x�mD�x0 D,y�nD�y0 D. (12)

To obtain the true maximum of the function, we sim-
ply need to interpolate to estimate the continuous
signal C�x, y� and take its maximum value. Para-
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bolic interpolation is used, though another curve,
such as a Gaussian, could be fit to the peak. Assume
that the maximum of the discrete signal C�m, n� is
located at integers �x, y�. Then the following
equation fits a parabola to the closest points around
the peak and gives the shift estimate:

x̂0 � x

�
0.5�C�x � 1, y� � C�x � 1, y��

C�x � 1, y� � C�x � 1, y� � 2C�x, y�
.

(13)

The estimate of y0 is obtained in an analogous fash-
ion.

In summary, the best method for estimating the
shift between two subimages uses periodic correla-
tion. This is done by calculating the correlation with
FFTs and doing parabolic interpolation around the
peak location to determine the best sub-pixel shift
estimate. We have elected to use a reference subap-
erture to provide the new reference subimage at ev-
ery time step. This ensures that any dynamic
changes in the scene will be compensated for. There
are two complications to this. First, at any time step
there is no knowledge of the true tip and tilt, because
all slope estimates are measured relative to the offset
of a single subaperture. Therefore the drift of this
subaperture through time should be followed to ob-
tain tip and tilt information. Second, using a new,
noisy reference at each time step increases the
amount of noise in the system. Compared with a
fixed �nonrandom� reference image, the noise vari-
ance when using a new reference every step is two to
three times greater. However, if there is any dy-
namic change in scene content, this fixed reference
may provide poor quality estimates because of differ-
ences in the images. In the general case we expect
changes in the scene. The performance of this
method of shift estimation is rigorously analyzed be-
low. Simulation is then used to confirm the analy-
sis.

3. Performance Analysis and Simulation Results

A. Motivation

In AO systems, noise on the wave-front sensor man-
ifests itself as noise on the slope estimation. This
error then propagates through to the compensated
phase. Scene-based slope estimation can be ana-
lyzed by use of this model, where image quality as
well as photon noise leads to noise on the slope esti-
mates. Image content will vary to a large degree,
with some scenes being full of features, such as build-
ings or vehicles, and others being relatively uniform
such as a barren patch of land. Differences in image
content will produce images that are better or worse
for estimation. The total amount of light and back-
ground scatter will also vary with angle of viewing,
time of day, air quality, etc. These characteristics
will affect the noise level and change the performance
of a specific scene.

The bias and variance of the slope estimate are of
interest. The ideal scene would produce an unbi-
ased estimate with very low �or no� variance. This is
of course not true in the general case, and both bias
and variance depend on the scene, the noise level, and
the amount of shift between the subimage and its
reference. This Section analyzes the characteristics
of the slope estimation based on image content, illu-
mination and actual image shift. This analysis pro-
vides both a measurement of performance for an
arbitrary case, as well as scaling laws that describe
how performance changes with specific parameters.

Monte Carlo simulations were used as a technique
for verifying the analytic results. In these simula-
tions a large diffraction-limited image �obtained from
commercial satellite imagery� was used. The sub-
pixel shifted image was obtained by convolution.
The larger signal was windowed down to simulate the
field stop and the real drift of the image within the
field. Given a specific illumination profile, image
content, and noise model, random realizations of the
images were generated. Tens of thousands of trials

Fig. 1. Periodic correlation has competitive performance with the MSE method for a good image. In this case, Monte Carlo simulation
results for slope estimation of a shift in the x direction are shown: �a� Error of estimation in both cases is small, �b� the standard deviation
of the estimates are comparable.
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on the same set of conditions were conducted, and the
results were statistically analyzed.

B. General Case

As presented above, slope estimation involves com-
puting the cross correlation of two subaperture im-
ages �r�m, n� and s�m, n��, finding the maximum, and
then using that maximum value and the two neigh-
boring values each to determine the estimate of the
shifts x0 and y0 via parabolic interpolation. The ran-
dom vector C�m, n� represents the cross-correlation
function of these two images. Specifically, this pe-
riodic correlation

C�m, n� � 

i



j

r�i � m, j � n�s�i, j� (14)

can be computed with FFTs. The maximum of the
correlation will be �for whole-pixel shifts� at exactly
C�x0, y0�. For sub-pixel shifts, the maximum of this
correlation function is at �x, y�. We will assume
that the maximum of C�m, n� is within half a pixel of
the actual shift. For some degenerate images, it will
not be. For a single estimate of the x slope, parabolic
interpolation is used. This requires the discrete
maximum C�x, y� �as opposed to the true maximum
of the continuous correlation� and the two points
bracketing it, C�x � 1, y� and C�x � 1, y�. For
notational simplicity, these three points will be re-
ferred to as C0 for the maximum and C�1 and C1 for
the neighbors. The estimate of the shift is then re-
written into Eq. 13 as

x̂0 � x �
0.5�C�1 � C1�

C�1 � C1 � 2C0
. (15)

This expression is very difficult to analyze. Because
it involves division of random variables, full knowl-
edge of the probability distributions of C�1, C0, and
C1 is required to characterize the resulting random
variable. Preferably, knowledge of just the means
�m�1, m0, m1�, variances ���1

2, �0
2, �1

2� and covari-
ances ���1,0

2, ��1,1
2, �0,1

2� of the random variables
C�1, C0, C1 will be adequate to evaluate the perfor-
mance of the estimator. This is true if the estimator
x̂0 is approximated as a linear combination of C�1, C0,
C1 instead of being a quotient. The tangent plane to
the function is constructed at the point �C�1 � m�1,
C0 � m0, C1 � m1�. The function f �C�1, C0, C1� is
approximated as f̃ �C�1, C0, C1�. This is done
by taking partial derivatives and evaluating them at
the correct location. Where the partial derivative of
f �C�1, C0, C1� with respect to variable Ci is fi�C�1, C0,
C1�, the approximation is

f̃ �C�1, C0, C1� � f �m�1, m0, m1�

� �C�1 � m�1� f�1�m�1, m0, m1�

� �C0 � m0� f0�m�1, m0, m1�

� �C1 � m1� f1�m�1, m0, m1�. (16)

Evaluating the above expression produces the linear
approximation for the slope estimate:

x̂0 � x � �C�1�m1 � m0� � C0�m�1 � m1� � C1�m0

� m�1� � 0.5�m�1 � m1��m�1 � m1 � 2m0��

� �m�1 � m1 � 2m0�
�2. (17)

Because this is a linear combination of random vari-
ables, the mean and variance can be determined with
knowledge of only the means and variances of its
components. Most terms cancel to make the expec-
tation simply

E� x̂0� � x �
0.5�m1 � m�1�

m�1 � m1 � 2m0
. (18)

The variance can also be explicitly calculated and
after simplification is

�x
2 � ���1

2�m1 � m0�
2 � �0

2�m�1 � m1�
2

� �1
2�m0 � m�1�

2

� 2�m1 � m0��m�1 � m1���1,0
2

� 2�m1 � m0��m0 � m�1���1,1
2

� 2�m�1 � m1��m0 � m�1��0,1
2�

� �m�1 � m1 � 2m0�
�4. (19)

The means, variances, and covariances �e.g., m0, �1
2�

that appear in the above equations can be easily cal-
culated from the statistical models of the images.
The explicit formulas for these terms are given in the
Appendix. This long expression is not particularly
informative on its own. As the following discussion
shows, it can be drastically simplified for specific use-
ful cases. The results provide powerful descriptions
of estimation performance.

C. Zero-Shift Case

A special case worth considering is when the actual
shift between the two images is zero. In a closed-
loop system, the image shift will be driven toward
null. This simplification also enables easier analy-
sis of slope estimation behavior as illumination con-
ditions change. In this zero-shift case, the two
subimages have identical distributions. Therefore
m�1 � m1 and ��1

2 � �1
2. This reduces the approx-

imation of the estimate �Eq. �17�� to be

x̂0 � x �
C�1 � C1

4�m1 � m0�
. (20)

In this special case, the correlation is actually an
autocorrelation, so the peak will be at 0 and the
means and variances of C�1 and C1 will be equal.
Therefore the estimate is unbiased

E� x̂0� � 0. (21)
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Most of the terms in Eq. �19� cancel, reducing the
expression for the variance to

�x
2 �

�1
2 � ��1,1

2

8�m0 � m1�
2 . (22)

The most important term in this equation is the de-
nominator term �m0 � m1�. As described above, m0
is the expected value of the maximum of the correla-
tion function �C0� and m1 is the expected value one
pixel to the side �C1�. The �m0 � m1� term is then a
measure of the sharpness of the correlation peak.
The sharper this peak, the lower the error variance.
The correlation function is paired with its Fourier
transform partner: the power spectral density.
The more impulse-like the correlation function
�hence the sharper the peak� the broader the fre-
quency content of the image. This is consistent with
the notion that images with more high-frequency con-
tent perform better.

In the zero-shift case, all that is needed to calculate
the error variance of the estimate is knowledge of the
subimage statistics. By use of the parameters that
are defined in the Appendix �see Eq. �A5–A7��, the
performance of any image can be quickly calculated.
When done for a wide range of images, the predicted
slope estimate variance �x

2 reveals substantial vari-
ation in image quality. Some scenes have much
lower variance for estimation along one axis than the
other by a significant amount. For example, a scene
with a road that runs horizontally across the subim-
age will be a much better estimator in the y axis than
in the x axis. This is because the image is self-
similar for shifts along the x axis, as one part of the
road looks much like another.

The above analysis showed the estimator to be un-
biased and the error variance predictable in the zero-
shift case. Monte Carlo simulations confirm these
predictions. For a wide range of images, the slope
estimate mean is extremely small for a wide range of
images, confirming the estimator to be unbiased.
Fig. 2 shows the predicted error standard deviation
�x �by Eq. �22�� compared with the results from sim-
ulation. For low values of �x, the prediction is
highly accurate. It starts to under estimate for
larger values because of the linear approximation
that was used to produce a tractable expression for
estimator variance.

D. Illumination Changes

A metric that differentiates between arbitrary im-
ages was derived above. It is also of interest how the
quality of a specific image varies with changing types
and levels of illumination. Exposure time and total
amount of light are the first concern. System frame
rate is important, as there is a significant design
trade-off between the benefits of high speeds �e.g.,
faster correction results in reduced temporal errors�
and the detriments �e.g., reception of fewer photons
leads to more noise.�

To capture the effects of changing light levels, the
pixel values of each subimage are modelled as inde-

pendent Poisson random variables with parameters
f�̃r�m, n�, f�̃s�m, n�. The parameters �̃ are normal-
ized from 0 to 1 and multiplied by a scale factor f,
which represents the number of photons received by
the brightest possible pixel. This is a mathematical
convenience, but also could reflect real estimations of
the physical object’s albedo. The means and vari-
ances of C�1, C0, C1 are calculated as given in the
Appendix. Insertion of these values shows that the
slope estimate expectation is independent of light
level and depends only on the image content. This is
true regardless of the amount of shift. The new re-
lation for the error variance in the zero-shift case is

�x
2� f � �

�̃1
2 � � f � 1� f �1m̃1 � �̃�1,1

2

8f �m̃0 � m̃1�
2 . (23)

This is very close to the basic expression for zero-shift
error variance �Eqn. �22��. For a large number of
photons f �i.e., bright light� the � f � 1� f�1 term in the
numerator is approximated as 1, producing a scaling
law for the standard deviation of the estimate:

�x� f � �
1

�f

��̃1
2 � m̃1 � �̃�1,1

2�1�2

2�2�m̃0 � m̃1�
. (24)

In the bright-light case, the signal-to-noise ratio
�SNR� is simply proportional to �f, where f is the
maximum amount of light per pixel. The standard
deviation of the estimate follows the same inverse
power law to the SNR as quad-cell centroiding with a
point source does.10 Though the constant of the re-
lationship may be different �and is image dependent�,
this method of wave-front sensing is statistically
equivalent to the traditional approach with a point
source and centroiding. By use of the same � f �
1� f�1 � 1 approximation, in the general case for
shifts of an arbitrary amount, this inverse relation-
ship to the SNR still holds. This means that a
change in total amount of light simply results in the

Fig. 2. For the zero-shift case, the bias and standard deviation �st
dev� of the estimate can be explicitly calculated from the image
itself a priori. The predicted standard deviation � vs. simulation
results for a shift of zero. For high-quality images, the prediction
is extremely accurate. It starts to under predict for poorer im-
ages.
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estimate standard deviations for all subapertures to
be scaled by a known constant.

A second very useful way to look at the problem is
to break the subimage down into two components:
the actual image and the uniform background. This
model is appropriate for paths through the atmo-
sphere, when scattering increases the background
level. This can be due to long paths or high partic-
ulate levels.11 In this case the image pixels are pa-
rameterized by b � f�̃�m, n�, where b is the level of
background light. Again, for any shift, the estimate
expectation is independent of background level and
illumination amount. After some algebraic simpli-
fication, the estimate error standard deviation in the
zero-shift case is

where N is the total number of pixels in a single
subimage and t is another image statistic �see Appen-
dix A.� The sharpness of the correlation peak is still
the dominant term in this expression.

The advantage of these scaling laws is that, based
on a single copy of the subimage at a known light
level, the behavior of that image over a broad range of
conditions can be predicted. Figure 3 shows simu-
lation results for a specific image over a range of total
light and amount of background. The top panel
shows the effect of reducing the exposure time; the
bottom shows the effect of increasing amounts of
background. In both cases, the predictions �using
Eqs. �23� and �25�� based on a single copy of the image
are a very good fit to the actual performance. The

scaling approximation �Eq. �24�� has significant error
at very low light levels, which is to be expected due to
the � f � 1� f�1 � 1 approximation.

These laws aid in system design. In terms of
choosing the frame rate, performance falls off with
the inverse of the SNR. Background light can be
very detrimental. When the amount of background
light begins to exceed the image signal, the standard
deviation increases rapidly, though the estimate
mean remains the same. In the case shown in Fig.
3, similar performance is obtained for a no-
background image with a maximum of 100 photons
per pixel as for a background level of 250 photons per
pixel and an image level of another 250 photons.
Five times as much total light is required in this case

when the background scatter is equivalent to the im-
age content.

4. Computational Cost Estimates

Better AO correction drives system design to more
actuators and faster rates, which are limited by the
total amount of light available. But more pixels and
more subapertures lead to an increased computa-
tional burden. A balance must be struck between
computational costs and desired correction levels.
As an FFT-based algorithm, SBWFS computation
scales as O�np

2log np�, where the number of pixels np
across the subaperture is a power of 2. This compu-
tation must be done for each of the ns subapertures,
making the total cost O�nsnp

2 log np�. These slope

Fig. 3. Scene performance varies with the total amount and type of illumination. Simulation results are shown for the x- and y-slope
estimate in the zero-shift case. In both panels the open symbols are simulation results. The solid curves are exact calculations of scene
quality. The dashed curves are predictions based on the scaling law �Eq. �24�� and a single copy of the image: �a� Variation in total
amount of light. Reduction in the total amount of light causes a fall-off inversely proportional to the SNR. �b� Increasing background
and constant total amount of light. Performance falls off rapidly once the amount of background light is equal to or greater than image
light. For this image, 100 photons per pixel of image and no background gets comparable performance to 250 photons background and
250 photons image. St dev is standard deviation.

�x�b, f � �
�Nb2 � 2bf 2�m̃0 � m̃2 � t̃f �1� � f 3��̃1

2 � � f � 1� f �1m̃1 � �̃�1,1
2��1�2

2�2f 2�m̃0 � m̃1�
, (25)
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estimates are then reconstructed to obtain the phase.
For small numbers of actuators na, the vector-matrix-
multiply method is fine. But it scales as O�na

2�.
For larger systems a faster algorithm, such as Fou-
rier transform reconstruction �FTR�,12 is preferable.
FTR scales as O��na�2�log na�.

The dominant computational term is the slope es-
timation, which becomes enormous for large ns. Ex-
act FLOPs calculations are given in Table 1 for a
range of reasonable schemes using FTR. For high
control rates on large systems, parallel processing of
the slopes will be necessary. However, a low-order
AO system, with 14 subapertures across the pupil
diameter �156 total�, running at 10 Hz with 16 	 16
pixel subapertures would require a 16 MFLOPs
�mega-floating point operations� per second for sens-
ing and reconstruction. This is a very reasonable
computational burden.

5. Scene-Based Wave-Front Sensing for Point Sources

The preceding sections have shown that SBWFS is a
robust method. It can be applied to arbitrary
scenes, with both estimate mean and variance pre-
dictable a priori. Operating on null, it exhibits no
bias and the same inverse-power-law performance
the same as using a point source. For an arbitrary
shift, the slope estimate mean is insensitive to back-
ground light. Why not use it for wave-front sensing
with a point source? Current methods calculate the
center of mass of the spot formed by the point
source.13 SBWFS has a couple of particular advan-
tages to these approaches.

In the general case, many AO systems can have
background light on the WFS. This can be due to
the internal WFS camera characteristics or simply to
scattered light. It may be very difficult to charac-
terize and correctly remove the background. Even
low levels of background can cause a centroiding al-
gorithm to produce very poor answers. As shown
above, any uniform background level is irrelevant to
the slope estimate expectation in SBWFS. There-
fore no detailed background subtraction is necessary,
and a time-varying level of background light will not
affect system performance.

SBWFS could address problems specific to astro-
nomical AO systems with the quad-cell �2 	 2 pixel
subaperture� arrangement. The SBWFS would
have to use 4 	 4 pixels to have enough points to

make a correlation peak to interpolate. There are
two well-documented situations where the quad-
cell method suffers from extra error, both having to
do with the size of the spot. As the size of the spot
changes �which it does dynamically owing to chang-
ing atmospheric conditions� the gain of the WFS
measurement also changes, when it is calculated
with the quad-cell centroid algorithm. This mat-
ter, and how to compensate for it, has been stud-
ied.14 Spots, no matter their size, are good scenes.
Analysis shows that within the linear range of the
WFS, the SBWFS algorithm is insensitive to the
spot size changes. Note that if the spot is too
small, the WFS is not linear, and neither method
will work well.

Second, and somewhat more subtly, AO systems
can be run off null with the use of reference centroids.
Once calibrated, a specific subaperture is driven to-
ward a non-zero shift. If the spot size changes, the
centroiding algorithm will no longer accurately mea-
sure this offset, causing problems with AO operation.
This has occurred when Uranus was used instead of
a guide star in the Keck AO system.15 Because SB-
WFS is insensitive to this spot size change it would
enable this kind of operation.

It must be noted that a disadvantage of using SB-
WFS is the extra computational cost. In the astro-
nomical case SBWFS requires 4 times more FLOPs
than a 4 	 4 centroider and 30 times more FLOPs
than the quad-cell algorithm. If the AO system has
limited computational resources, the extra computa-
tion for SBWFS may cause a re-
duction in system rate and hence greater temporal
errors.

SBWFS has the potential to be an alternative slope
estimation algorithm for point sources. Provided a
suitable reference is available, SBWFS could produce
accurate, consistent slopes as conditions, such as spot
size and background level change, unlike current cen-
troiding methods. The author is currently under-
taking a detailed comparison of centroiding and
SBWFS for point-source sensing in astronomical and
vision AO systems.

6. Conclusions

This paper has presented several important advances
in the understanding of SBWFS. Scene perfor-
mance as a slope estimator is shown to be entirely
dependent on the scene content and illumination
type. In the general case, slope estimate bias is fully
predictable a priori and is independent of scene illu-
mination and camera characteristics. With a Pois-
son statistics model, the slope estimation is shown to
follow the same inverse power law in SNR for error
standard deviation as point sources do. The SBWFS
technique can be applied to point sources, potentially
providing a WFS method that is more robust to spot
shape, size, and background levels. The material
presented here enables the design and use of AO
systems that can use an arbitrary scene to do Shack–
Hartmann-based wave-front sensing instead of a
point source.

Table 1. Total kFLOPsa per Cycle for Slope Estimation and Phase
Reconstruction

Step 156 Subaps.b 716 Subaps.b 3024 Subaps.b

Slope 8 	 8 300 1,370 5,810
Slope 16 	 16 1,600 7,330 31,000
Slope 32 	 32 7,990 36,700 155,000
Phase reconc 61.4 102 492

akFLOPs, kilo-floating point operations.
bSubaps., subapertures.
cRecon, reconstruction.
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Appendix A: Calculation of the Statistics of the
Correlation Function

To determine the mean and variance of the estimator,
all that is needed is knowledge of the means and
variances of the individual pixels of the WFS camera
themselves. In the most general case, both images
are modelled as independent vectors of independent
random variables. For the two vectors r�i, j�, s�i, j�,
each element has mean mr�i, j� or ms�i, j� and vari-
ance �r

2�i, j� or �s
2�i, j�. Let Ck be the product of the

two vectors at offset k in the x direction, namely:

Ck � 

i



j

r�i � k, j�s�i, j�. (A1)

The mean value is

E�Ck� � mk � 

i



j

mr�i � k, j�ms�i, j�

(A2)

and the variance is

Var�Ck� � �k
2 � 


i



j
��r

2�i � k, j��s
2�i, j�

� �r
2�i � k, j�ms

2�i, j�

� mr
2�i � k, j��s

2�i, j��. (A3)

The covariance of any two values of the correlation
function is

Covar�Ck, Cl� � �k,l
2 � 


i



j
��s

2�i, j�mr�i � k, j�

� mr�i � l, j� � �r
2�i, j�ms�i

� k, j�ms�i � l, j��. (A4)

If the reference is fixed �nonrandom�, the above anal-
ysis still applies. The variance �r

2�i, j� now simply
equals zero in the above formulas.

Given that the images are formed from light re-
ceived by an optical system, the appropriate choice
for the random variables is that they have Poisson
distributions. This means that the expectation and
variance of each random pixel are equal, namely mr�i,
j� � �r

2�i, j� � �r�i, j�. Plugging these terms into the
above equations generates simple summations of �
parameters to obtain the statistics. The mean value
of Ck is

mk � 

i



j

�r�i � k, j��s�i, j�, (A5)

the variance is

�k
2 � 


i



j
�r�i � k, j��s�i, j�

� �1 � �s�i, j� � �r�i � k, j��. (A6)

The covariance of Ck and Cl is

�k,l
2 � 


i



j
��s�i, j��r�i � k, j��r�i � l, j�

� �r�i, j��s�i � k, j��s�i � l, j��. (A7)

One other term that will be used is t, which is the sum
of the parameters ��i, j�. This model can be easily
expanded to account for gain factors, read noise, and
background light.

The work detailed herein is part of a larger pro-
gram, and the author has benefitted from interac-
tions with her colleagues J. Brase, L. Flath, D. Gavel,
E. Johansson, K. LaFortune, R. Sawvel, and C.
Thompson. This work was performed under the
auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore Na-
tional Laboratory under contract No. W-7405-Eng-
48. The document number is UCRL-JC-151642.
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