Keck Adaptive Optics Note 679

NGAOQO Control Software Architecture

Last Revision Date
8/14/09

Erik Johansson, Jimmy Johnson, Doug Morrison
Version 1.0, August 10, 2009

Erik Johansson, Jimmy Johnson, Doug Morrison Page 1 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Revision Table

Version

Date

Authors

Comments

1.0

August 10, 2009

EJ, JJ, DM

Initial Release

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture

Revision: 1.0

Page 2 of 136
9/4/2009

Summary Table of Contents

cONO OIS WN PR

[T 0 [0Tox £ o o ISR 7
e V(Lo I Lo Yot U aT=T o £ 7
DOCUMENE CONVENTIONS.civiieitiie ittt e sttt s e s e e sab e e s eab e e s ebb e e s sbbeessbbaesabeeesbeeesareas 8
BACKGIOUNG ... bbbttt e et bbbttt 9
(@Y1 V7 =L OSSR 11
ApPlIcation DEVEIOPET VIBWcc.oiuiiiiiiieieieiee st 21
=Y =] (o] o L= G A = USSR PRRURSIS 75
GHOSSAIY ..t b bbbt bttt ns 133

Table of Contents

R 11 0o ¥ Tox [0 PSR SROTSOPPRS 7
2 Related DOCUMENTSeeiiiiiesiieie e se ettt et e e ste e steeaeesaesteesteeseesraeaeeneesreeteeneenreans 7
3 DOCUMENT CONVENTIONS.ciitiiuiiitieiiieiesiie st e et see st esbe e e b e e sbeesbe s e sbeesbesreesbeenbeeseeneeans 8
O ¥ 1010 | (o] o PSSR 9
I O Y= VT PP PTSPP 11
TS A (- T LU (1SS 11
511 Distributed component based architeCture...........ccoovverenienie e 12
51.2 @00 0] 31> 0 13RS 14
5.1.3 Vo] a1 0] 1o [TSP PTRR 14
5.14 EVBNTS . .. 14
5.15 ALBIMS e e e et e e re e 14
5.1.6 LLOQg MIESSAGES ...vteeeiiieestiee ettt e sttt ettt et e b e nbb e e e b e bbb e 14
5.1.7 CONTIGUIALION ...ttt e et e e re e e e 15
5.1.8 ATCRIVING Lttt e te et esseeste et e nre e teeneeaneenrees 15
5.1.9 LEOACY SUPPOIT ...ttt ettt sttt ettt et be e b e nbe e et e e sbeeenee e 15
5.1.10 USEE INTEITACE....cuieie ettt nre e e enes 15
T8 50 R Tox 1 o] [o PSPPSR 16

5.2 ATCNITECIUINE LAYEIS. .. ocuiiiiieite ittt bbbt 16
5.3 Container Component MOdel...........ccooviiiiiiiie e 17
oI O] 114 o 1F T g1 ToF: 14 o] ST 18
TS T = 1= 0]] SRR PS 19
5.6 SUMMAIY ..otttk b bttt b e nb e 20

6 ApPlication DEVEIOPEN VIBWccvciuiiiiiieeiie ettt sttt sba e steeae e sre e 21
6.1 Container Component MOGEl............ccoiiiiiiiii e 21
6.1.1 CompOoNENt LITECYCIE........oiviee e 22

6.2 Data Transfer ODJECESooiiiieiiiiei e 24
6.2.1 ATETIDULES. ... ere s 24
6.2.2 ATFTDULE LSS .ttt e e et eeee e 25

6.3 Devices and CoNtrollErsS.........occuc i e 26
6.3.1 FUNCLIONAL INTEITACES.ei e 28

R 1= A o= OSSP 32
6.4.1 CONNECLION SEIVICE ...eviiieieiiieie ettt sttt st sttt esbeeeeeneesreenaeaneens 32
6.4.2 F A 1 I TCT VT SRS 34
6.4.3 EVENE SEIVICE ...ttt te e e et e e s reeere e 35
6.4.4 LOQQING SEIVICE ..ottt ettt ettt et st e et e reesre e e anes 37

Erik Johansson, Jimmy Johnson, Doug Morrison Page 3 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.45 [LT L TST=T AV (oI 39

6.4.6 CoNFIGUIALION SEIVICEeeieeeecieecie ettt re e e e 41
6.4.7 ATCRIVE SEIVICE. ..ttt sttt b e nne s 41
6.4.8 Channel ACCess CHIENT SEIVICEccviiiiiieieie e, 43
6.4.9 CA SEIVEE SUPPOIT ...ttt ettt e et e e ssb e e steesnneeneeanneas 44
6.5 Al SYSIBML .ot nre s 45
6.5.1 Alarm ConFIQUIALIONcoveiiiiiiieie et 46
6.5.2 AJGIN SEIVICE ..ottt bbbt 48
6.5.3 ALIM IMIBNAGET ...ttt ettt sre e 48
6.5.4 F N T ¢ oo o [o S PRSUSSRN 48
6.5.5 Alarm SUMMAry DISPIAYooviiiiieiieece s 49
6.6 CoNfIQUIrAtion SYSTEIMciuieiiiie ettt et e e nre e enes 49
6.6.1 Configuration MOEL............ooouiiiiiii e 50
6.6.2 ConfIQUration LIDIarycccveieiieiicce et nre e 51
6.6.3 AMINISLration TOOIScoviiiiiieee e 53
T A Tor 1 o] o SRR 57
OIS T I TSRS 57
6.8.1 N o] o] {0 o USSR SSSRSR 58
6.8.2 TASK INTEITACE.ot aeas 59
6.8.3 EXBCULOTS. ..ottt 61
6.8.4 USING TASKS ...ttt ettt ettt re e nre e nnes 62
6.9 T =T0 0 1=] [0 £ PP PP 63
6.9.1 APPIOACH .. e 63
6.9.2 State MACHINE.ot 65
6.9.3 HanNdliNg TranSItioNS.cc.oiieiiiiieciesie et 65
6.9.4 ISSUING TTaNSITIONSecvveieieiecie ettt e e esreeneeneenneens 66
6.10 USEI INTEITACE.....cuei ettt b et neeenes 66
6.11 DeVveloping COMPONENTS.......ccuiiieieeieseeieeie e e sie e e et e e reeste e e e esbeeneesraeteeneesneeneas 67
6.11.1 LifecyCle MethOdS........ccuoiiiiiiieiee e 68
6.11.2 FUuNnctional MEtNOGS...........cooiiiiiiiiiee e 70
6.11.3 EXAMPIES...oeeiee e e 72

A 1=V = (0] 1= Y A 1= SRRSO 75
7.1 Architecture Layers DEtallSccooiiiiiieiiii e 76
A O 1 - Y[=T g V- T g o 1= OSSR 77
A B O] 1 - [=] ST SR TR 77
7.3.1 CoNtAINET INTEITACE.c..i it 79
7.3.2 TOOIBOX ..ottt ettt bbbt b et bbbt neenreas 80
7.3.3 CoMPONENE INFO ...t 80
734 COMPONENE LOAUE ..ottt sttt 80
7.4 Components: Devices and CONtrOlIErS..........ccoeiveieiieieeie e 81
74.1 TeChNICAl INTEITACE.....cc.ieiiei e 83
7.4.2 FUNCLIONAl INTEITACEoviiiiiicce s 84
8 T O] 11 40 13 To SRR 85
7.5.1 Middleware Binding for COMMAaNGScccooiiiriieieniene s 85
7.6 B NS e nnee s 89
7.6.1 ICE EVENt SEIVICE TOO!iiiiiiieii et 89
7.6.2 DDS EVENt SErVICe TOO.....cecieiiiiieiesesieee e 90
Erik Johansson, Jimmy Johnson, Doug Morrison Page 4 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

7.6.3 Y=L (=0 [P UPTPRRTRUTRRN 90

7.6.4 Event Callback Adapler.........ovviieiiee e 90
O A I TSRS 91
7.7.1 Asynchronous Task DeVvelopmENtcccceiveiieieiieriee e 91
7.7.2 Synchronous Task DevelopmeNt ... 92
7.7.3 TASK EXECULOIS ...ttt bbb 94
7.7.4 Handling Errors, Dynamic Task Control...........cccocoiiiiinniieieieneec e 96
7.8 Y=o [0 1=T 00T £ PSP PPSPPPP 97
7.9 Key differences between KCSF and CSF ... 100
7.9.1 Attribute Internal Representation..........cccoovcveieeiesieene e 101
7.9.2 Components, Controllers and their interfaces...........ccccovovrvenieniieieneee e, 101
710 SEIVICE DELAIIS ..ot bbb 103
7101 CONNEBCLION ...ttt ettt ettt e b sre e beeneesneenreas 104
T.00.2 ATCRIVE..c.oci e 105
T7.00.3 HEAIN .o 106
7% 0 I S oo o o USSR 107
7.10.5 CA CHENESEIVICE ..ottt sttt st nreas 109
T7.10.6 CA SBIVE ...ttt r e 110
T.010.7 AL bbbttt a e nre s 112
7.10.8 CONTIGUIALIONvveiecie ettt ste e e s e e saeeneenneas 119
% 5 R Tox] o] [0 IS0 o] 1o] PR UP USRS 122
7.11.1 Implementation DetailS.........c.ccoveiueiieiieie e 123
712 USEE INTEITACES ...ttt sttt nb e beeae e 126
0 0 RN -\ 7 B 11 o USSR PSSR 126
7.12.2 CSF Java ENgINEering SCIEENScccuiiieriiiieiiesieeiestee e eiestee st sneas 129
T.02.3 Gl K et b bbbttt bbb bbbt 129
A O | SRR PRPSURRP 130
B GIOSSANY ...ttt bbb bbbttt e r e 133
Table of Figures
Figure 1: An overview of the Keck Component Framework.ccccovveeiirnininnennese e, 12
Figure 2: A distributed Container-Component Model VIEW.ccccoovvieiviiesiieieece e 13
Figure 3: ArchiteCture Layers OVEIVIEWcccoiieiieiieiieiiieiiesie e see e siee e esssessiesseesneesnesneens 16
Figure 4: Container Component MOUENooiiiiiieiiee e 17
Figure 5: Multiple devices/controllers communicate with each other using a simple abstract
11 CC] o = Tol RSO RUR PRSP 18
Figure 6: A summary of the KCSF architeCture.cooe i 20
Figure 7: General model fOr CONTAINEIS.ccviiiiieiice e 21
Figure 8: Component lifecycle sequence diagrami..........ccoeieereiieiieninie e 23
Figure 9: Devices and CONLIOIIErS.cooiieieiicce e 27
Figure 10: Device types and CONTIGUIALIONccviuiiiiiiiieiiescee e 27
Figure 11: An example “QUICK-LOOK” WIAQEL.........cccviiieiieiecie e 31
Figure 12: Log VIEWET Ul PrOtOYPEccuveiiieieiie sttt 39
Figure 13: An illustration of the health service. The container periodically polls its components
as to their health status and posts health changes to a health event...........c.ccooeiiiiiiiinnee, 40
Figure 14: The health monitoring summary diSplay.ccceeiveieiiieiiieie e 41
Erik Johansson, Jimmy Johnson, Doug Morrison Page 5 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Figure 15: Archive SUPPOIT OVEIVIBW.......c.uciuiiiiiiieieeie sttt ae s ste e nne e 42

Figure 16: An illustration of the KCSF CA Server and external CA/KTL acCess.ccccevveennens 45
Figure 17: The KCSF Alarm System ArChiteCtUre.cooeiiiiiiiiiie e 46
Figure 18: The alarm summary diSPIaY.cceiveieiiieiieii e 49
Figure 19: Configuration LAYEIS.couiiieiiiiesiiesieeie sttt st ae e e 50
Figure 20: Distributed Database ACCESS.ciiverueiieirerieeieieeseeesee e eeesee e eseessae e eeesneesseeneens 51
Figure 21: Class Definition EXaMPIE.........cccoiiiiiiiiiiiice e 54
Figure 22: EXaMPIE ClaSS VIBWc..ecuiiiiieiieie ettt te et ste e sta e snaenneenenneens 55
Figure 23: Example Component VIEW Panel...........cccooiiiiiiiiieee e 56
Figure 24: EXamPle SYSIEM VIBW.c..iiiiiieiieiie et ta e eeae e sne e sneesneenne s 56
FIQUIE 25: INESTEA TASKS.eitieieiitieitiee ettt sttt bttt ettt e e be e nae e 59
Figure 26: Multi-System Command SEQUENCET...........ccueiverieiiereeie e e eie e se e sae e eaesreeseeens 63
FIgUre 27: SEQUENCET DESION. . .eiitiiiiiiieiiie sttt sttt sttt sttt se et et st b e sbe st e sbeebesneesne e 64
Figure 28: State Maching DIAQIaMc.ccveiiiieiieie e e e ee et e e se e e e e sreeae e e sneeee s 65
Figure 29: The component lifecycle state transition diagram...........ccccoeoereerenieneenc e 68
FIGUIE 30: KCSF OVEIVIEW.eiviiiecie ettt ettt e et s e te e e teeteaneesnaesaeenaesreenaeaneenneans 75
Figure 31: Detailed ArchiteCtural LAYET.cooiiiiiieiiiie e 76
Figure 32: Container class deCOMPOSITIONceiiiiuiiiieiieie e se e e e sae e 78
Figure 33: TYPICAI CONAINETc.ueiiiiiiiie ettt sttt be e e e 79
Figure 34: Components: Devices and CONIOHIErS.ccoveeiieriiie e 81
Figure 35: The device interface is composed of commands and attributes.ccccceveriennene. 83
Figure 36: CONNECLION SEIVICE OVEIVIEW.c.uiiiieieiiesiie it eiesee e e ie s e ste e e saeenae e e sreeaesnaesneens 85
Figure 37: ProxXies and STUDS.c.oiiiio e e 86
Figure 38: Event service Class NIErarchy.c.ccooeiioieiieiieie e 89
Figure 39: ICE EVENt SErVICe TOOL.......coii i 90
Figure 40: TasK EXECULION.ecviiieiecieiie ettt e e te e s esae e e sneesreeneesnaenneans 93
Figure 41: Simple Thread POOL.cooo i 95
Figure 42: Executing TranSition LOGIC.ueiveiiiieiieesie e esiesee e e sie e steesae e sraesse e sneesneeneens 97
Figure 43: SLEW-TRACK SEALES.ciiieiiiieiiesieeie ettt sttt sbeesae e sreenae e 98
Figure 44: KCSF COOE DASEocveiieeiiiie ettt ae s e nre e enes 101
Figure 45: Component and Controller Differences between CSF and KCSFccccooeinnee. 102
Figure 46: Log Service EXAMPIEccvoiiiiiiieceee ettt nns 104
Figure 47: Database SUPPOIT........ooiiiiiiie ettt bttt e enes 106
Figure 48 Sequence Diagram fOr CA SEIVENccveiiieciece e 111
Figure 49: ProcessVariable class with methods that are important for a developer................... 111
FIgUre 50: Class SCREMALiciiiieieee ettt et e e e nteeneenreenreanes 120
Figure 51: INSTANCE SCNEMA.ocviiiiiiiiie ettt st enes 120
Figure 52: Data VerSIONING.coueiierieieiiesieesieseesteesieeseesreeseeaseessaesseeseessessseesesseesseessesseessennes 121
Figure 53: Database VErSIONS.couiiiiiiiieiieie ettt sttt sre et enes 122
Figure 54: The | Execut or and | | nt er pr et er scripting Classes.c.ccoovvvriiiiiiinienne, 124
Figure 55: Multiple script engines are supported through the Java Scripting API. 125
Figure 56 Swing event-dispatch Model............ccooiieiiii i 127
Figure 57: A sample CSF JES GUILooiiiiiiieie ettt 129
Figure 58: An example Qt GUI SCIEEN.ccveiieeieiee ettt te e 131
Figure 59: Comparison of Qt and GTK+ window environments.cccocevvererieeneeniesenseenn 132
Erik Johansson, Jimmy Johnson, Doug Morrison Page 6 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

1 Introduction

This document describes the design of the software architecture for the NGAO control system. It
is not a description of the control system design, but rather the software architecture that will be
used as the foundation for designing and implementing the control system. There are several
target audiences for this document: people who are not software engineers who need a basic
understanding of the software architecture, software developers who will be implementing the
NGAO control system using the architecture, AO scientists who will be implementing AO
applications using the NGAO control system, and finally, software developers who will be
maintaining and extending the architecture itself.

The document is written using the concept of “views” organized around these target audiences.
We begin with some background and an overview that are appropriate for all the target
audiences. Next, we present the application developer view, which is appropriate for the software
developers and AO scientists implementing the control system and AO applications. We
conclude with the architecture developer view, which is an overview of the software architecture
appropriate for software developers maintaining and extending the architecture.

2 Related Documents

a. KAON 671: Keck NGAO Software Architecture: Container Component Model, J.
Johnson, D. Morrison, E; Johansson, Rev. 2, June 3, 2009.

b. KAON 672: Keck NGAO Software Architecture: Connection Service, D. Morrison, J.
Johnson, E. Johansson, June 3, 20009.

c. KAON 673: Keck NGAO Software Architecture: Logging Service, D. Morrison, J.
Johnson, E. Johansson, June 30, 2009.

d. KAON 674: Keck NGAO Software Architecture: Sequencer Architecture Design, D.
Morrison, J. Johnson, E. Johansson, July 31, 2009.

e. KAON 675: Keck NGAO Software Architecture: Tasks, D. Morrison, J. Johnson, D.
Morrison, July 30, 20009.

f. KAON 676: Keck NGAO Software Architecture: Configuration Service, D. Morrison, J.
Johnson, E. Johansson, July 27, 2009.

g. KAON 677: Keck NGAO Software Architecture: Alarm System, J. Johnson, D.
Morrison, E. Johansson, June 23, 2009.

h. KAON 678: Keck NGAO Software Architecture: EPICS Interfacing, J. Johnson, D.
Morrison, E. Johansson, June 9, 20009.

i. “ATST Common Services User’s Manual”, Steve Wampler, ATST Software Group,
Panguitch-1P7, Feb 12, 2007.

J. “ATST Common Services Reference Guide”, Steve Wampler, ATST Software Group,
Panguitch-1P7, Feb 12, 2007.

k. “Evaluation of Software Frameworks for the ASKAP Monitoring and Control System”,
Guzman, J. C., ASKAP-SW-0002, Version 0.2, 11/21/08.

I. “Evaluation of the Data Distribution Service for Real-Time Systems (DDS) in the
Context of the E-ELT TCS Infrastructure”, Taylor, P., ESO Document number E-TRE-
OSL-439-0012, Issue 1, 2/9/09.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 7 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

3 Document Conventions

When using code fragments as examples, we will use the non-proportionally spaced Courier
New font:

class foobar extends foo {
int fool;
double foo02;

}

We also use this font for specific code related terms embedded in the text (class names, method
names, etc.).

The architecture is designed using modern software methods, which have their own unique
vocabulary. Hence, many of the terms in the document may be unfamiliar to people. Rather than
defining all of them as they are used in the text, which can obscure the overall meaning of a
passage, we have chosen to describe some as necessary and to include others in a glossary of
common terms at the end of the document.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 8 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

4 Background

We approached the NGAO software architecture design with two primary objectives in mind.
First and foremost, the architecture has to meet its main functional requirement of supporting the
NGAO controls infrastructure so that the system can be successfully integrated into the Keck
Observatory environment and support operational science observing. Secondly, and nearly as
important, the software architecture should be designed using modern software methods and
tools. This means embracing modern object oriented design methods, design patterns and new
development environments. This second objective is somewhat of a departure for the
Observatory. With the exception of MAGIQ, and, perhaps, portions of the Interferometer, most
of the software development and software architectures employed by the observatory are based
on an aging, and in some cases, nearly unsupportable infrastructure. Given the strategic
importance of the NGAO system to Keck Observatory, we believe it is critical that the NGAO
software architecture be a foundation and an example for future projects and be sustainable for
many years to come.

Our current software and controls infrastructure relies on the EPICS control system middleware,
Sun workstations and VVxWorks real-time CPUs in VME crates. In some areas, our versions of
EPICS are so old they are no longer supported by the EPICS community. Most of our versions of
Solaris are old as well and not widely used in the broader computing community. Finally, our
version of VxWorks is quite old, and in some cases the host CPU hardware is no longer
supportable. Moreover, while EPICS works quite well in an environment where the process
variables are scalar, it is not well suited to process variables that are arrays or structures, which
are used quite heavily in adaptive optics.

As a result, we began the architecture design process by looking at a number of communication
middleware packages and software frameworks as alternatives to EPICS. Some items we
examined directly, but for others we relied on analysis work done by other groups. One useful
input was the “Evaluation of Software Frameworks for the ASKAP Monitoring and Control
System” produced by Juan Carlos Guzman (ASKAP is the Australian Square Kilometre Array
Pathfinder, a next generation radio telescope being built in Western Australia). Other useful
input came from Gianluca Chiozzi of ESO who provided “Evaluation of the Data Distribution
Service for Real-Time Systems (DDS) in the Context of the E-ELT TCS Infrastructure” and
other documents. As a side note, this cooperation between observatories has proven to be quite
fruitful. We have received quite a lot of supporting material and software from others and we
have shared some of our results and progress as well.

During the course of our initial investigation we explored the frameworks RTC, TANGO,
EPICS, TINE and ACS before deciding to invest more time on the Advanced Technology Solar
Telescope project (ATST) Common Services Framework (CSF). Bret Goodrich and Steve
Wampler, from NOAO, have been a source of tremendous support, providing code and
documentation, as well as hosting a Keck visit to their facility. CSF is a control system
framework which uses a distributed component-based development environment. It uses a
container-component architecture which is designed to be independent of the communication
middleware that is used. The ATST project evaluated several middleware solutions for the CSF:
CORBA, ICE and NDDS. They decided on ICE, a CORBA-like product from ZeroC Inc, due to

Erik Johansson, Jimmy Johnson, Doug Morrison Page 9 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

its good performance (over CORBA) and the fact that it has both commercial and GPL licensing
options. We have some small experience with ICE from the MOSFIRE project.

In addition to being middleware neutral, another important aspect of CSF is its use of narrow
interfaces (these can be seen in many modern solutions such as TANGO, and similar approaches
are being discussed for ELT). There are a small number of standard objects defined: components
are defined as controllers or devices, with their interfaces defined in a standard IDL file. All data
transfers (apart from bulk data) are transmitted using a concept called attributes. This allows for
very loose coupling and the ability to add or remove functionality without requiring major code
rewrites and dealing with API interdependencies. CSF supports peer-to-peer communication in
addition to publish-subscribe capabilities.

While our approach differs from some of the philosophies of CSF in terms of how data is
internally represented and in some of the component and controller interfaces and interactions,
the majority of CSF is directly applicable to us. With some minor changes to a few interfaces,
some data structures, base components and controllers, we have been able to implement a proof
of concept for our framework. We have also been able to use a number of the CSF common
services, such as logging and its associated Ul, that go beyond the core infrastructure. In addition
to evaluating the ICE middleware we have also been successful in prototyping CSF over Data
Distribution Service (DDS) which is a good testament to its architecture. We recently shared the
code we have implemented for channel access (CA) service, and DDS based connection and
event services with NOAO/ATST. We are currently iterating on some design ideas for the alarm
system and will have a visit in October from Steve Wampler to further discuss the frameworks.
As we move forward in our design, there will, no doubt, be other good opportunities for
collaboration and both Keck and ATST will continue to benefit in kind.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 10 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

5 Overview

The software architecture we are proposing for the NGAO system is a framework based on the
ATST CSF described above. We have dubbed the architecture the “Keck Common Services
Framework”, or KCSF. The KCSF provides the base infrastructure needed to develop a
distributed control system. In a distributed system, components will need to communicate with
each other, perform certain actions, and work together in a pre-defined way to form a larger
system. The framework enables this by providing common communications, common data types,
common commands and common tools throughout. The solution uses a component based
development model that supports methods, attributes and properties. The framework provides a
kernel APl which hides all the details of network access and provides object browsing,
discovery, common services and more.

It is important to keep in mind while reading this document that there are two distinct
architectural views: the technical architecture and the functional architecture. The technical
architecture is concerned with the component execution environment, associated tools, services,
user interfaces and technical facilities required to develop and run a distributed component based
system. The functional architecture is concerned with the functional aspects of the system,
which are the specification and implementation of a control system that satisfies the functional
requirements.

The framework implements the technical architecture in full and allows the developers to focus
on their functional areas. This separation of concerns means that that once the framework is
delivered, developers can limit themselves to the design and implementation of the required
devices and controllers, without regard to any of the technical infrastructure. It also means that
functionality can be added or changed later on without adversely affecting the rest of the system.

The basic functional component supported by the framework is a “device”. Devices can
represent physical hardware or more abstract concepts. The framework also supports a special
case of a device, called a controller, which can perform simultaneous operations and coordinated
activities. All device configuration data is stored in a database. The devices can be on the same
computer or distributed over a number of computers interconnected by a network.

The framework is flexible in its choice of network protocols and we are currently evaluating the
Internet Communication Engine (ICE) and Data Distribution Service (DDS) protocols. Both
peer-to-peer and publish-subscribe communication models are supported. Communication
between components can be synchronous or asynchronous, and on-demand or event driven.

Some ready to use graphical applications allow users to graphically display data coming from
devices without the need for any programming. Graphical layers above the kernel API reduce
specific graphical client software development time. Logging, alarm and archiving capabilities
are available to keep track of what is happening in the system.

5.1 Key features

This section describes the key features of the framework. A high-level overview is shown in
Figure 1 and the features are described briefly in the sub-sections that follow.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 11 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Health

Administration

Configuration

fonitoring

i

1

I

i

i

i

1

I

Uger !
Logging Interfaces [
1

1

i

i

i

i

1

I

i

i

D Technical
D Functional

Legacy
Support

Tools CCM

Communication

Figure 1: An overview of the Keck Component Framework.

As discussed above, the software infrastructure consists of a technical architecture and a
functional architecture. The technical architecture consists of the following:
e A container component model (CCM) which includes:
0 An implementation of containers
o An implementation of container managers
0 Lifecycle management of components
e A communication model and communication middleware
e A set of core tools, that includes
o Command support
Events
Alarms
Logging
Configuration
Archiving
Legacy Support
User Interface
e Low level tools for generic database access and communications (middleware libraries,
device drivers and protocol libraries).
The functional architecture consists of the following:
e A base implementation of devices and controllers
e Templates for common devices and controller

O O0OO0OO0OO0OO0Oo

5.1.1 Distributed component based architecture

Software development and design have evolved significantly over the last decade. Distributed
development is now quite common, where applications no longer exist in a single process space
on a single node, but can be distributed over many machines throughout a network. Distributed
development has been a very successful design method for large software projects; however, it

Erik Johansson, Jimmy Johnson, Doug Morrison Page 12 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

still sufferers from many of the same weakness of previous models. Small modifications to code
tend to impact many modules, and typically result in full or large-scale code recompilation and
deployment. Additionally, distributed systems (as with the previous models) tend to strictly
define object relationships directly through custom class interfaces and functionality. This
typically makes upgrading a distributed application a difficult task since class dependencies are
built into the code and may span the entire system.

With the desire to improve the maintainability and scalability of distributed systems, the
Component-Based Development (CBD) model was created. This model focuses on removing
dependencies between objects by designing components with strict and well defined interfaces.
Components must conform to a known standard based on the problem each implementation is
designed to solve. The goal is to be able to isolate the functional implementation of a task within
a single plug-and-play object that can be modified or swapped with an alternative
implementation without impacting the rest of the system. A user should be able to replace a
component that satisfies a similar use-case without creating or breaking any dependencies in the
system.

CBD provides a flexible and agile way to architect, design, implement and deploy scalable
software systems. The goal of this model is to produce software that is interchangeable and
easily replaceable by separating the functional and technical aspects of a system. In essence, the
model drives developers to see their system as a breakdown of self-contained and swappable
objects.

Component software consists of components, tools to manage them and a component runtime.
Components are a physical replaceable part of a system that package the implementation of
domain specific functionality in a modular way. The tools aid in managing the components and
configuring them to the desired runtime environment. A component runtime defines a runtime
environment for components.

Depending on the system needs, components can be deployed in different ways. They can be
reassigned to balance resource usage and network load. They can be functionally partitioned to
create independent islands that provide domain partitioning to support rapid fault recovery,
eLoasier management and monitoring and so on.

Communication Bus

Figure 2: A distributed Container-Component Model view.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 13 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

5.1.2 Commands

Commands are used to set and get device attributes and to initiate an action or sequence of
actions. KCSF supports both synchronous and asynchronous commands. The basic commands
are get, set, and execut e. get and set are used to read and write attributes to a component,
while execut e is used to initiate a command requiring action. Commands follow a command-
response pattern for synchronous operations and a command-action-response pattern for
asynchronous operations. Components respond to commands in one of three ways:

1. No response is needed. Some systems and configurations operate in a stateless manner.
For example, the logging system simply accepts messages and records them, no response
is required. This is implemented as a synchronous command.

2. An immediate action is performed and acknowledged. If the action can be performed
essentially instantaneously, the command response provides the result of performing that
action. This is a synchronous command.

3. The command is acknowledged as valid and an action is initiated. When the action
completes a separate mechanism (callback or event) announces the completion. This is an
asynchronous command.

As actions are being performed by a component in response to a command, the component may
receive and generate events, make requests of the persistent stores, generate alarms and record
log messages.

5.1.3 Monitoring

In addition to the get, set, and execut e methods discussed above, KCSF provides the ability to
monitor the attributes of any component for changes. A monitor subscription is established using
the component’s addMoni t or method, and the component executes a call back when any of the
requested attributes have changed in value. The rate at which the monitor operates is specified by
the user. There are several other utility functions for monitors which are described in detail in the
User View and Developer View sections of this document.

5.1.4 Events

Events are used for asynchronous message delivery. The event system in KCSF is modeled after
conventional notification services. Events are a publish/subscribe mechanism that is based on
event names: Components may post events without regard to the recipients and subscribe to
events without regard to their source. Subscriptions may be made using names containing wild-
card characters to subscribe to multiple events sharing common name characteristics.

5.1.5 Alarms

Alarms are propagated using the event system. Components may generate alarms, clear alarms,
respond to alarms, and recast alarms.

5.1.6 Log messages
Components may generate messages that are recorded into a persistent store.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 14 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

5.1.7 Configuration

It is expected that most devices and controllers will have some set of configurable properties
associated with each instance. When objects are instantiated, these properties and associated
attributes may have hardcoded default values that will need to be overridden for the object before
standard operations can begin. A convenient way to store and retrieve object properties is
through a Configuration Database. This database will define all of the configuration information
required by each class instance, as well as any additional metadata and run-time information
needed by the system.

When a component is loaded, the framework will automatically retrieve the configuration for it
and will update the associated component attributes automatically. The framework will also
provide the capability to allow all components to retrieve their configuration on demand.

It is also possible to create device type configurations, which apply to all devices of a particular
type, not just to a particular device instance (e.g., all LGS wavefront sensors, as opposed to LGS
point-and-shoot WFS number 1). When a device is configured, the configuration for the device
type will be loaded first, followed by the configuration for the particular device instance. This
way, default parameters that apply to all devices of a particular type can be loaded during the
device type configuration, with the capability to override them using the device instance
configuration.

5.1.8 Archiving

Data archiving refers to the long-term storage of data. The framework allows component
attributes to be archived at high rates to a relational database, where they can be later queried.
Both a push and pull model are supported. Components can choose to archive data on demand,
though this may not be a common case. In addition a data archiver can be configured to pull data
from components at a dedicated periodic rate or on the occurrence of a particular event.

5.1.9 Legacy Support
In order to support backwards compatibility with existing instruments and systems, the

framework will provide full channel access (CA) support such that it can act as both a CA server
and a CA client.

5.1.10 User Interface

User interfaces are a key part of the KCSF framework. The design will define the overall look
and feel, the preferred technical implementation (Ul toolkit), and development guidelines: use of
the Model/View/Controller (MVC) or Model/View/Presenter (MVP) model, helper functions and
base widgets. The following user interfaces will be provided as part of the base framework:
e Configuration Uls — user interfaces to configure the system
e System Administration Uls- user interfaces to help deploy and monitor the running
system
e Alarm Handler — user interface to monitor and acknowledge alarms from the system
e Log Viewer — examine contents of the log database with filtering capabilities, such as
source, time ranges and message types etc.
e Archive Viewer — examine contents of the archive database with filtering capabilities,
such as source and time ranges etc.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 15 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e KCSF Panel - a generic Ul that can be used to display the values of attributes or to
execute commands on any set of devices. Values can be displayed numerically or
graphically.

5.1.11 Scripting

The framework provides a scripting engine to execute scripts that can interact with the
framework. A number of different scripting languages can be supported. Scripts have full access
to the framework services and tools including the connection service allowing scripts to
communicate with any KCSF components. Sequences can be extended to use scripts and scripts
can be submitted and executed directly through standalone KCSF applications.

5.2 Architecture Layers

The framework is a layered architecture. This is a very common design pattern used when
developing systems that are composed of a large number of components across multiple levels of
abstraction. Components are separated into layers. The components in each layer are cohesive
and at roughly the same level of abstraction. Each layer is loosely coupled to the layers
underneath.

Presentation Applications :
Lever Web| |GUI| | CLI Layer Analysis| |Control
Administration [NGAD Devices (RTC, TT, LBWFS, ...)]

and

Framework
Execution
Layer

Services (Log, Alarm, Event, Connection,)

Communications Database 3 Party Tools
\ Iiddleware SLEIDDHZ And Libraries /
— E—

Operating System }

Figure 3: Architecture Layers Overview

The design pattern addresses the need to support operational requirements such as
maintainability, reusability, scalability, and robustness. By using the layered application pattern
the container-component based development benefits can be further enhanced so that
e Localized changes to one part of the solution minimize the impact on other parts, reduce
the work involved in debugging and fixing bugs, ease application maintenance, and
enhance overall application flexibility.
e There is an additional separation of concerns among components increasing flexibility,
maintainability, and scalability.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 16 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e Independent teams are able to work on parts of the solution with minimal dependencies
on other teams.

e Various components of the solution can be independently deployed, maintained, and
updated, on different time schedules.

5.3 Container Component Model

Facilitating component based development is the Container Component Model (CCM), a key
architectural pattern that provides for explicit descriptions of provided and requested services
and a separation of concerns between the functional (business logic) and the technical
architecture. The pattern leads to easier development, deployment and reuse of software
modules. Object Management Group (OMG) standards exist for a Common Object Requesting
Broker Architecture (CORBA) Component Model and a newer solution called a Lightweight
CORBA Component Model (LWCCM). There is also a proposed standard on using LWCCM
with Data Distribution Service (DDS), a publish-subscribe middleware of interest to us. Our
proposed use of CCM is based on the architectural pattern and not any of the specific CORBA
based solutions mentioned above.

Provided EEQI{EStEd

Services ervices
Business : Technical
Logic Properties

Figure 4: Container Component Model

The CCM defines a distinct separation between the technical and functional requirements of a
task. The model is based on the utilization of two distinct software modules: containers and
components. Containers provide a structural or logical organization to software objects
(components), and are responsible for their lifecycle and management. This is illustrated in
Figure 4.

A container will create components, start them running, shut them down, and remove them from
the system. Containers provide a uniform method of system management and allow component
developers to ignore the majority of the technical requirements of individual objects. Containers,
component interfaces and abstract implementations are provided as part of the software
infrastructure.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 17 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

A component is a piece of software that implements the functional requirements of the system
and conforms to a well defined interface or set of interfaces. The interface abstracts away the
actual implementation of a component, and from the perspective of the system, there is no
difference between one implementation and another. In this way, a developer can swap out
multiple implementations of a component for a specific use case without affecting the system as
a whole. This is most evident when you compare the maintenance and upgrade of a component-
based and a non-component-based system.

In order to create a complete application solution, components must be able to communicate with
each other, which is provided through the communications infrastructure.

5.4 Communications

The KCSF is a distributable system. As a result, the communications infrastructure must be an
integral part of the KCSF. Much of the implementation of the communications infrastructure is
based upon services and support features found in third-party communications middleware
packages. However, the framework isolates the dependence on third-party middleware from the
rest of the KCSF software system so that replacing the middleware is always a viable option. We
have successfully prototyped three different communication middleware packages (ICE and two
versions of DDS). In addition, different middleware can be transparently adapted for different
services if they prove to be better in one particular area (i.e., middleware can be mixed and
matched as needed). The connection service that encapsulates the chosen middleware essentially
forms a software bus to which components can connect. This is illustrated in Figure 5, which
shows many components attached to an abstract software bus. The components all use a simple
abstract interface (the software bus) to communicate with each other and are oblivious to the
underlying communications mechanism.

D||D D!’

[Software Bus

T T

Figure 5: Multiple devices/controllers communicate with each other
using a simple abstract interface.

The framework takes care of the following:
e Automatically registering all components when they are created so that they become
known on the bus.
e Automatically un-registering all components when they are destroyed so that they are
removed from the bus.
e Allows any component to be referenced by its fully qualified name, regardless of its
location.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 18 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e Allows operations to be performed on a remote component as though it were local to the
caller.
e Transparently handles network problems such as packet drops etc.

Moreover, the communications infrastructure must be capable of high throughput, varied data
size and diverse message types, using different messaging paradigms. KCSF supports this by
allowing different communication middleware to be used without affecting the application
developer and by using a middleware that supports:

e Peer-to-peer command messaging, allowing arbitrarily complex messages to be sent
directly from one component to another.

e Publish-subscribe event messaging, allowing the generation and reception of messages by
components without regard to the intended message recipients or sources.

e Simple connection support. All that is needed for an application to establish a peer-to-
peer connection to another application is the name of the target application. The
communications infrastructure will locate the target application (possibly starting it if it is
not running).

e Heartbeat monitoring. Applications are watched and an alarm is raised if an application
unexpectedly stops responding.

e Distributed systems. Distributed systems are easily supported, allowing seamless
integration of third party modules.

5.5 Benefits

By combining the communication middleware with component-based development, services and
a technical architecture, a number of benefits can be realized.

System details are hidden from the developer and user. This allows application developers to
concentrate on applications, not the underlying infrastructure and allows system developers to
make infrastructure changes with out affecting deployed applications.

By using a narrow interface, components can be updated as needed without having to worry
about version mismatch on interfaces or methods. The KCSF API is very simple and is designed
such that all third party communication middleware is completely isolated from the API. All
major services are provided through standard interfaces promoting simplicity and consistency.
Dependencies between objects are eliminated, resulting in improved ease of maintenance. As a
result components may be swapped out with alternate implementations without impacting the
rest of the system. Users can replace a component with another that satisfies a similar use-case
without creating or breaking any dependencies in the system. The component model makes it
very easy to use components from different development groups in an application.

The technical architecture takes care of deploying components. Components can easily be mixed
and matched and even be added or removed during run time, as can services, effectively
changing the system function on the fly. The implementation of the CCM provided by KCSF
allows components to be installed, uninstalled, started, stopped or updated without bringing the
entire system down. For deployment, the system simply needs to be configured by the engineer
to tell it which components to deploy in which containers and on what machines.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 19 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Once a component is deployed, the API provides access to its internal state as well as how it is
connected to other entities. Parts of the applications can be stopped to debug a particular
problem, or diagnostic components can be brought in. Instead of staring at hundreds of lines of
logging output and enduring long reboot times, applications can often be quickly debugged using
a live command shell. Any entity can be tracked to see its current health and if it is registered.

5.6 Summary

The KCSF architecture provides a component-based development environment using a
container-component model, coupled with tools and services in a robust framework with a clean
separation between the technical and functional implementations. This allows the application
developer to focus on the development of the control system, (the component devices, control
system applications scripts and tasks, user interfaces, and how they should communicate with
each other) rather than on the underlying framework. The architecture is scalable, distributable
and maintainable. These concepts are shown below in Figure 6.

(Connection Service: Peer to Peer Commands J

(Event Service: Publish Subscribe)

Device
o User ot
Applications Interf Set
nterraces Execute
Monitor
Other Services: Logging, Alarming, CA, Archiving, Health]
Figure 6: A summary of the KCSF architecture.
Erik Johansson, Jimmy Johnson, Doug Morrison Page 20 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6 Application Developer View

This section contains information needed by an application developer to write applications that
use services and communicate with components, and to develop new components. While details
of the technical architecture are not required, having a basic understanding of the overall
architecture is useful.

6.1 Container Component Model

The following is part of the technical architecture and not something that an application
developer needs to have any detailed knowledge about. However, an application developer
should be aware of where the developed devices reside within the architecture, how to create a
device, how device lifecycles are managed and what services are available to devices.

The CCM includes a number of key entities:
Container Manager: A component responsible for managing containers. It is capable of
deploying containers on different nodes, attaching to already running containers, stopping
and removing containers. A container manager determines the appropriate set of policies
and service bindings to be used by its containers, and then acts as a factory to create

them.

Container Server: A container server is an execution environment in which one or more
containers are created during runtime.
Container: Manages components and provides services and connections.
Component: A standalone reusable functional entity.
Services: Services are support functions typically shared by all components in a

container. Examples include events, logging, alarming etc.

Container
Manager

(A)Synchronous

]

N

Connector

(A)Synchronous

{ Component |

Container

]

Container

Container Server

Connector

Container

Container Server

Software Bus (<< Middleware>>)

+ Services (naming, connection, KTL, persistency, logging, alarming, ..)

Figure 7: General model for containers.

Figure 7 shows a general model for containers. A container manager deploys containers on one
or more container servers. The containers are then used to deploy one or more components each.

Erik Johansson, Jimmy Johnson, Doug Morrison

KAON 679: NGAO Control Software Architecture

Revision: 1.0

Page 21 of 136
9/4/2009

A client interacts with a component by sending requests to the component via the software bus
(note: if components are on the same container server (compute node) the communication is via
IPC not RPC). Just as containers provide the creation and life-cycle management of the system
(the technical architecture), components are designed to implement the functional requirements
of the system (the functional architecture). All components are derived from a base class that
provides a consistent interface to the parent containers. In addition to any custom implementation
of the base methods (creation, startup, shutdown, etc.), a component provides the specific
functionality for the task it is designed to solve. From the perspective of a container, everything
IS a component — components can be swapped out without requiring explicit changes to the
container’s implementation. This ability to swap component implementations is what makes the
CCM pattern such an effective design technique.

In KCSF, there are two basic types of components: devices and controllers. These are discussed
in further detail below.

6.1.1 Component Lifecycle

The lifecycle of a component consists of the following basic states: creation, initialization,
startup, operation, shutdown and removal. The technical aspects of component lifecycle
management are handled by the container and the component base class methods. There are
opportunities for the component designer to provide functional aspects of the lifecycle
management as well (this is discussed in detail in Section 6.11.1). The lifecycle states are
described briefly below:

e Creation. The container constructs the component and creates the required services. The
services are not available to the component until the initialization state.

¢ Initialization. The component calls the configuration service to get its configuration data
and applies it to the designated attributes. The component then performs local
initialization by creating any required buffers and connecting to device drivers.

e Startup. The container registers its component with the connection service. The
component performs any local startup tasks.

e Operation. The main functional state for a component. In this state the component
performs all of its control functions, calls any required services as part of its operation,
and periodically performs health monitoring checks on itself.

e Shutdown. The component releases all external resources used. The container unregisters
the component from the connection service and it can no longer be seen by other
components in the system.

e Remove. The component ceases all activities and releases its internal resources. The
component no longer exists.

The lifecycle is illustrated in Figure 8 below. A component will remain running in the operation
mode (shown in blue) until specifically requested to stop or re-initialize.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 22 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Container

Component

i
I
1
1
: new
i
1
1
|
1
: Services
:]
| new |
: <
E »
! :
[}
| 1 initialize
L]
: :
| i
[} .
| L getConfiguration
! :
H |
!]
!]
| i
I Connection Register |
»
! >
! :
!]
: | startUp
L]
T
! !
1 1
!]
| i
I
i checkHealth
1 "
i :
. 1
! I
! 1
| |
! | shutdown
1
1 |
! :
1]
!]
!]
1
I
| Connection Unregister :
L B
l :
!]
: : remove
I i
!]
!]
]]
! i
!]
1
: | delete
1
| delete :
: N
1 L4
: i
I]
1
]
1
1
]
1
1

e

Figure 8: Component lifecycle sequence diagram

initialize

startUp

health

shutdown

remove

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture

Revision: 1.0

Page 23 of 136
9/4/2009

6.2 Data Transfer Objects

A data transfer object (DTO) is a design pattern used to transfer data between software
application subsystems. A DTO does not have any behavior except for storage and retrieval of its
own data. All functional commands in KCSF utilize the same DTO, which is called an
Attribute. An attribute is essentially a (name, value) pair. A collection of attributes is called an
AttributeList. The AttributeList is used for device method calls (these are described in
further detail in Section 6.3). The interfaces are represented as IAttribute and
| AttributeLi st and the class representation is through Att ri but e and At t ri but eLi st.

6.2.1 Attributes

The Attribute class represents the common data structure used for device method calls.
Attributes can be grouped together into an attribute list to allow for batching or atomic
operations on devices. There is no limit to the number of attributes in a list. There can be only
one instance of an attribute with a given name within an attribute list. Inserting a new attribute
with the same name replaces the old one. The attribute list allows for easy and fast retrieval of
Attributes and provides wrapper calls to get and set attribute data.

An attribute is a (name, value) pair, where the value field is essentially a union. The following
scalar data types can be supported:
e Boolean
Byte
Integer
Long
Float
Double
e String
In addition one- or two-dimensional arrays are allowed for each supported data type.

The Attri but e class provides convenience methods to allow polymorphic setting and retrieval
of the underlying data. For example, the value might be set as a double but can be retrieved as a
string, int or long etc. or visa versa.

All attributes used in inter-application communication must be uniquely named. The way this is
supported is by use of the fully qualified name, which makes use of the hierarchical structure of
the framework. For example: ngao. ao. vi br ati onsensor. pos is the name for the vibration
sensor multi-axis positioning stage.

Any attribute can also have configuration meta-data associated with it. This might include
information such as the attribute’s default value, min and max values, alarm limits, and is
represented by a set of reserved keyword names.

The API for the using attributes is quite simple:
e String getNane();
0 Return the attribute's name.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 24 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e void setNane(String nane);
0 Set the name of the attribute.
e void setValue(String[] val ue);
0 Set the value of the attribute.
e String[] getStringVal ue();
0 Return the value of the attribute as an array of strings.

In addition, the I At t ri but e interface defines a number of convenience methods:
® <type> get<Type>();
0 Return the first element of the attribute's value as a <t ype>.
e <type>[] get<Type>Array();
0 Return the attribute's value as an array of <t ype>.
where <t ype> can be bool ean, i nt, | ong, doubl e, f| oat or Stri ng. Examples:
e boolean get Bool ean();
0 Returns the first element of the attribute’s value as a Boolean.
e long[] getlLongArray()
0 Returns the attribute’s value as an array of Longs.

6.2.1.1 Similarity to Keywords

In Keck nomenclature an attribute is very similar to a keyword in that is a named value that can
be read from, written to or monitored. Unlike a keyword, which is a floating concept where the
mapping of the keyword to a physical entity is done via CAKE or a similar mechanism, an
attribute is strongly associated with a component. An attribute name can appear many times in
the system and the same attribute name can be used within different components, but to be
externally referenced outside of a component, the fully qualified name must be used. The use of
the fully qualified attribute name is closer to how a keyword would operate.

An attribute list provides for a more object oriented approach allowing attributes to be treated as
grouped entities. While it is up to the component as to how it handles its attributes, this grouping
allows for atomic operations across attributes as well as the capability to provide transactional
support and command-response patterns.

6.2.2 Attribute Lists

Attributes can be grouped into a set of attributes, called an AttributeList, which can be
searched efficiently. As mentioned previously, at most one instance of an attribute with a given
name may exist within an attribute list. Inserting a new attribute with the same name replaces the
old one.

The following methods are provided:
e boolean contains(String attributeNane);
0 Does the list include a specified attribute?
e void insert(lAttribute attribute);
o Insert an attribute into the list.
e |Attribute remove(String attributeNane);
0 Remove an attribute from the list and return it.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 25 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e |Attribute get(String attributeNane);
0 Return an attribute from the list.

Additional methods are provided for convenience, including:
e int size();
0 Return the number of attributes in list.
e String[] getNanes();
0 Return the names of all attributes in the list.
e |AttributeList extractOnPrefix(String prefix);
o0 Return all attributes with names sharing a specified prefix.
e |AttributeList extractOnSuffix(String suffix);
0 Return all attributes with names sharing a specified suffix.
e void nerge(l AttributelList alList);
o Insert all attributes from another list into this list.

Moreover, the convenience methods defined for 1 Attribute are extended to work with an
attribute list:
o <type> get<Type>(String aNane);
o0 Returns the value of the first element of the attribute aName from the attribute list
as a <type>.
o <type>[] get<Type>Array(String aName);

0 Returns the value of the of the attribute aName from the attribute list as an array of
<type>.

6.3 Devices and Controllers

Every user component in the framework is a device. A device represents an entity to be
controlled. A device can be physical or logical, representing hardware or software. It can, for
example, represent:

e A piece of equipment (e.g. a camera)

e A collection of equipment (e.g. a motor and encoder)

e An aggregate of devices (e.g. TTFA/TWEFS)

e An application (e.g. Multi-command sequencer)

Erik Johansson, Jimmy Johnson, Doug Morrison Page 26 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

IDevice

Generic
Device Controller
e
t t KCF
| | | Developer
Camera Linear 1 DOF Vibration sensor
v . A) v
r
Specialized
Application
Developer

Figure 9: Devices and Controllers.

As shown in Figure 9, KCSF provides generic implementations of a device and controller. The
generic implementations provide lifecycle support, helper support such as configuration and
attribute validation, as well as delegation support to simplify the work of the application
developer.

Device
Generic Unique ID
Behavior
‘ Ngao.ao.lowfs dmi
: : Ngao.ao.lowfs_dm2
My Device My Device d
Ngao.ao.lowfs _dm3
Commands | Commands | Instantiation
Status Status
Device Class A Device Class B
Configuration
properties
Figure 10: Device types and configuration
Erik Johansson, Jimmy Johnson, Doug Morrison Page 27 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

When devices are developed, common base classes can be used to encapsulate common
characteristics to represent a family of devices. For example, the user can design a camera device
which can be extended to represent several specific types of cameras (WFS cameras, diagnostic
cameras, etc.). Furthermore, multiple devices may be combined using composition to create
composite devices (e.g., a 3-axis motion controller can be composed from 3 single axis
controllers). The extension of a base device class to develop a new device class is shown in
Figure 10. Device classes A and B are derived from the base Device class. When actual devices
are instantiated from these classes (shown in yellow), they are given unique IDs called fully
qualified names. A fully qualified name is all that is needed to identify a device anywhere in the
entire NGAO system. When devices are instantiated, they use the configuration service to load
the proper default attribute values for the device. Some default attributes are retrieved based on
the device type (e.g., default attributes for Device Class A), whereas others are retrieved based
on their fully qualified name (“<system>.<subsystem>.<device name>.<attribute name>"). This
is indicated by the arrows in Figure 10.

A device supports the | Devi ce interface and the get, set, execut e and xxxMoni t or methods. A
controller is a specific type of device and has an identical interface. The difference between a
device and a controller is in how the execut e methods are processed. For a device, the execut e
methods are processed on a single server thread, while execut e methods on a controller are on
separate threads allowing multiple simultaneous commands and the ability to pause, resume or
cancel ongoing commands. Hence, controllers may be used to execute multiple simultaneous
commands. In the remainder of this section, both devices and controllers will be referred to
simply as devices.

6.3.1 Functional Interfaces

The functional interface to a device is via the get, set, execut e and xxxMoni t or methods. The
get and set methods are implemented in both synchronous and asynchronous forms. execut e is
inherently asynchronous. Synchronous calls will block until the operation has completed.
Asynchronous calls will return as soon as the request has been sent on the wire and a boolean
value will indicate whether or not the command was successfully sent to the remote component.
Actual notification of command completion will occur sometime later via an optional callback.
We have developed a standard callback interface for these methods: | CormandcCal | back. The
APIs for these methods and the | ConmandCal | back interface are described in detail in the
following sections.

6.3.1.1 Get

The get method provides a read interface for devices. Clients are able to request the current
value of one or more device attributes through an attribute request list. Any attributes defined in
the request list which are not supported by the component are ignored. The attributes read from
the device are returned to the user in the form of an attribute list in one of two ways:
e The synchronous method returns the attribute list directly.
e The asynchronous method returns a boolean value indicating whether the request was
successfully sent to the remote component. Assuming success, the attribute list is
returned in the callback object.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 28 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

A client is able to obtain a full list of all of the supported attributes by requesting the
‘_SupportedAttributes’ attribute. The API for the get method is:

Attributelist get(AttributelList requestList);
boolean get (Attri butelList requestList, |ComrandCall back call Back);

There are two possibilities when reading from a device using the get method: returning a cached
value from the device, or performing a read from the physical or virtual entity represented by the
device. A read from the entity forces an update to the device cache. It is possible to select the
type of read on an attribute by attribute basis by using the enumerations CACHED or DEVI CE in the
value field for a particular attribute. For most reads, the value field for each attribute will be null,
as they have no meaning in the context of a read. The default behavior for a null is left up to the
device designer.

The get method can also be used to retrieve the metadata values for a particular attribute.
Metadata is read-only information that describes the attribute. To specify a metadata member use
the “.” (dot) operator and the desired metadata reserved keyword:

e type: An enumeration value that identifies the type of the attribute.
e defaultValue: The default (startup) value of the attribute.
e _minValue: Minimum value the attribute can represent.
e _maxValue: The maximum value the attribute can represent.
e _loloAlarm: The LOLO alarm threshold.
e _loAlarm: The LOW alarm threshold.
e _hiAlarm: The HIGH alarm threshold.
e _hihiAlaram: The HIHI alarm threshold.
e _permissions: An enumeration value that identifies the read-write permissions of the
attribute.
6.3.1.2 Set

The set method provides a write interface for devices. Clients are able to set the value of one or
more device attributes through an attribute set list. Any attributes defined in the set list which are
not supported by the component are ignored. The status of the command is returned to the user as
an attribute list, in a similar fashion as described above for the synchronous and asynchronous
get methods. The returned attribute list contains the overall status of the set operation, which
uses the reserved keyword “_OperationResult” as the attribute name, and a list of the attributes
that were set during the operation. The “ OperationResult” attribute can have one of the
following values:

e “‘Success” — The set operation completed without problems.

e “Partial”” — One or more attributes could not be set.

e “Fail” — The set operation was rejected in entirety.
The list of attributes that were set during the operation contains the actual values that were set in
device, including any modifications made by the device (e.g., clipping values that are out of
range, etc.). The API for the set method is:

AttributelList set(AttributeList setList);
boolean set (AttributeList setList, |ComandCall back cal |l Back);

Erik Johansson, Jimmy Johnson, Doug Morrison Page 29 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.3.1.3 Execute

The execut e method provides a means to initiate a task or operation on a device, similar to
invoking a class method with arguments. A noticeable difference between execute and the other
API methods is that execut e accepts a CommandSet in place of an Attri buteLi st to define
parameters and values. The ConmandSet implementation is a subclass of Attri butelList, and
provides additional capabilities related to invoking and executing a device task. Specifically,
CommandSet adds the concept of an action. “_Action” is a reserved keyword that allows a device
to identify the operation the client wishes to execute (“_Action” is the attribute name and its
associated value in the attribute list represents the action to be performed). The associated
attributes needed by the operation are added to the CommandSet the same as they would be for an
AttributelList.CommandSet also adds a mechanism to identify and modify the execution of the
task through a unique identifier. The task identifier is created automatically by the CormandSet
and can be used to change the state of an issued operation through the methods pause, r esurre,
and cancel . pause suspends the execution of a command that is in progress, r esume resumes the
execution of a previously paused command, and cancel cleanly stops the execution of a
command that is in progress. A helper function to return the unique ID from a command set that
has been executed is provided. The API for the execute method is:

boolean execut e(CommandSet comrandSet, | CommandCal | back cal | Back);
boolean pause(long conmandl D) ;

boolean resunme(long commandl D) ;

boolean cancel (long conmmandl D) ;

The command ID helper function is implemented as a method on the CormandSet class:
long get Commandl () ;

6.3.1.4 Monitors

In addition to the basic device methods described above, KCSF devices support a monitor
capability. Monitors are used to request notification when a device attribute changes in value.
The user creates a monitor using the addMoni t or method, specifying the target component, the
attributes to be monitored in an attribute list, a callback object to be used when a monitor is
triggered and a rate at which the monitor will test for changes. There are several additional
methods required to manage monitors: addToMoni t or adds attributes to an existing monitor
attribute list, r emoveFr omVbni t or removes attributes from an existing monitor’s attribute list,
renmoveMoni t or cancels and removes an existing monitor, and r ef r eshMoni t or requests all the
current values from an existing monitor’s attribute list. The API for monitors is:
boolean addMonitor(String conponent, |AttributelList attributelist,

| ConmandCal | back cal | back, int rate);
boolean addToMonitor(String component, | AttributeList attributeList);

boolean renoveFromvbnitor(String conmponent, |AttributeLi st
attributeList);

boolean renoveMonitor(String conponent);
boolean refreshMnitor(String conponent);

6.3.1.5 Callbacks

Several KCSF methods require the use of callbacks. We have defined a standard callback
interface for commands, | ConmandCal | back, along with several callback methods.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 30 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

get Conpl et e, set Conpl et e, and execut eConpl et e are used to notify a requesting application
that its associated get, set, or execute command request has completed. Similarly, there is
moni t or Tri ggered method to indicate that a requesting application’s monitor has been
triggered. Each method returns an attribute list containing the details of its respective command
completion or monitor triggering. The callback API is:

AttributelList getConplete(lAttributeList attributeList);

Attributelist setConplete(lAttributeList attributeList);

Attributelist executeConplete(lAttributelList attributelist);

AttributeList nonitorTriggered(lAttributeList attributeList);

6.3.1.6 Diagnostic Quick-Look

Using the concepts of supported attributes and metadata along with the get method and monitors
presented in this section, a diagnostic “quick-look” widget can easily be created to display all the
relevant information about a device. The idea is that the widget is launched and the user enters a
device name. The widget then queries the device to get the list of supported attributes and
metadata. Monitors are used to watch for attribute changes and to generate the display. An
example is shown below in Figure 11 for a CCD camera.

EDesign Preview [QuickLook] 1O =]
©Companent Hame: |NGAO_A0.WFS_Camera1
Attribute Name Value Default I4in Tax
Einning 2 % 1 3
(ain 1 1] 3
Fil 2]] 3
Repetitions
Irnage Count S00
Progran Mumber |1 1 0 7
FWHM
40 1
351
30
w 281
a
3
= 20
15
1.0 1
05
00+ H H : : H H
0.0 25 50 75 100 125 150 175 200 225 250
ut

Figure 11: An example “Quick-Look” widget.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 31 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.4 Services

So far, we have discussed components (devices and controllers), the container-component model,
and the basic component API in some detail. However, in order to serve as a foundation for a
distributed control system, the framework must provide more than just components and the
ability to manage their lifecycles. Components must be able to do the following:

e Locate other components by name and communicate with them as required.

e Configure themselves at startup and upon request during run-time.

e Periodically check and report on their overall health and status.
Send messages to logs.
Generate and respond to alarms.
Generate messages or take action in response to system events
Archive data to files
Communicate with legacy systems.
The KCSF provides all this functionality in the form of “services”, that are an integral part of the
overall framework. Some of these services are required for normal operation (connection,
configuration, alarming, etc.), while other services are optional and may be used by components
as needed.

The KCSF provides the following services, which are discussed in further detail in the remainder
of this section:
e Connection Service - provides the ability for devices to connect with each other.
e Alarm Service - provides the ability for components to set, clear and respond to alarms
and for uniform handling of system error conditions.
e Event Service - provides the ability to generate event-based messages using the
underlying publish-subscribe capability of the framework communications system.
e Log Service - provides a standard means of logging many types of messages.
e Health Service - provides for periodic monitoring and reporting of system and component
health.
e Configuration Service - provides the ability to create and consume class-specific and
instance-specific configuration data.
e Archive Service - provides the ability to archive system data for future use.
e CA client service — provides the ability to communicate with other observatory systems
using the legacy EPICS Channel Access communications middleware.
e CA server support — provides the ability for other observatory systems using the legacy
EPICS Channel Access to communicate with KCSF devices.

These services are not exclusive to just components — applications and scripts may access the
services as well. All of the services with the exception of the configuration service and the CA
server support may be used by scripts or applications. An application needs only to load the
KCSF toolbox and then has access to the services.

6.4.1 Connection Service

The connection service provides for peer to peer communications between components by
supporting the registration of components with the KCSF communications system, and by

Erik Johansson, Jimmy Johnson, Doug Morrison Page 32 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

supporting communications between registered components. The following basic functions are
provided by the connection service:
e Registration - the current component is registered by name with the KCSF
communications system.
e Deregistration - the current component's registration is removed.
e Connection - the current (source) component connects to another (target) component
using the name of the target.
e Disconnection - the current component's connection to the named target is removed.

Registering and unregistering components are handled automatically by the KCSF common
services. Component developers do not need to perform these two actions in their code. Each
component has a unique fully qualified name derived from its parent container, and this uniquely
indentifies it in the system. The container automatically registers its components with the
communication subsystem when they are first loaded and all that is needed by an application or
remote component to make a connection is the fully qualified name. Once a connection has been
made by a source component to a target component, the source component may issue commands
to the target component. The connection service APl for connecting and disconnecting to a
component is as follows:

| Renot e connect(String target);

void di sconnect(String target);

| Rerrot e is the client interface to a connected device (local or remote) and t ar get is the fully
qualified name of the target device. For example, to connect and send commands to an AO
camera cl, the following simple commands are all that is required:

Devi ce ¢l = connection_service.connect (“AQ Canera.cl”);

cl. execute(.....)

Moreover, remote components appear to be the same as local components, so the user has no
need to know where in the system a particular component is located. This is referred to as
location transparency.

6.4.1.1 Example

The following example demonstrates how a developer might use the connection service. Using
the component's name, one can obtain a reference to the component and invoke operations on it
as if it is a local object. Note: a fully qualified name is required to make the connection to the
component. However, once the connection to the component has been made, a fully qualified
name is not required to identify its specific attributes. Either an attribute name or a fully qualified
attribute name may be used. We show examples of both.

/1 Cbtain a reference to the conmponent and downcast appropriately
/1 Afully qualified nane is required here:
String conponent Name = "system subsystem devi ce"

| Devi ce device = (IDevice)App. connect (conponent Nane) ;

/'l I nvoke operations
try {

/1 Construct a list of status itenms to report on -- posn, rate,
| AttributeList statusReq = new AttributeList();
/'l Use a fully qualified attribute nane here:

Erik Johansson, Jimmy Johnson, Doug Morrison Page 33 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

statusReq.insert(new Attribute("system subsystem device. position", ""));
/1 Use just the attribute nanme here:
statusReq.insert(new Attribute("rate", ""));

[/ Cbtain the values fromthe device

| AttributeList result = device.get(statusReq);
result.show("device status is: ");

catch(Exception e)
{

}

e.printStacktrace();

6.4.2 Alarm Service

The alarm service is just one part of the larger NGAO alarm system. The alarm system is
discussed in more detail in Section 6.5. The alarm service provides the capability for components
to set and clear alarms that are recognized by the larger alarm system. An alarm can be
considered an event except that it has an associated abnormal condition, which requires special
attention outside the control application (events are discussed in Section 6.4.3).

Alarms have several characteristics associated with them: area, source, condition, category, state
and severity:

e Area: The area is the location or sub-system where the alarm originated (e.g., AO system,
Laser system, LGS Wavefront sensors, etc.).

e Source: The source is the owner or originator of the alarm, which is typically a KCSF
component. Any component can be an alarm source.

e Condition: The condition is the name for the abnormal state of the source. Examples are
“Bad input device”, “High alarm limit”, or “Disk space is low”.

e Category: The alarm category is a grouping of alarm conditions which are functionally
related. Examples of alarm categories are process inputs, process outputs, or system
status.

e State: There are four states associated with alarms:

o Inactive/Acknowledged (not included in active alarm list)
o Active/Unacknowledged

o Active/Acknowledged

o Inactive/Unacknowledged

e Severity: The alarm severity is a number indicating the relative severity of the alarm. The
alarm severity is programmed into the configuration database and is not directly
programmable by the user. This is to ensure consistency of alarm severities throughout
the NGAO system and to avoid hard coding severities in the applications.

The alarm service provides the capability for KCSF components to set or clear alarms using the
following API:
SetAlarn(String Category, String Condition, Object Al arnValue);

ClearAlarn(String Category, String Condition);

Erik Johansson, Jimmy Johnson, Doug Morrison Page 34 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

When an alarm is set or cleared through the API, the source (component name) is automatically
inserted into the alarm text by the service. In addition, extra information such as alarm severity,
available through the alarm configuration, is added by the service. When setting an alarm it is
possible to give an actual value. This field may be used to save the value of some key variable
associated with the alarm or event. Any value set represents the value at the time of the alarm or
event occurrence. A good example might be a temperature limit. For example,

Set Al arn({“Process_input”, “H"”, Float(43.23));

might generate an alarm text like “AO.Cameras.Lbwfs Hi alarm limit exceeded, reading 43.23”

In addition to the component interface, the Alarm Service provides an interface to clients (e.g.,
the Alarm Summary Display) for the purpose of querying alarm settings (areas, categories,
condition names, source conditions). The clients can use this information to produce filtered lists
for user display. The APIs for these methods have not yet been fully defined, but the method
names are:

String[] QueryCategories();

String[] QueryAreas();

String[] QueryConditionNanes(String Category);

String[] QuerySourceConditions(String Source);

6.4.3 Event Service

Events are based upon the publish-subscribe communications system provided by KCSF. The
event service allows components to post messages and to perform actions upon the receipt of
messages, both without having to connect directly to other components. The event service
provides, through a helper class, support for these basic operations. Events themselves are simple
name-value pairs. The event name is a single word (i.e. no spaces), typically written using
camelCase notation. The event value is an attribute list, but the event service helper class
provides convenience methods for automatically embedding other types within the attribute list.

Events are received by attaching a callback to a subscription. The event service, upon receipt of
an event, invokes this callback in a separate thread. However, all events received from the same
subscription use the same thread so delivery order is preserved within the callback processing. If
events are being received faster than the callback processing, the unprocessed events are
normally locally queued within the event service. This is a potential problem, but represents a
trade-off of mutually exclusive goals. Component developers are encouraged to write callbacks
that process quickly. Numerous approaches are available to handle the case where the required
action cannot be performed quickly - the best approach to use is dependent upon the nature of the
specific task and is thus the responsibility of the component developer.

The event service has the following general properties:

e An event stream represents a many-to-many mapping: events may be posted into the
stream from more than one source and received by zero or more targets. Typically,
however, most event streams will have a single source.

e Events posted by a single source into an event stream are received by all targets in the
same order as they were posted.

e Delivery of events to one subscriber cannot be blocked by the actions of another
subscriber.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 35 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e Events are not queued by the service. A "late™ subscriber will not see earlier events.

e The event service does not drop events. A published event will be delivered to all
subscribers.

e The event service supports arbitrary event names.

e Events are automatically tagged with the source and a timestamp.

The API is as follows:
void subscribe(String event Nane, | Event Cal | back cal | back);
void unsubscri be(String event Nane) ;
void post(String eventNane, |Attributelist aList);
void post(String event Nane, long val ue);
void post(String event Nane, double val ue);
void post(String eventNane, String val ue);
void post(String eventNane, |Attribute aVal ue);

6.4.3.1 Event Service

The following Java code fragments demonstrate how one might use the event service to
subscribe/publish events to a named event stream. MyEventListener overrides the callback
method of the EventCallbackAdapter class. This class demonstrates how one would deduce the
data type of the attribute named after the event. In practice, the subscriber would expect a
specific data type and would only call the conversion method appropriate for that data type.

import KCSF. cs. servi ces. event. Event Cal | backAdapt er;
public class MyEvent Li st ener extends Event Cal | backAdapt er {
public void cal | back(String event Narme) ({

/1 ldentify who sent the event

System out. println("event '"+event Nane+"' received");
/1 Is it a long val ue?
Long | Val ue = get Long(event Nane) ;
it (null !'=1Value) {
Systemout. println("long value is: "+l Val ue);
return;
}

/1l 1s it a double val ue?

Doubl e dVal ue = get Doubl e(event Nane) ;

it (null !'= dVvalue) {
System out. printl n("double value is: "+dVal ue);
return;

}

/1l Finally, is it a string value? (Mist be null if not!)
String sValue = get String(event Nane) ;
if (null !'= sVvalue) {
Systemout. println("string value is: "+sVal ue);
return;

Erik Johansson, Jimmy Johnson, Doug Morrison Page 36 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

System out. println("Val ue of '"+eventNane+"' not found in event!");

}

The following code fragment demonstrates how an application would subscribe to a named event
stream using an instance of MyEvent Li st ener as the remote callback object.

MyEvent Li stener |istener = new MyEvent Li stener();
Event . subscri be("syst em subsystem devi ce. status", |istener);

Systemout.println("Press any key to quit");
Systemin.read();

System out . printl n("unsubscribing");
Event . unsubscri be("system subsyst em devi ce. status", |istener);

The following code fragment demonstrates how one would publish events of each supported data
type to a named event stream.

String event Name = "system subsystem devi ce. status";

/'l Post strings

Systemout.println("posting strings ...");
for (inti = 0; i < 100; i++) {
Event . post (event Nane, ""+i);
}
/'l Post doubl es
System out. println("posting doubles ...");

for (double d = .1; d < 10.0; d+=.125) {
Event . post (event Nane, d);

}

/'l Post |ongs

Systemout.println("posting longs ...");

for (long | = -100000; | < 100000; | +=5000) ({
Event . post (event Nane, 1);

}

6.4.4 Logging Service

The logging service provides the ability to write log messages to one of three types of logs:
console, file, and database. It is described in detail in KAON 673: NGAO Software Architecture:
Logging Service. The logging service uses the standard Java logging service but wraps the Java
classes to provide a simpler KCSF interface. Moreover, the specific logs used by a device are
assigned during configuration by its parent container using information from the configuration
service (described in a section below), so the user has a simple interface to generate log
messages. A brief overview is given here along with the API.

6.4.4.1 Log levels
The following log levels are defined:

Erik Johansson, Jimmy Johnson, Doug Morrison Page 37 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

public enum LogLevel {

ALL, /'l Log all nessages

TRACE, /1 Trace the path of execution

DEBUG, /| Debug nessages

I NFO, /1 I nformation nessage, normal operation.
WARN, /1 Suspicious operation, possible problem
ERROR, /'l Recoverabl e user error has occurred.
CRI Tl CAL, /1l Critical systemerror, recoverabl e.
EMERGENCY, /'l Non-recoverable severe failure

OFF /1 Disabl ed | oggi ng

}

6.4.4.2 Log message format

The following format will be used as the standard for human readable log messages:
<Ti me> [<LEVEL>] <Source> - <Message>

The Time component will be displayed as:
<Mont h> <Day>, <Year> <24- Hour Ti me>

The LEVEL component will be the level of the message — one of the Log Level enumeration
values. Source is the name of the component that generated the log message. This will allow a
user to identify the specific software object that produced the message. Source name injection is
performed automatically by the logging service. The Message component will be the raw
message passed to the log service.

A typical message will look something like:
May 7, 2009 13:14:53.378 [TRACE] ngao.ao.wfs.cameral — Invalid arguments.

6.4.4.3 API

The user interface to the logging service defines a generic log method where the user specifies
the log level and the message, along with separate methods for each log level which only require
a message. These methods are defined as follows:

void | og(LogLevel Level, String Message);

void trace(String Message);

void debug(String Message);

void info(String Message);

void warn(String Message);

void error(String Message);

void critical (String Message);

void energency(String Message);

6.4.4.4 LogViewer

As part of the framework a User Interface would be provided to allow the log messages to be
viewed and processed as needed. A rough prototype is shown below. Log messages could be
filtered based on date, time, message type, sources or even on message content. The resulting
messages could then be printed or saved to a text file. It is possible that a number of file formats
could be supported.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 38 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

.EE_NEIU. Log Viewer

Select from: [Current: epoch-now [0(est) messages]

Lol

- Check sizes

[| Source(s) :

[| Stop time YYYYMMDD:hh:mm:ss:

Modes: Alarm [v] Severe [| Warning Note [v] Debug

Start time YYYY/MMDD:hh:mm:ss (2009-05-12

[|Message filter: |

Selected log messages

Limit to {40 | maost recent messages.

View Messages Exit

TimeStamp

e

Source

hMessage

2009-05-12 08:26:03.032

alarm

ngao.laser.mc

Caonnection to laser has bheen lost

2009-05-12 08:26:22.245 |note ngao.laser.mc Connection ta laser restored
2009-05-12 08:27:43.7649 ngao.aomes.ml |Testmessage
2009-05-1208:27:45.418 |severe |ngaotcs.acy TCE failed to offset

Ok Reload Print table Save to file

6.4.5 Health Service

Figure 12: Log Viewer Ul Prototype

The ability to quickly ascertain device health throughout the NGAO control system is very
important. KCSF supports this by providing a health monitoring service. The health of each
component is monitored by its parent container. The various health states for a component are:
good, ill, bad, and unknown, and are defined as follows (in order of worsening health):

e Good: No problems have been detected by the component, it is fully operational.

e lll: Problems have been detected, but they do not prevent observing. Data quality,
however, may be affected. It may also be the case that operation of the component will
fail soon if corrective action is not taken. The component is partially operational.

e Bad: Severe problems have been detected. The component is unable to operate correctly.
Corrective action is required.

e Unknown: The component is not responding. It may or may not be operating. This health
value is not set by the component (obviously) but may be set by the health service.

Erik Johansson, Jimmy Johnson, Doug Morrison

KAON 679: NGAO Control Software Architecture

Page 39 of 136

Revision: 1.0 9/4/2009

The health service automatically posts an event showing changes to the component health and
logs a warning on worsening health and a note on improving health. When a health condition
worsens to bad or unknown the log message severity switches from warning to severe.

Component developers must implement the following API:

String perfornCheckHeal th();

The return values are:
Heal t h. GOOD
Heal t h. BAD
Heal th. I LL
Heal t h. UNKNOWN

The container will call checkHeal t h on a periodic basis and report the results (checkHealth calls
the delegate method per f or nCheckHeal t h). This is illustrated below in Figure 13.

Post health changes

Shared Health Service Tool

Figure 13: Anillustration of the health service. The container periodically polls its
components as to their health status and posts health changes to a health event.

It is quite simple to create a central health service monitor which subscribes to the various health
service events throughout the system and posts the data to a centralized display. A mock-up of

this concept is shown below in Figure 14.

Erik Johansson, Jimmy Johnson, Doug Morrison

Page 40 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

¥ [Health_Monitoring] =10 x|

L NGAO Component Health
SRR LG5 WFS Good
= o fation Contral Il Good
% LGS WFS NGS P Good
o ADC LOWFS Good
NGS5 FWM Focus Manager Good

@ LOWFS

Lo Focus Manager
- | Camera Control
[DM+ TT Mirrar

- . RTC Control

- Laser

< LTCS

| Data Server

| Akmospheric Tools

) Acquisition

e A8 s OO oy OO0 e PO

Figure 14: The health monitoring summary display.

6.4.6 Configuration Service

The configuration service is just one part of the larger configuration system in KCSF. The
configuration system combines the configuration service with a configuration database and
associated tools to manage the configurable properties of each component in the NGAO system.
The configuration service provides the capability for each component to request its own
configuration information from the configuration database through the following API:
interface | ConfigurationService extends | ServiceTool {
public | AttributeList getContai ner Manager Confi guration(String Manager Nane) ;
public | AttributelList getContainerConfiguration(String ContainerNane);
public | AttributelList getConmponent Configuration(String Conponent Nane) ;
public I AttributelList getMetaData(String AttributeNane);

};

When components are created by their parent container, they are connected to the available
services. Next, during initialization, each component calls the configuration service to access its
specific configuration data. There is a specific method for Container Managers, Containers, and
Components that accept a fully-qualified name used to lookup the information relevant to each of
these types. The Configuration Service utilizes attribute lists to return data to the invoking object.
The details of this process are handled automatically by the parent container with no action
required on the part of the user.

The configuration database and its associated tools are discussed in more detail in Section 6.6.

6.4.7 Archive Service

The archive service is intended to store bursts of engineering data to a relational database. Once
in the database the data can be viewed through the framework user interfaces, or processed at a
later stage as needed. The archive service is intended for recording short data sets for
troubleshooting, engineering tests, etc., and is not meant to be used for recording large data sets,

Erik Johansson, Jimmy Johnson, Doug Morrison Page 41 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

such as telemetry, throughout an observing run. The archive service is not meant to be an
implementation of or a replacement for the NGAO data server; however, the data server may
serve as the data store for the archive service.

Data is stored in a relational database table that has the following fields: timestamp, source,
name and value, where

timestamp is the time the value was recorded in UT (YYYY/DDD:HH:MM:SS.SSS)
source is the name of the component or application that owns the attribute

name is the name of the attribute

value is the value of the attribute

Compaonent
) Component
Archiver —>

Archive Service
Access Helper

Component

Archive Viewer Archive Manager

Companent

k.

‘ Archive Service }

Archive

Database

Figure 15: Archive Support Overview.

The framework provides two user interfaces: an Archive Viewer and an Archive Manager.
Through the Archive Viewer, users can select the sources, attribute names, and start/stop ranges
of timestamps for the arhive data to be viewed. Archive data is provided through a table where
the Ul supports sorting and filtering. The Archive Manager is a Ul for managing Engineering
data archives. Through the GUI, users can see the names of existing archives, and create new
archives. This GUI is intended for system maintenance only.

KCSF supports both a push and a pull model for archiving. The push model allows component
developers to decide what to archive and when by making an appropriate call to the service. The
pull model has a collector that is running and it can be configured to archive data at a periodic

Erik Johansson, Jimmy Johnson, Doug Morrison Page 42 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

rate or on an event. The Archiver will command the appropriate components as needed to
archive the attributes of interest.

A component or application developer uses the archive service access helper API to store
attributes on demand, or when requested by the archiver. The API supports the archiving of
single attributes at a time. This could easily be expanded to support AttributeL.ists if that became
a requirement. When an attribute is archived the service automatically adds a timestamp and the
source name of the attribute to the database entry. The API is as follows:

e void archive(Attribute attribute);

0 Save an attribute.
e void archive(String nane, AttributeVal ue val ue);

0 Save a generic name-value pair.
e void archive(String name, <Type> val ue)
0 Save a name-value pair where the value is a particular type.

Various flavors of the service can be supported such as a buffered archive service which would
buffer archive messages internally, writing them out on some interval to achive better
performance at the expense of some latency.

6.4.8 Channel Access Client Service

The Channel Access (CA) client service allows KCSF components and applications to read,
write and monitor EPICS channels external to the NGAO system using the channel access
protocol. The implementation of the client service is based on Channel Access Java library from
CosyLab. The API is as follows:

boolean put (String channel Nane, <type> val ue);

boolean put (String channel Nane, <type>[] val ue);

boolean addMonitor (String channel Narme, | MonitorCall back cb);

boolean renoveMonitor(String channel Nane) ;

<type> get <Type>(String channel Nane);

<type>[] get<Type>Array(final String channel Nane);

Where type can be byte, short, int, float, double or string. The put methods perform writes to an
external channel, while the get methods perform reads. Calls to gets, puts and monitors access
the appropriate CA process variable referred to by the channel name, for example,
dcs1. axe. axest at. Get and put are all synchronous but asynchronous support can be easily
added. All monitoring is asynchronous.

Monitor callbacks occur through the 1 Moni t or Cal | back interface, which has the following API:
Public interface | MonitorCall back {
public void onDat aChanged(Stri ng name, Object val ue);
public void errorEncountered(String name, String nsg);

}

Data changes are reported through the onbDat aChanged method and errors are reported through
the errorEncountered method. Currently the monitor is designed to only report on data
changes, but if needed these can easily be expanded to include alarm condition monitoring also.

The following shows a simple example:

Erik Johansson, Jimmy Johnson, Doug Morrison Page 43 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

public void get CAServiceTest() {
Ca. addMoni tor ("dcsl. axe. axestat", new MonitorCall back());
System out . printl n(Ca. getFl oat ("dcsl. axe. az. Bcode"));
System out. println(Ca. getFl oat("dcsl. axe. el . Bcode"));
Systemout.println(Ca.getString("dcsl. axe.errstr"));
Ca. put ("dcsl. axe.pnt.wapctrl", "shortest");

}

public class MonitorCall back implements | MnitorCall back {
public void onDat aChanged(Stri ng name, Object value) {
Systemout. println(“Received data for ” + nane);

}

public void errorEncountered(String name, String nsg) {
Systemout.println(“Mnitor for ” + nane + “ has err: ” + nsgQ);

}

}

6.4.9 CA Server Support

The KCSF will provide a component that is a CA Server. Server support allows for outside
systems to act as a master pushing and pulling data to and from KCSF based on their timing
needs. Like any component it can be loaded, unloaded, initialized, started and stopped. When
initialized the component will instantiate an internal cache of all exported process variables. The
cache will include their corresponding fully qualified KCSF attribute name and possible KCSF
type. Once the component is started the CA Server context will be set running and will continue
to do so until the component is stopped at which time the CA Server will be shutdown.

The server needs only to be configured so that fully qualified attribute names can be mapped to
channel names. Once running, any time a CA client broadcasts a search for a particular process
variable (PV), identified by a name, the server will check to see if it supports it. It if does then a
positive answer is returned through the CA protocol. Once a CA client knows a process variable
exists, it will most likely issue a request for channel creation. A channel is a connection between
the server and client through which a single process variable is accessed. As per the CA protocol,
the client never talks directly to a process variable, only through the channel. The CA Server will
create a new channel as needed and will map all put and get calls on that channel to the
appropriate component and attribute.

For KCSF the process variable names requested by the CA clients need to be translated to KCSF
addresses. In the implementation the KCSF CA Server will create a process variable that is
mapped to a component attribute. PV writes will be issued through the component set command
and reads will be serviced using the get command. Monitors are also supported.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 44 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

KTL Client

P I
Component
Framework % Companent

KTL |
o Companent

Channel

KTL Library— CAKE [—"%2%8 st Scomporen” | =1 comporn

/’ CA Server \\:.:\ . R
Component

> \

& o

[R
% 3 —

CA Client

Figure 16: An illustration of the KCSF CA Server and external CA/KTL access.

It is expected that by utilizing the current Channel Access Keyword (CAKE) layer, which is a
thin generic software layer providing KTL keyword access to EPICS systems (or more correctly
systems that honor the CA protocol), the KCSF can be seamlessly exposed to existing KTL
clients. This is shown above in Figure 16.

6.5 Alarm System

Alarms are reports of component failure (software or hardware) or other abnormal behavior
within the system. Alarms occur asynchronously in a random fashion. Some alarm conditions
may clear themselves and others may require operator intervention. The KCSF Alarm System
provides a capability for components to set and clear alarms, and a managing system to detect
the occurrence of alarms and to initiate the appropriate system response. The Alarm System is
described in detail in KAON 677: NGAO Software Architecture: Alarm System; only a brief
overview and the main APIs are discussed here.

The main features of the Alarm System are:

e Alarms are defined based on condition rules for device properties.

e Alarms are reported to a central alarm manager that logs and tracks the state of all alarms.

e Automated acknowledgement and recovery from alarms when system conditions permit,
and manual operator acknowledgement and recovery from other alarms, as required.

e Alarms may be organized hierarchically, especially for display to an operator.

e It is possible to define actions that can be automatically started on the occurrence of
specific alarms.

e Different annunciation methods can be applied to different alarms.

e Alarms can be associated with displays, help pages, diagnostic pages, etc.

e Applications may request to be notified of alarms.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 45 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

The alarm system consists of three main sub-systems: the Alarm Service, the Alarm Manager
and the Alarm Summary Display. This is illustrated in Figure 17, below. The Alarm Service is
the means by which all NGAO components report their alarm statuses and is available to every
container. Components use the service to set and clear alarms. The Alarm Service for each
container synchronizes alarm state information with the system-wide Alarm Manager on
initialization and sends all alarm state changes to the Alarm Manager during normal run-time
operation. The Alarm Manager is the central coordinating function for managing all the alarms in
the NGAO system. It maintains a list of all active and unacknowledged alarms in the system and
makes this list available for user interface controls and displays. The Alarm Manager also logs
all alarm state changes to a historical database. The Alarm Summary Display provides the user
with a summary view of all active and unacknowledged alarms from the alarm area of interest.
The user can view detailed information about each alarm from this display. This display may
also be used to acknowledged alarms.

Components -
Alarm -
Manager IRSHTA
Alarm
Service Alarm Alarm
Summary History
Display Display

Alarm
Configuration

Figure 17: The KCSF Alarm System Architecture.

6.5.1 Alarm Configuration

As discussed in the description of the Alarm Service in Section 0, alarms have several
characteristics associated with them: area, source, condition, category, state and severity. To help
ensure consistency of usage in the alarm system and to avoid hard coding alarm values in the
individual component applications, the data for these fields will be managed using the
configuration database. There will be an Alarm Setup Display tool to aid in the configuration and
management of all the alarms in the system. We anticipate at least two alarm tables: a simple
table maintaining the list of all sources and another maintaining the list of alarm categories. The
source table is expected to be similar to the following:

Erik Johansson, Jimmy Johnson, Doug Morrison Page 46 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Field Name Description

Name Source Name
Alarm category Associated Alarm category
Area Area may be used to associate an alarm with a particular section of

the observatory. The area associated with each alarm can be
viewed at the Alarm Summary Display. Alarms can also be sorted
and filtered by area at the Alarm Summary Display. A blank area
name can be selected if no area is to be associated with this alarm
record (default value).

Description
Alarm help Instance specific help.
Severity The severity field is used to define the severity or importance of

each alarm. Severity may range from 0 to 1,000 with O being the
lowest severity and 1,000 being the highest. Alarm severity
determines the alarm text color on the Alarm Summary Display.
Alarms may be sorted or filtered by severity on the Alarm
Summary Display. For compatibility reasons, severity values of 0
through 3 are mapped by the system to higher severity values as
follows: 0 = 100, 1 =300, 2 =600, and 3 = 950.

Ack required This field determines whether or not operator acknowledgement of
this alarm is required. If AckRequired is set to “Yes” then this
alarm must be acknowledged by the operator (and cleared by the
application) before it will be removed from the Alarm Summary
Display. If AckRequird is set to “No” then this alarm is considered
an informational alarm, which does not require operator
acknowledgement before it is removed from the Alarm Summary
Display (this alarm will be removed from the Alarm Summary
Display when cleared by the application).

Disabled The Disabled field is used to disabled individual alarms. Alarms
which have the Disabled field set to “Yes” cannot be set by the
application, will not appear in the Alarm Summary Display and
will not appear in the alarm history log.

Logging disabled If the LogDisabled field is set to “yes” then changes to the state of
this alarm (alarm set, clear or acknowledge) are not logged to the
alarm history file. When this field is “No” (which is the default)
alarm state changes are logged to the alarm history file.

Associated Display One associated display can be defined for each alarm record.
When an associated display is defined for an alarm then the
operator can navigate directly to the associated display from the
Alarm Summary Display whenever the alarm is active or
unacknowledged.

Each alarm record is associated with one alarm category. The alarm category determines the
possible alarms for a source. For example, alarm records with a category of “Process_Inputs”
might include the following alarms: Bad input device, High alarm limit or Low alarm limit.
Alarm records with a category of “System_Status” might include the following alarms: Disk

Erik Johansson, Jimmy Johnson, Doug Morrison Page 47 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

space is low, Virtual memory usage is too high, CPU usage is high or Fan has failed. The alarm
category table is expected to look similar to the following:

Field Name Description
Name Category Name
Conditions Text describing each condition that can exist for this category

6.5.2 Alarm Service

The Alarm Service is the application that permits components to set and clear alarms. It is
discussed in detail in Section 0.

6.5.3 Alarm Manager

The Alarm Manager is the managing server for the alarm system. It maintains the information it
receives from the Alarm Service via the Set Al ar mand O ear Al ar mAPIs and acts as a server for
alarm clients, most notably, the Alarm Summary Display. It implements the methods used by
clients to connect to the manager to start receiving alarms, enable or disable alarms,
acknowledge alarm conditions and refresh to get the current alarm statuses. The Alarm Manager
also accepts the onAl ar mcallback object so that clients can be informed when a particular alarm
occurs. The APIs for these methods have not yet been fully defined, but the method names are:

e Enabl eCondi ti onByArea()
Enabl eCondi ti onBySour ce()
Di sabl eCondi ti onByArea()
Di sabl eCondi ti onBySour ce()
Creat eSubscri ption()
AckCondi ti on()
Ref resh()
Cancel Refresh()
OnAl arm()

6.5.4 Alarm Logging

All alarms can be logged to a database. It is expected that there will be an Alarm Logging
Display that can be used to view all recent alarm state changes and events. This display may be
used to query the alarm history files in many ways. The alarms may be logged by the Alarm
Manager or there may be a separate system wide component that is responsible for monitoring
and logging alarms. The following shows a possible schema for the alarm table:
e TimeStamp: UT time when the alarm state change or event occurred.
e Category: Alarm category for this alarm. Alarm categories are defined by the alarm
system configuration and are meant to provide logical alarm groupings.
e Source: Owner of the alarm or event.
e Alarm Text: Description of the alarm or event.
e Action: A classification of the alarm state change or event. Typical actions are Set
Alarm, Clear Alarm, or Acknowledge Alarm.
e Value: This field may be used to save the value of some key variable associated with the
alarm or event. Any value shown represents the value at the time of the alarm or event
occurrence.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 48 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e Operator: May be used to record the operator performing the event or action.
e Severity: The severity (or priority) of the alarm or event. This may range from 1 to
1,000. Low values indicate a low urgency and high value represent a higher urgency.

6.5.5 Alarm Summary Display

The following shows what the Alarm Summary Display may look like and gives an indication of
the functionality that could be made available. The snapshot is reduced in height for brevity.
There can be many instances of the Alarm Summary Display running.

AlarmSummaryDisplay

Acknowledge Page | View v| ﬁ

LHTime |Source |Alarm Text |Value | ¥
[}

s
a

1012 09:33:12 | InterFrame Processing
10/12 09:33:38 | Temp Detector 1

|Unack4 (blinking), Urgent1 (), Alarm 3 (), Info 1 (@)

Figure 18: The alarm summary display.

Alarms are listed on the Alarm Summary Display, which provides a one-line description of each
alarm. The alarm summary is a ring buffer that can hold up to TBD alarms. The list can be
scrolled using the vertical scroll bar on the right side of the display. What is shown on the Alarm
Summary Display is configurable. For example, you can filter the Alarm Summary to show
alarms of a particular priority only, or you can filter the Alarm Summary to show alarms for a
particular area only. Additional fields such as alarm area and priority can also be shown. The
display allows alarms to be acknowledged, if required. Alarm icons and color coding will be
used to different high priority and urgent alarms, alarms that have not been acknowledged and so
on.

6.6 Configuration system

The Configuration System provides the ability to manage the configurable properties of each
component in the NGAO system. It consists of a configuration database, the associated tools to
manage the database, and the configuration service, which provides the capability for each
component to request its own configuration information from the configuration database. The
configuration service was discussed earlier in Section 6.4.6. In this section we discuss the user
view of the configuration system.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 49 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.6.1 Configuration Model

The configuration system for the KCSF infrastructure is designed as a multilayered distributed
model, as shown below in Figure 19.

Conponent s

Tool s { aul Scripts Configuration Service

Configuration Library KCSF
Java JDBC
Dat abase

Figure 19: Configuration Layers.

Each layer of the model is responsible for implementing a black-box interface with the layer
below, abstracting away the technical and functional details of database connectivity, 1/0, and
management. At the lowest level is the database, which will maintain the configuration data and
preserve version information. Managing and communication with a database is simplified
through the Java Database Connectivity APl (JDBC). This native Java module provides an
interface for connecting to a database and performing all of the standard database operations.
JDBC is available for a number of database implementations including JDB, Sybase, SQL
Server, and Oracle.

KCSF clients and components that wish to connect to the database will go through the
Configuration Library. This API acts as the bridge between the client layers and database layers.
Common technical tasks such as opening and closing connections to a database can be preformed
in a single method call. The library also implements a number of functional tasks (such as
retrieving and writing configuration values) as method calls, automatically converting the request
into the appropriate SQL statement. Configuration data is also formatted into KCSF compatible
attribute lists before being returned to clients. The configuration library is discussed in further
detail below.

Above the Configuration Library sit the client tools and the KCSF Configuration Service. The
tools provide users with full administrative control of the database and its contents. Clients are
able to retrieve, modify and remove configuration data, as well as define new classes and
instances for deployment. The Configuration Service provides read-only access to configuration
data for devices and controllers. Managers, containers, and components can use this simple
interface to retrieve fully formatted instance specific information by name.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 50 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

KCSF Conponent s
Confi guration
Servi ce Tool s
Configuration - - - .
Configuration Configuration
Dailcbass Li brary Li brary
Java JDBC Java JDBC
< Network -

Figure 20: Distributed Database Access.

Components and tools will be distributed throughout the network. Typically there will be only
one configuration database running for a system, although there is nothing that prevents multiple
instance from running concurrently (redundancy, for example). A Configuration Service,
Configuration Library, and JDBC instance will exist for every deployed container process.
Tools, scripts, and GUIs will interface directly to the Configuration Library, and each instance
will require its own JDBC. Tools and scripts will be started and stopped throughout the night, so
the actual number of open database connections will vary. This is illustrated in Figure 20 above.

6.6.2 Configuration Library

The Configuration Library provides the methods, functionality, and administrative controls to the
Configuration Database. Clients use the library to connect to the database through the KCSF
Configuration Service and standalone tools. The configuration library is organized into two
distinct interfaces: administrative and client. The client interface provides basic read-only access
to configuration data: this is the standard interface used by the Configuration Service. The
administrative interface adds to the client interface by providing functionality to modify the
contents and structure of the database.

6.6.2.1 Client Interface

The client interface exposes read only capabilities to users. Within the Keck Component
Framework, the primary user of the client interface is the Configuration Service. This service is
the main access point for all KCSF components, and therefore, in the majority of systems, will
constitute the highest number of connections to the database.

The following defines the client interface:
public class Cientlnterface {
public | AttributeList read(String nane);
public | AttributeList query(String statenent);
public I AttributeList diff(String versionlD, String versionlD = null);

b

The client interface has the following methods:

Erik Johansson, Jimmy Johnson, Doug Morrison Page 51 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

read — Returns the data associated with the component specified by the fully qualified
name. The following information is returned for each class of component:
o Container Manager — The manager’s properties and a list of all container names.
o Container — The container’s properties and a list of all component names.
o Component — The component’s properties and a list of all its attributes.
0 Attribute — The attribute’s metadata.
query — Returns the full qualified names of the components or attributes selected by the

query.

6.6.2.2 Administrator Interface

The administrator interface extends the client interface by providing users with the ability to
modify the state of the database. The Configuration GUI and other KCSF scripts will utilize this
interface to interact with the database. Other scripts and tools can be developed by users to
modify the database outside of the Framework. The administrator interface will be inaccessible
from within the KCSF container / component framework.

The following defines the administrator interface:

public class Adm nistratorlnterface extends Clientlnterface {

}

public boolean Mdify (String nanme, String val ue);

public boolean Addl nstance(String nane, String class);

public boolean Renovel nstance(String nane);

public boolean LoadDat abase(String path);

public boolean SaveDat abase(String path);

public boolean CreateVersion(String ID);

public boolean LoadVersion(String ID);

public boolean RenmoveVersion(String ID);

public boolean DefineC ass(String nane, String inherits = null);

public boolean DefineAttribute(String class, String nane, String Type,
| AttributeList metadata = null);

public boolean RemoveC ass(String nane);

public boolean RenoveAttribute(String name);

The administrator interface has the following methods:

Modify — Modifies the value of the property identified by the fully qualified name. This
must reference an attribute or metadata value (including manager and container
properties).

AddInstance — Add a new instance to the database of the specified type based on the fully
qualified name. The hierarchy defined by the name must exist for an instance to be
created.

Removelnstance — Removes an existing instance from the database. In the case of
managers and containers, all children must be removed before subsequent removal.
LoadDatabase — Loads a database from disk.

SaveDatabase — Saves the current database to disk.

CreateVersion — Saves a version of the active workspace within the database associated
with the specified ID.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 52 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e LoadVersion — Replace the active workspace with the version specified by the ID.
Modification to the active workspace will not modify the saved version, unless
overwritten with a call to CreateVersion.

e RemoveVersion — Remove a version from the database.

e DefineClass — Create a new class definition placeholder in the database. The placeholder
will be empty of attributes unless an inheritance is explicitly specified.

e DefineAttribute — Add an attribute to the specified class: all instances of the parent class
will reflect the addition of this attribute. The attribute’s type must be specified, and an
optional list of meta-data value can be provided. Instances of this attribute will
automatically be populated with the provided meta-data values. If the attribute already
exists in the system the class definition will be updated. If the type has changed all
instances of the parent class will be updated. If only the metadata has changed instance
will not be affected.

e RemoveClass — Removes a class definition from the database. All instances of the class
must be removed before subsequent removal.

e RemoveAttribute — Removes an attribute from a class definition: all instances of the
parent class will be updated to reflect the removal of the attribute.

6.6.3 Administration Tools

Users and operators will be provided with a set of tools to configure and maintain the
Configuration Database. Simple tasks such as loading a specific version, saving a new version,
or making or restoring a database backup will be provided in the form of simple command line
scripts. More complex tasks such as setting values and adding or modifying objects will be
performed through an operator GUI. All script and GUI tasks are performed through the
Configuration Library API.

6.6.3.1 Scripts

Scripts provide a simple and fast way to access the configuration database without having to
bring up and navigate a GUI or tool. Since scripts are only command line tools they are not
intended for complex operations. As such scripts only provide functionality for a subset of the
available configuration capabilities. The following scripts will be available:

Start and shutdown a Configuration Server / database.

Save and restore a database backup.

Save and load version(s).

Text dump of the database.

6.6.3.1.1 Database Builder

An additional utility that can aid in the development process is a script that will convert code into
a corresponding class configuration definition. This script will accept a path to one or more class
files annotated with special tags that define the configurable attributes. When the script parses
the file(s) it will create a class definition and add it to the database. This utility will allow
developers to easily create the framework of a project without having to manually define classes
twice — once in code the other in configuration.

The following example shows what would be generated by the script from a simple Java class.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 53 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Java Class:

/

@ConfigAttribute doubl e ExposureRate

@ConfigAttribute int Binning

* @ConfTigAttribute string Vendor

*/

class Canera extends Controller {
public Canera();

* X X

protected double ExposureRate;
protected int Bi nning;
protected String Vendor

}

Database:

ClassInheritance

ClassName Inherits
Component
Controller Component
Camera Controller

ClassDefinition |

| ClassName AttributeName Type DefaultValue MinValue MaxValue

Camera ExposureRate double 0.0
Camera Binning integer 0
Camera Vendor string

Figure 21: Class Definition Example.

6.6.3.2 Configuration GUI

The Configuration GUI represents the primary means for full database control and manipulation.
The GUI will provide all of the functionality available in the scripts, as well as utilize the full
extent of the Configuration Library administrator interface:
e Add, modify and remove objects, attributes, and metadata.
Perform complex queries and custom windowing.
Data validation and version comparison.
Display version history and details.
Define base types and default values.

The GUI will be divided into two views: class definitions and instances. The class view allows
users to define the structure of primitive and complex types in the database. Every KCSF class

Erik Johansson, Jimmy Johnson, Doug Morrison Page 54 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

will have a corresponding definition in the database. Additional project specific types can also be
defined. When it comes time to create a configuration for an application, the user will create an
instance of a class definition. Instances are shown in the instances view, and define the
configuration values for a specific object in the system. A user can modify the values of an
instance, but can not modify its structure from this view.

6.6.3.2.1 Class Definitions
The Class Definition panel shows all of the database definitions of KCSF class types.

BEApesion Preview [ClassYiew] - 10| x|
Component Types
Type Inherits From Aktribukte Name Metalata Yalue
Canpanent Type Integer
Device Companent Defaul Z
Controller Device ModelId Plint alle 1
Cantainer Canpanent Exposure Maxvalue [
Manager Device

amera

Conkroller

WFS

Figure 22: Example Class View

In this panel a user can create, remove, or modify the definition of a class. A class is defined by a
name, optional inheritance, and a set of named attributes and their type. The type of the attributes
must be one of the KCSF enumerated types (primitives and sequences). For each attribute, meta-
data and a default value can be specified. Modifications to an existing class definition will
automatically be applied to all instances of the class. Modifications to existing attribute will only
be applied to existing instances if the type of the attribute has been changed. An example of the
Class Definition Panel is shown in Figure 22.

6.6.3.2.2 Instances

The Instances panel shows all of the object configurations for a project. From this panel a user
can add and remove instances from a project, and modify their configuration values. When an
instance is added it will automatically be populated with the default values specified in the class
definition. Navigating to the object will allow the user to change these defaults and customize the
configuration for the application object it models.

6.6.3.2.3 Navigation

There are two modes of navigation separated into distinct views: component view and system
view. Component view presents a simple detailed listing of all the objects in the system in an
alphabetical organized order. You can search by name for a component and open it up to modify
its configuration. System view displays objects as hierarchical tree, showing their relationships to
other objects in the project. The tree is built dynamically by inspecting the mappings in the
instance tables. (Note: System view is only available in the Instances Panel.)

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture

Page 55 of 136

Revision: 1.0 9/4/2009

6.6.3.2.3.1 Component View
The Component View Panel presents a simple listing of all the instances defined for a project.

=0
Components
Marme Attribute Marne Yalue Metalata Yalue
MNGAC, A0, Cameral Tvpe Integer
MGAC, &0, Cameraz Rate 200 Dref aulk z
MEAC, A0, Camerad Maodelld ACR_G2 Mlin alue 1
MNGAC, A0, MC5, M1 Exposure 1000 Maxialue ta]

MEAD, &0, MCS, M2
MEAC, &0, MCT, M3
MGAC, Laser. Shutter
MNGAC, Laser , WFS,5tagel

Figure 23: Example Component View Panel.

The list can be sorted by type and alphabetized -- opening an item will show its configuration
information in a side panel. The advantage of this view is that it can provide immediate access to
an object’s configuration information. If you know the name of the object you simply scroll to it,
and bring up its configuration. An example of the Component View Panel is shown in Figure 23.

6.6.3.2.3.2 System View

The system view allows users to browse objects in a hierarchical fashion, as they would be
deployed at run-time.

1ol
Components
| NGAC Attribute Mamne Yalue Metalata Walue
By AC g8 Tvpe Integer
-- | WFS F.ate Dief a0l 2
--) MCS Madelld ACR_32 rlinyalue 1
=] Exposure 1000 MaxValue 8

[+ | Laser
[+ . LTCS

Figure 24: Example System View.

This view presents users with an easy to navigate hierarchy of object names. On the left of the
screen is a list of all the top-level items (Container Managers). These items can be expanded to
show a tree of all their immediate sub-items (Containers). In turn each of these items can be
expanded to show their sub-items (Components). Clicking on any of the objects in the tree will

Erik Johansson, Jimmy Johnson, Doug Morrison Page 56 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

present the associated configuration information in a side window. You can also add or remove
objects from the hierarchy by clicking on an item and selecting the desired operation. This view
is ideal for visualizing and modeling the system lay out, and makes it easier for traversing and
finding relationships between components. An example of the System View Panel is shown in
Figure 24.

6.7 Scripting

The framework provides support for executing scripts. At the current time, two languages are
supported for scripts: Java and Python. Scripts can interact directly with devices and controllers
by calling their methods (get , set, execut e, addMoni t or). Additionally, scripts have full access
to the framework services and tools. A user does not have to do anything special to use scripts,
other than prepare and submit them. Scripts can access component methods, can access and
extend KCSF classes, can use generic Java/Python classes and have full access to the Java
runtime environments. This includes full access to the KCSF services. The most common usage
of scripts will be through the main subsystem sequencers. A standalone tool will also be
provided for running scripts. At a minimum, a console based application will be provided that
will allow pre-written scripts to be executed within the KCSF environment. Additionally more
Ul intensive applications can be made available allowing scripts to be edited and executed in
place.

An example of a simple script is shown here:

TCS = “kl1.tcs”;
Tcs App. connect (TCS) ;
tcslnput = App.connect (“kl.tcs. axe");

curRa = tcslnput.get(“ra”);
curDec = tcslnput.get(“dec”);

newLoc = new Attributelist();

newLoc. i nsert(new Attribute(“action”, “offset”);
newLoc.insert(new Attribute(“ra”, curRa + 0.5;);
newlLoc.insert(new Attribute(“dec”, curDec + 0.5;);
tcs. set (newLoc);

App. di sconnect (“k1l.tcs. axe");

App. di sconnect (TCS) ;

Additionally, more traditional scripting can be supported through the shell and the use of show
and modify when used with the KCSF CA Server.

6.8 Tasks

At the lowest level of the Keck Common Services Framework are controllers and devices. These
distributed software objects interface directly with hardware and other systems. A number of
these devices and systems will need to work in concert to configure and prepare the system for
observing, and during observing. Tasks provide application developers with the means to control
and coordinate devices at varying levels of granularity through a common interface. Tasks offer
developers the flexibility to build layers of increasingly complex functionality from simpler self
contained operations. Tasks of all levels present a simple uniform interface to the application
developer, effectively abstracting away the underlying functionally and device complexity. Tasks

Erik Johansson, Jimmy Johnson, Doug Morrison Page 57 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

are designed to provide a scalable solution to controls development through loose coupling,
reusability and consistent use of the command design pattern.

6.8.1 Approach

All tasks implement the command pattern, where a command object encapsulates an action and
its parameters. Objects provide a convenient temporary storage for procedural parameters and
can allow a user to assemble a command some time before it is actually needed. A cornerstone of
the command design pattern is that all tasks must implement a common control interface. This
not only makes tasks appear generic from the point of view of the execution environment, but
allows developers to build a hierarchy of nested tasks. The task library framework provides a
base task class that abstracts services for processing status and other common infrastructure
activities.

Tasks can be arbitrarily complex: from simply slewing a device to closed loop image processing
and control. Although a single task can be developed to perform very complex actions, the
command design pattern encourages developers to break a complex problem down into smaller
discrete tasks. These tasks can in turn be grouped into higher-level task controllers (known as
compound tasks) to perform the desired overall sequence. The benefit of this approach is two
fold:
e Simpler tasks allow for greater reuse and provide a high degree of flexibility for
variations in the system.
e Bugs, code changes, and upgrades will be confined to smaller portions of the software,
allowing for faster and more reliable updates with less time required for testing and
deployment.

There are two general types of compound task controllers that are provided with the Task
Library: Sequential and concurrent. Sequential tasks are designed to iterate through a list of task
objects, executing and waiting for each task to complete before moving on to the next. Once all
of the subtasks have been executed the sequential task will be considered complete. Concurrent
tasks are designed to execute a set of subtasks simultaneously. After the last task has finished
executing the concurrent task will be considered complete.

Essentially these two compound classes provide developers with serial and parallel task
execution. As these compound task controllers themselves implement the task interface, one
could nest a sequential task within a concurrent task, and vice-versa, to any desired depth. It is
with these capabilities that a developer can build a complex control system with simple tasks.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 58 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

IE Compound Task
@ Simple Task

0|0

Figure 25: Nested Tasks.

6.8.2 Task Interface

The base task interface is shared by all task subclasses, and implements the expected set of
control methods in addition to the optional thread management routines.

public interface | Task {
public void initialize(Task parent);
public void start();
public | AttributeList wait(int tineout);
public void run();
public void stop();
public void pause();
public void resume();
public void done(lAttributelList result);
public void registerCall back(l TaskCal | back cal | back);

protected | Attri buteList execute();
}

public class Task implements | Task {
public Task(| TaskExecut or executor);

/1 Inplementation of |Task interface.

}

The following methods are defined for the Task base class:

e Initialize(parent): this method is used to initialize a task from the parent task (if
any), immediately prior to execution. Because a task can be instantiated arbitrarily long
before it is actually started, this method performs any dynamic initialization needed just
prior to execution, based on current conditions. It is also used to reinitialize a task object
if it is reused. Normally this is an inherited method that performs some initialization in
the task infrastructure and does not need to be implemented or overridden by the
subclass.

e start:a method of no parameters that starts the task executing that must return quickly
(the intention being that it does not perform the task, but merely initiates it). The
mechanics of how this works is dependent on the implementation of the execution
environment.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 59 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e wait(timeout=None): a method with an optional timeout parameter. This waits for the
executing task to finish and returns that task's result. If a timeout is passed a parameter (a
float) then the caller will wait at most timeout seconds for the task to finish. If the task
does not finish by that time a Ti neout Err or exception is raised. If no timeout is passed,
then the caller will wait indefinitely for the task to finish. If an exception is raised by the
child task, it will be re-raised in the parent on a wait.

e run: this is essentially a convenience function and as a combination of st art and wai t .

e stop: halt and cancel a task. The implementation of this method is optional and may not
be appropriate for all tasks.

e pause: temporarily interrupt an executing task. The implementation of this method is
optional and may not be appropriate for all tasks.

e resume: continue a paused task. Any task that implements the pause method must also
implement resume.

e registercCallback(callback): allows the user to define a callback object that will
receive status information when the task completes. (See | TaskCal | back interface
below for more information on the callback signature.)

e execut e: implements the task logic. This method is executed by the thread pool after the
task has been started. The returned At t ri but eLi st should indicate the success or failure
of the operation, and will automatically be forwarded to the done method for processing.

e done(result): when a task is ready to terminate normally, it must call this method
internally with its result value (defined in an At t ri but eLi st). A task normally calls this
as its final act. The method itself is usually inherited from the parent class.

The | TaskCal | back interface defines a simple object to receive status information when the task
completes through an I At t ri but eLi st instance.

public interface | TaskCal | back {
public void taskConpl ete(l AttributelList taskStatus);
}

As discussed earlier a set of compound task base classes will also be provided. These compound
tasks are designed to manage the execution of multiple tasks in sequential or concurrent fashion.

public class Sequenti al Task extends Task {
public Sequenti al Task(Li st<Task> tasks);

public void step();
}

A Sequent i al Task simply iterates through the list of tasks provided, and executes each one in
order. If any of the subtasks fail the sequential task will terminate and return error information
through the wait method or a registered callback. The sequential task also adds a new method
called st ep to the task interface. This method is used in conjunction with pause to allow the user
to step through the execution of the sequence one task at a time. Calling resume will
automatically return the sequential task to standard execution.

To perform task execution in parallel use the Concur r ent Task implementation.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 60 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

public class Concurrent Task extends Task implements | TaskCal | back {
public Concurrent Task(Li st <Task> tasks);

protected void taskConplete(lAttributeList taskStatus);
}

Concurrent tasks are designed to execute all of the provided tasks simultaneously, and then wait
for each of the tasks to complete. The Concurrent Task class implements the | TaskCal | back
interface to act as the callback for each of the supplied tasks. This will allow the task to monitor
the status of each subtask and determine when to signal overall completion. The concurrent task
will wait for all subtasks to complete, even if one or more fail.

6.8.3 Executors

Task functionality and execution are considered two separate and distinct aspects within system
control and commanding. Task development is focused on the functional requirements of an
operation. The lifecycle management and execution of a task (including resource allocation and
scheduling) are the responsibility of a task Executor. This design is similar to the Container
Component Model (CCM) used in the deployment and execution of device controllers:
containers are responsible for managing the technical requirements, while components are
responsible for implementing the functional requirements.

This separation between the functional and technical requirements of a task allows for greater
development and deployment flexibility and independence. A task developer can focus solely on
the design and functionality of a task, while an application developer only needs to consider how
the tasks are managed and executed. A number of task executor solutions can be developed to
satisfy a wide range of runtime scenarios, without requiring prior knowledge about how
individual tasks work and what operations they perform.

As with the CCM, the functional / technical separation of tasks can be achieved by using a well
defined and generic interface between the Task and Executor definitions. The interfaces are
minimal; consisting of only a few key methods to provide the basic operations needed to manage
the life cycle and execution of tasks.

public interface | TaskExecutor {
public boolean addTask(Task task);
public boolean renoveTask(Task task);
public int pendi ngTasks();

}

The executor interface defines a set of methods to add and remove a task, as well as report the
total number of tasks waiting to be executed. How the executor manages and executes tasks is up
to the developer. The Task Library however, provides a thread pool executor implementation
which may be satisfactory for most task processing requirements.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 61 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.8.4 Using Tasks

To realize an activity during an observation, one instantiates the task of the appropriate name
with appropriate arguments (i.e. creates an object by calling the class constructor with a fully
populated attribute list). For example, a Poi nt Tel escope task might be instantiated as,

[AttributeList parans = new AttributeList();
params. set(“ra”, 185.0);

par anms. set (“dec”, 47.8);

par ans. set (“equi nox”, 2000);

Poi nt Tel escope poi nt = new Poi nt Tel escope(par ans) ;

Once a task has been created, the standard task interface is used to control it (i.e. by method calls
on the object). For example, we might do the following to initialize the task, start it, and wait for
the result, which is returned to the variable res.

point.initialize(null);
point.start();
| AttributeList res = point.wait();

Alternatively, one can combine the st art and wai t steps by using r un.

point.initialize(null);
| AttributeList res = point.run();

The attribute list returned by the wai t or run methods will contain status information for the
task. The attribute list is guaranteed to contain the enumeration item “_OperationResult”, which
can have one of the permitted status values (SUCCESS or FAIL). In addition, if the task failed a
string attribute, “_Reason", will be defined to give a human readable description as to the cause
of the failure. Other custom attributes may be defined as required or provided by the task
implementation.

In addition to simple tasks, nested tasks can be created using the task library’s implementation of
the compound tasks Sequential and Concurrent.

Li st<Task> | 1
Li st <Task> |2
Li st<Task> | 3

new Li st<Task>();
new Li st <Task>();
new List<Task>();

| 1. append(Poi nt Tel escope(..));
| 1. append(OpenShutter(.));

| 2. append(InitCanera(..));
| 2. append(Track(..));

Concurrent Task ¢

= new Concurrent Task(!l1);
Sequenti al Task s1 =

1
1 new Sequenti al Task(! 2);
| 3. append(cl);
| 3. append(sl);

| 3. append(1dl eSysten(.));

Erik Johansson, Jimmy Johnson, Doug Morrison Page 62 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Sequenti al Task s2 = new Sequenti al Task(| 3);
s2.initialize(null);
| AttributeList res = s2.run();

Since all task implementations share the generic interface and follow the command pattern we
can compose compound tasks out of sequential and concurrent tasks. In this example a
concurrent and sequential task are created, and appended to a list. A new sequential task is
instantiated using said list as the task sequence. When ‘s2’ is executed it will perform the
standard initialize-start-wait command sequence on each of the compound tasks, recursively
executing the underlying simple tasks contained within each. The final return value is the overall
status of all tasks within the hierarchy of commands.

6.9 Sequencers

Sufficiently complex systems built with the KCSF, such as the Next Generation Adaptive Optics
System (NGAO), will comprise dozens or hundreds of devices and systems. During normal
operation these components will need to be coordinated and managed throughout the distributed
control system to perform their required tasks. Users and developers of KCSF systems will need
a means of efficiently building and coordinating the command logic between these devices in an
organized and repeatable way. The solution will need to manage many different types of
concurrently executing commands, provide common mechanisms for control and
synchronization, and be able to handle many disparate low-level interfaces. The KCSF
Sequencer design has been developed to satisfy these requirements.

6.9.1 Approach

Sequencers are implemented as a state-driven KCSF Controller with added functionality for
command execution and management. As controllers, sequencers are capable of receiving
commands, sending responses, pushing events, and triggering alarms. As with other types of
KCSF components, a sequencer instance is defined by a unique name within the system.
Sequencers will implement the standard get, set, execute controller interface, which will be used
to command the sequencer and issue state transitions.

An additional benefit to developing sequencers as controllers is that tasks can be used to allow
one sequencer to command another. In this way, a hierarchy of sequencers can be created
allowing the developer to organize sequencers within domains, all of which can be commanded
by a single high-level multi-system command sequencer.

MECS
\ 4 \ 4 \ 4
AO LASER TELESCOPE

Figure 26: Multi-System Command Sequencer.

States are used to organize a set of related tasks to perform a single coordinated control sequence
(for example, acquiring a target). Operators issue transitions to sequencer instances through the

Erik Johansson, Jimmy Johnson, Doug Morrison Page 63 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

KCSF middleware as they would execute actions on standard device controllers. The developer
is responsible for defining the states and transitions for a sequencer, and assigning the tasks that
will be executed within each state.

The Sequencer’s main system control functionality comes from task implementations defined in
the task library. Sequencers are responsible for providing the execution environment for the tasks
they will use. Typically a sequencer will utilize an existing lifecycle management object to
perform task scheduling and execution. Alternatively a custom executor can be created to
provide unique task management if required by the sequencer design. As most sequencers rely
on immediate execution of tasks (as opposed to scheduled), many of which contain parallel
command processing, the Task Library Command Thread-pool Executor is an ideal management
mechanism for sequencers. This executor implements a queuing thread-pool, which allows the
sequencer to issue multiple commands simultaneously, as well as utilize concurrent tasks defined
in the Library.

Although a task’s functional requirements tend to be static after development, it is not unusual
for a sequencer’s requirements and control flow to evolve as the system matures, and operators’
understanding of it improves. As such, the Sequencer design offers developers and users with the
ability to modify the execution of a sequencer without making direct modifications to the
sequencer code (this can even be done dynamically at run time). The ability to modify a
sequencer’s task control is provided through the KCSF Script Engine. This utility enables the
loading and execution of external scripts which can be written in a number of different
programming languages. Developer’s can substitute state task(s) with scripting, allowing users to
modify the execution logic as needed.

The following diagram details the basic Sequencer design concept and relationships.

5 KESF /Sequencer\ |

State

Task Library Machine

Task Task

! Execut Script i . II
Task Task 3.) xecutor Encgr:ﬁe A Scripts

Figure 27: Sequencer Design.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 64 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.9.2 State Machine

Typically, sequencers will implement a well defined state machine to control the execution of
steps in an observing sequence. The state machine design pattern does this through the use of
states and transitions. States represent the current configuration of the sequencer and transitions
represent the valid paths that can be taken to a new configuration. In a state diagram, states are
usually depicted as circles and transitions as arrows, both of which have an associated name.

Initialize St andby

Figure 28: State Machine Diagram

The various states and transitions a sequencer will implement must be determined during the
design phase of the sequencer, and are based on the intended functionality of the sequencer. It is
within the transition process that the business logic of the sequencer is executed and tasks are
performed.

6.9.3 Handling Transitions

The business logic of a Sequencer is executed during state transitions. A developer can
implement the functional requirements of a transition in a number of ways. The Framework
provided two convenient infrastructure options that can make Sequencer development easier:
Tasks and Scripts.

6.9.3.1 Using Tasks

Tasks are an ideal solution for implementing sequencer control logic because they provide a
simple, scalable, and composable method to build complex command sequences, and are
publicly available to all users of the KCSF. The Task module will contain a number of
implementations from simple tasks that control a single device, to complex nested tasks that can
command an entire system. Usually a task will be designed to perform a single logical function
(e.g., positioning a stage or acquiring a target with the AO). Compound tasks are formed by the
combination of simple tasks with sequential and concurrent meta-tasks. The sequencer developer
will use these components to build a command sequence to be executed during a state transition.

6.9.3.2 Using Scripts

As an alternative to directly defining tasks, the framework provides sequencer users with the
flexibility to modify an observing sequence without impacting the sequencer code itself. This is
done through the KCSF Script Engine. This utility allows developers to load and process
external scripts used to control the execution of state tasks dynamically (even at runtime).

Erik Johansson, Jimmy Johnson, Doug Morrison Page 65 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

The business logic of a sequencer exists in the implementation of the state machine transition
callbacks. Up till now we have discussed executing tasks during these callbacks to perform the
system control. However an alternate solution (or to be used in conjunction with tasks) is to have
the callback load and execute script(s) defined by the developer, and specified in configuration.

public void initializeTask() {
script = ScriptEngine.load(this.pathTolnitScript);
script.execute();

}

The script is responsible for providing the functionality for the transitions. Since scripts executed
through the script engine are able to use the KCSF services and can be given access to class
members, a script developer can utilize any of the tasks and functionality available to the
sequencer itself. Operators can fine tune script properties as the sequencer is running, or can
modify the entire sequence if a better solution is discovered.

6.9.4 Issuing Transitions

Clients can connect to a sequencer instance by obtaining a proxy reference from the connection
service. It is the responsibility of the sequencer’s parent container to perform the initialization of
the sequencer to prepare it for commanding. Once the client has a valid proxy they can issue
transitions to the sequencer. Transitions are issued through the sequencer’s execut e method by
configuring a CommandSet with the required transition information. Each transition may have its
own unigue parameters so clients must be aware of what each transition requires.

CommandSet command = new ConmmandSet (“Acquire”);
conmand. set (“ Tar get Nane”, “HD13089");

i f(!Tel escopeSequencer. execute(command, null)) {
/1 Failed to issue conmand. Reconnect to Sequencer?
}

In this example a transition request is created to acquire a target with the telescope sequencer.
For this transition only one argument is required, TargetName. This argument is used to lookup
target information (such as coordinates) in a star catalog. The command is then sent to the
sequencer through the execute method.

The advantage of using the controller execut e method to dispatch transitions is that it uses the
controller thread pool to allow the sequencer to operate asynchronously. This permits a user to
interrupt or alter a sequence by issuing a halt, standby, etc.

6.10User Interface

User interfaces are separated from control operations in the architecture. Components provide a
common control surface that is used by Graphical User Interfaces, scripts, and programmatic
access. These control surfaces are available through the software bus. This allows Ul
applications to be distributed independently of the location of the underlying control
components. Further, since all user interfaces (GUI, script, programmatic) operate through the
same control surface, any form of user interface can be used to access any control surface. This

Erik Johansson, Jimmy Johnson, Doug Morrison Page 66 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

means that simple Uls may be produced quickly to aid in development and safely replaced with
more sophisticated Uls later. Status information is also provided through common interfaces
across the software bus allowing similar flexibility in Ul display of status information.

User interfaces will be composable. User interfaces are implemented as classes (or the
equivalent) and can be combined to form Ul applications. This allows sophisticated Uls to be
built quickly from simpler base Ul components. Engineering interfaces, while the responsibility
of system developers, are implemented using the APIs and libraries provided by framework.

Since each component is self describing it will be possible to produce a set of data driven Ul
widgets that can be used to easily monitor a component or graph a value in an ad-hoc manner

e Ul starts and is given a component name

e Connects to component and asks for a list of all its attributes

e Displays attribute names in a table view and starts a monitor connection to them

e Displays data as it becomes available.

We are considering several different Ul tools for use with KCSF:

e The ATST CSF is bundled with a Ul builder.

e GTKH+, an open source GUI toolkit:
o0 Cross platform support: Linux, Unix, Windows, Mac OS X
0 Used for the GNOME desktop and GIMP image processing program
0 Licensed under the GNU LGLP 2.1

e Qt, apopular Ul framework:
o Cross platform support: Windows, Mac OS X, Linux/X11 (includes Solaris).
0 Available with commercial and LPGL licenses
0 Wide commercial and academic use

e Java Swing

The user interfaces shown in this document are mock-ups and are simple proof of concepts. The
actual look and feel should not be interpreted as being the final or even proposed solution. The
screenshots are presented to show potential functionality only.

6.11Developing components

This section describes what a developer must do to design and implement new device and
controller components. Most of the bookkeeping work is handled by the base class methods,
allowing the developer to concentrate on the application specific behavior of the component. The
clean separation of the technical and functional aspects of component management is achieved
using delegate methods. The technical tasks are implemented in the base class methods, which
then call the delegate methods to complete the functional tasks. Method stubs which do nothing
are already provided, so the developer need only override the delegate methods required to
implement the desired functionality. The delegate methods have the same name as their base
class method counterparts, with the prefix “perform” attached and the entire method name
conforming to camelCase notation (e.g., per f or nGet , per f or nSet , etc.).

The component design process begins with the developer extending the DeviceCore or
Control | er Core base class to implement a new device or controller type (the Devi ceCor e and

Erik Johansson, Jimmy Johnson, Doug Morrison Page 67 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Control | er Cor e classes are discussed in more detail in the section on the architecture developer
view). Next, the lifecycle delegate methods are overridden as required. Recall that the
component lifecycle consists of the creation, initialization, startup, operation, shutdown,
uninitialization and removal phases. The lifecycle of a component is managed using state:
lifecycle methods all check to see if the current component state is appropriate before continuing.
If the current state is not appropriate, the base class lifecycle method will exit without
performing any of its tasks and without calling the delegate method. The component lifecycle
state transition diagram is shown in Figure 29. We discuss each lifecycle phase below,
summarizing the actions implemented by the base class methods and the actions that are left to
be implemented in the delegate methods.

Create Remove

LOADED

Initialize Remove

Startup

D9

Figure 29: The component lifecycle state transition diagram.

6.11.1 Lifecycle methods

6.11.1.1 Creation

Prior to creation, the component’s state is UNKNOAN. During creation, the component is created by
its parent container and connected to its available services. There are no delegate methods to be
written by the application developer. At the end of creation, the component state is set to LOADED.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 68 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

6.11.1.2 Initialization

The component must be in the LOADED state in order to be initialized. During initialization, the
base class method creates any local objects required to manage the component and then calls the
configuration service. The configuration service returns an attribute list which is then applied to
the component using its own set method. Note that the per f or nSet method, which is called by
set (which will be discussed in more detail below), is aware of the lifecycle state of the
component and can respond accordingly. This means that parameters specific to the initialization
can easily be passed to the component, placed in local storage, and then acted upon later when
the delegate initialization method is called. The application developer should implement a
performnitialize delegate method that uses the configuration information as needed, creates
any desired local buffers, connects to any required device drivers, and performs any initialization
steps required by the physical or virtual device represented by the component. If the delegate
method completes successfully, the component state is set to | NI TI ALI ZED.

6.11.1.3 Startup

The component must be in the I NI TI ALI ZED state in order to be started. The base class then calls
the per f or nst ar t up delegate method to perform any local startup tasks. The developer should
implement a per f or nSt ar t up method to perform any startup tasks required by the physical or
virtual device represented by the component. When finished, per f or nSt ar t up should leave its
device in its operational state. Once the delegate method has completed successfully, the
component state is set to RUNNI NG,

6.11.1.4 Operation

This is the main functional state of the component (RUNNI NG). It responds to user requests using
the main functional interface described earlier (get, set, execut e, and xxxMoni t or). There are
no delegate methods for this lifecycle state.

6.11.1.5 Shutdown

The component must be in the RUNNI NG state in order to be shutdown. During shutdown, the
component releases all external resources it is using. The delegate per f or nShut down method
should stop all device activity and leave the physical or virtual device in a safe state upon
completion. Once the delegate method has completed successfully, the component state is set to
| NI TI ALI ZED.

6.11.1.6 Uninitialization

The component must be in the I NI TI ALI ZED or RUNNI NG states in order to be uninitialized. If the
component is in the RUNNI NG state, the shut down method will be called before the body of the
uni nitialization method is executed. The performuninitialize delegate method should
perform any required steps to uninitialize the device, disconnect from any device drivers, and
release all local resources. Once the delegate method has completed successfully, the component
state is set to LOADED.

6.11.1.7 Remove

The component must be in the LOADED, | NI TI ALl ZED, or RUNNI NG state to in order to be
removed. If the component is in the RUNNI NG state, the shut down and uni ni ti al i ze methods

Erik Johansson, Jimmy Johnson, Doug Morrison Page 69 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

will be called before the body of the remove method is executed. If the component is in the
| NI TI ALI ZED state, the uni ni tial i ze method will be called before the body of the renmove
method is executed. During removal, the component ceases all activity and releases all its
internal resources. The perfornRemove delegate method should free any remaining local
resources and perform any final cleanup required before the component is deleted. The
component ceases to exist upon completion of the renoval method and the state is set to
UNKNOWN.

6.11.2 Functional methods

Once the lifecycle delegate methods have been completed, the application developer must
implement the main functional methods of the component. These are the methods that determine
the component’s actual behavior in the system. As was done for the lifecycle methods, stubs of
the delegate methods which do nothing are provided and must be overridden by the developer.
The delegate methods to be implemented are: perfornGet, perfornBet, perfornExecute,
per f or mPause, per f or nResume, and per f or nCancel .

6.11.2.1 Get

The base class get method performs validation on the input attribute list and passes a validated
attribute list to the perf or nGet method. The application developer should do the following in
the per f or nGet method:
e Create a copy of the attribute list with nulls in the value fields to be used as a starting
point for the list to be returned.
e lterate through the list of attributes and take actions as required based on the attribute
name:
0 Read the value corresponding to the attribute from the physical or virtual device.
o If an error occurs, write to the appropriate error log.
0 Add the value to the appropriate attribute in the return attribute list. A null value
should be used to indicate a failure.
e Call the get Result method to indicate to the base class the overall status of the get
operation (“Success”, “Partial”, “Fail”).
e Return the completed attribute list. The base class will automatically append the
“ OperationResult” attribute as a result of the get Resul t call made above.

6.11.2.2 Set

The base class set method performs validation on the input attribute list and passes a validated
attribute list to the per f or nset method. The application developer should do the following in
the per f or nSet method:
e Create a copy of the attribute list with nulls in the value fields to be used as a starting
point for the list to be returned.
e lterate through the list of attributes and take actions as required based on the attribute
name:
o0 Write the value of the attribute to the corresponding physical or virtual device
parameter.
o If anerror occurs, write to the appropriate error log.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 70 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

o Determine the actual value of the attribute accepted by the device (e.g., account
for any clipping due to the parameter being out of range).
0 Add the actual value to the return attribute list. A null value should be used to
indicate a failure.
e Call the set Result method to indicate to the base class the overall status of the get
operation (“Success”, “Partial”, “Fail”).
e Return the completed attribute list. The base class will automatically append the
“_OperationResult” attribute as a result of the set Resul t call made above.

6.11.2.3 Execute

The base class execut e method performs validation on the input command set and passes a
validated command set to the per f or nExecut e method. The application developer should do the
following in the per f or nExecut e method:

e Determine the action required by finding the “_Action” attribute keyword. The base class
execute method has already verified that the “ Action” keyword exists; the delegate
method just needs to find its value. Note: The get helper method on the attribute list in
the command set is used to return the “_Action” attribute, and the get <Type> helper
method is used on the returned attribute to extract the keyword value.

e Execute the appropriate code based on the value of the action keyword. This code may be
fairly complicated, involving a number of steps and may require extracting additional
values from the input attribute list as parameters.

e Call the execut eResul t method to indicate to the base class the overall status of the
execute operation (“Success”, “Partial”, “Fail”).

e Return an updated command list. The base class will automatically append the
“_OperationResult” attribute as a result of the set Resul t call made above.

e During the processing described above, the execut e method must check to see if a pause
has been issued for this command. If so, the execut e method must gracefully halt its
activities and sleep until awaken by a r esune.

e Similarly, the execut e method must check to see if a cancel has been issued for this
command. If so, the execut e method must gracefully cancel all its activities and return.
The specific clean-up behavior is left up to the developer.

6.11.2.4 Pause

The pause command is used to pause an execut e command that is currently in progress. The
developer should use the per f or nPause method to implement any necessary actions to place the
physical or virtual device in a safe state until a r esurre command has been received.

6.11.2.5 Resume

The r esume command is used to awaken an execut e command that has been previously paused.
The developer should use the performResume method to implement any specific recovery actions
that should be taken and then resume the command that was previously paused.

6.11.2.6 Cancel

The cancel command is used to cancel an execut e command that is currently in progress. The
developer should use the per f or nCancel method to implement any necessary actions to place

Erik Johansson, Jimmy Johnson, Doug Morrison Page 71 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

the physical or virtual device in a known safe state and then cease all activities related to the
original execut e command.

6.11.3 Examples

This section demonstrates how to extend the base Devi ceCore or Control | er Core classes to
implement a new device or controller as described above.

6.11.3.1 Camera Device

This example shows how to extend the Devi ceCore class to implement a camera device. It
shows the overriding of the per f or nGet , per f or nSet and per f or rExecut e methods.

package kcsf.cs.ccm conponent . denos;

import kcsf.cs.ccm conponent. Devi ceCor e;
import kcsf.cs.data. Attribute;

import kcsf.cs.data. Attri butelLi st;

import kcsf.cs.interfaces.lAttributelist;
import kcsf.cs. services. Log;

/

Si npl e canera device that has the followi ng Attri butes:
Bi nni ng, IntegrationTinme

It supports 2 conmands: Start and Stop
/
public class CaneraDevi ce extends Devi ceCor e{

o T

private int _binning = 2;
private double _intTime = 1000. 0O;

@verride
public synchronized | AttributelList perfornGet(lAttributelList values) {

| AttributeList result = new AttributeList();
it (val ues. contains("Binning"))

result.insert(new Attribute("Binning", _binning));
if (val ues.contains("IntegrationTine"))
result.insert(new Attribute("IntegrationTine", _intTinme));

result.setResult(“Success”);
return result;

}

@verride
public synchronized | AttributelList perfornet (lAttributelList val ues) {

[AttributeList result = new AttributeList();

if (values.contains("Binning")) {
_binning = val ues. get ("Bi nning").getlnteger();
result.insert(new Attribute("Binning", _binning));

}

if (values.contains("IntegrationTine")) {
_intTime = values.get("IntegrationTine").getDouble();
result.insert(new Attribute("IntegrationTine", _intTinme));

Erik Johansson, Jimmy Johnson, Doug Morrison Page 72 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

}

}

result.setResul t(“Success”);
return result;

@verride

public synchronized boolean perfornExecute(l AttributelList val ues)

}

String action = values.getString(" _Action");
if (action == null) {
result.setResult(“Failure”);
return false;

}

if (action.equal s("Start"))
return start Exposure(val ues);

else if (action.equal s("Stop"))
return st opExposure(val ues);

Log. not e(" Unrecogni sed action for device");
result.setResult(“Failure”);
return false;

private boolean startExposure(lAttributelist val ues) {
/1 check values to see if binning or other options set

_camer aDevi ce. start Exposure(_binning, _intTine);
result.setResult(“Success”);
return true;

}

private boolean stopExposure(lAttributeList values) {
_camer abDevi ce. st opExposure();
result.setResult(“Success”);
return true;

}

6.11.3.2 Camera Controller

This example shows how to extend the Control | er Core class to implement a controller that
composes multiple devices. It shows the overriding of the lifecycle methods and the execute

command to issue execute commands to multiple cameras on separate threads.

package kcsf.cs.ccm conponent . denps;

import kcsf.cs.controller. ControllerCore;
import kcsf.cs.interfaces. | AttributeList;
import kcsf.cs.interfaces. | Call back;
import kcsf.cs.interfaces. | Device;

import kcsf.cs. services. App;

import kcsf.cs. services. Log;

/*

Si npl e conposite controller. Coordinates starting and
* stopping a nunber of different caneras

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture Revision: 1.0

Page 73 of 136
9/4/2009

*/
public class CaneraControl |l er extends ControllerCore {

private String[] _caneralds = null,

private | Device[] _canmeras = null;

/1

/'l Expects a list of caneras to be coordinated

/1

@verride

public void performnitialize(lAttributelList values) {
_caneral ds = val ues. get Nanes() ;
_caneras = new | Device[_caneralds.|ength];

}
@verride
public void perfornStartup(lAttributelList values) {
for (inti =0; i < _caneralds.length; i++) {
_caneras[i] = (IDevice) App.connect(_caneralds[i]);
}
}
@verride
public void perfornUnlnitialize(lAttributeList values) {
for (inti = 0; i < _caneralds.length; i++) {
App. di sconnect (_caneral ds[i]);
}
}
@verride

public boolean perfornExecute(lAttributelist val ues) {
String action = values.getString(" _Action");
if (action == null) return false;

if (action.equals("Start")) {
for (inti = 0; i < _caneras.length; i++) {
Log.note("Starting canmera " + _caneralds[i]);
_caneras[i].execute(val ues, null);

}
else 1T (action.equals("Stop")) {
for (inti = 0; i < _cameras.length; i++) {
Log. note("Stopping canmera " + _caneralds[i]);
_caneras[i].execute(val ues, null);
}

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture Revision: 1.0

Page 74 of 136
9/4/2009

7 Developer View

The Keck Common Services Framework (KCSF) is based on the ATST Common Services
Framework (CSF). They both share the same component based development paradigm, the same
container component model, tiered architecture, communication middleware neutrality and basic
libraries. The framework provides a standardized environment to applications to aid in the
development of control systems. The following provides a high level overview.

Components

O

Containers

Execution
Environ-
ment

Life Cycle

Services Management

O

Figure 30: KCSF Overview.

The framework brings together containers, components, services and tools and provides life
cycle management for these when they are deployed in an execution environment. The execution
environment will be provided by the OS or in the case of Java by the Java virtual machine. The
expected JVM will be the J2SE profile. This framework concept is illustrated in Figure 30.

Containers are responsible for housing components and for the class loading policies. Containers
add modularization and provide the ability to dynamically load and unload components as
needed as well as provide services to the components. Services are a set of basic functions that
are available to all components, such as connecting to other components, logging parameter
changes, posting events and configuration. Life cycle management is accomplished with a
container manager. Components can be dynamically installed, uninstalled, started, stopped,
configured and updated. Lifecycle management introduces dynamics that are normally not part
of an application. Extensive dependency mechanisms are used to assure the correct operation of
the environment.

The two fundamental mechanisms for communication between KCSF Components are
commands and events. Commands are used in peer-to-peer communication while events are used
in publish/subscribe communication.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 75 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Please see KAON 671: Keck Next Generation Adaptive Optics Container Component Model for

a full discussion of the model.

7.1 Architecture Layers Details

The Common Software is a tiered architecture as described below and shown in Figure 31.

High Level ul Scripting Application AP
AP| ,! TDD'S Support Support Framewark Libraries
. Container Alarm Archiving A Log Event
Services Services Service Service Service Service Service
onfiguration ogaing arm evice
Core CCM Canfi i Loggi Al Devi
Support Support Systemn System Drrivers
Tools
BESE Developer Datahase Cammunication FProtocol
Tools Support Support Middleware Support

Figure 31: Detailed Architectural Layer.

High-level APIs and Tools: This level of software directly supports the development of
KCSF applications and is the level presenting the Common Software functionality to
application developers.

Services: The services layer consists of software that implements mid-level KCSF
functionality based on the core tools.

Core tools: The core tools build low-level KCSF required functionality directly from the
base tools. Core tools often have performance constraints that mandate direct access to
the foundation software.

Base tools: The lowest level contains software that is independent from the actual KCSF
functionality. It is support software on which KCSF aware software is based. Most of the
software at the base level is COTS or open source and is not directly maintained by
KCSF. It consists of:
o Development tools include IDEs, languages and compilers, versioning systems,
debuggers, profilers, and documentation generators.
o Database support includes software on which one can implement persistent stores,
engineering archives, and science header and data repositories.

Erik Johansson, Jimmy Johnson, Doug Morrison

Page 76 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

0 The communications middleware is the foundation for all inter-process
communication in KCSF. It provides the communications bus, location utilities
(name services), and a robust notification system.

7.2 Container Manager

The container manager is a component responsible for deploying and initializing containers and
their components through dynamic process creation and dependency injection. Container
managers have access to configuration information that defines the number and types of
containers and their specific components and services. They are capable of deploying containers
on different nodes, attaching to already running containers and managing the lifecycle of
containers.

A container manager has the following API, which provides the capability to deploy containers,
add a container that is already running to the manager, remove containers and get a list of all
deployed containers for that manager.

public String depl oyContainer(String nane, String host);

public String deployContainer(String nane, String host, String type);

public String addContainer(String nane);

public String del Container(String nane);

public String[] getAll Containers();

To deploy a container the container manager will execute a (possibly remote) script to call the
main entry point for a container. Using the connection service the manager then connects to the
container to verify it is operational. The connection service is used to send lifecycle commands
to the container as needed.

7.3 Container

In KCSF, containers are part of the technical architecture and have the following responsibilities:
e Manage component lifecycles, including creating, starting, stopping, and destroying
components. This means that there is a uniform mechanism for controlling component
lifecycle operations. Multiple components may run under the same container
e Provide services to the components. Because services are shared amongst the components
in a container, more efficient use of services is possible.

The container hides the details of the framework implementation from the component, and
makes it possible for the component to be used in multiple modes of execution. Containers are
multithreaded and can simultaneously manage multiple components, or can be limited to a single
component as needed.

Containers are language specific: only a single language is supported by a container. Multiple
containers are required to support more than one language. Although there are no technical
prohibitions against doing so, KCSF generally does not run more than one type of language-
specific container on a given host.

A number of classes are used to implement a container. A container uses a Conponent | nf o class
to record meta-data about the loaded components, a Conponent Loader to do the actual class and

Erik Johansson, Jimmy Johnson, Doug Morrison Page 77 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

service loading, a Tool Box to hold and manage services and a Conponent Cl assLoader to
perform the actual component instantiation. A Cont ai ner Manager is a special component that is
used to deploy containers. These classes are discussed in further detail below, and their class
hierarchy is shown in Figure 32.

Componentinfo

ComponentClassLoader

1 l 1 1

Container ComponentLoader

| ? ToolBox

-

ContainerManager

Figure 32: Container class decomposition

The container's lifecycle control module is responsible for managing the component lifecycles. It
responds to external requests on the container to create, start, stop, and destroy specific
components. The component loader handles these external requests for the container, calling on
the component class loader to create each component. External requests generally come from
container managers or sub-system administration applications.

The component loader works by establishing a new namespace for the component and then
creating the component and a toolbox for that component within that new namespace. The
component loader then instructs the toolbox loader (within the service access control module) to
load that toolbox with service tools. Individual tools may be private (existing within the
component's namespace) or shared (existing outside the component's namespace). It is the
toolbox loader that determines which tools are private and which are shared; different toolbox
loaders may make different determinations. This concept is illustrated in Figure 33.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 78 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Container
Component

Lifecycle Control

[1
Component
Manager Component Private
Service
Tools

Service Access

Component

Loader Service Toolbox

Component namespace

Service Access Control

Toolbox
Manager

Shared Service Tools

Toolbox
Loader

Figure 33: Typical Container

An important point is that the container, through the toolbox manager module, retains access to
each component's toolbox - and hence to all the service tools. This allows a container to
dynamically adjust service properties on a per-component basis.

Note: In the ATST CSF each component operates in its own namespace (with the exception of
interface definitions which are always shared across all namespaces). This is accomplished by
means of a private class loader that is utilized by the container. Since for KCSF we have decided
we do not require the ability to dynamically replace classes on the fly, our current design is to
use the standard class loader. Should the need for a private class loader arise then we can follow
the CSF model.

7.3.1 Container Interface

A container has the following API :
public void addConponent (String nane, String classNane);
public void del Component (String nane);
public String[] getAll Conponents();
public boolean contains(String nane);
public | Conponent get Conponent (String nane);
public | Conponent Adni n get Conponent Admi n(String nane);
public void setLifecycleCondition(String cNane, String newStatus);

public void conponent (String cNane, String action, [Attributelist
args);

7.3.1.1 addComponent

Given a component name and the full class path this method will create an instance of the
component and associate it with the requested name. It first checks to see if the instance is
already loaded. The container itself does not directly load the class but uses its
conponent Loader member class. The conponent Loader can be changed as needed to support

Erik Johansson, Jimmy Johnson, Doug Morrison Page 79 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

separate namespaces, class load order and so forth. After this call, if successful, a component
will be loaded but not initialized.

7.3.1.2 delComponent

If the requested component is loaded it will be unloaded and removed from the container. In the
current design, if the component is running, it is shutdown first and then removed. A log
message is generated if the component is shutdown. Through its lifecycle methods, the
component is given the opportunity to free any resources and close any connections before
removal. Components are removed on a separate thread.

7.3.1.3 component
This call is used to control a component’s lifecycle. For parameters it accepts a lifecycle action
and any additional parameters to be applied to that action. The following actions are supported:
e Initialize
Startup
Shutdown
Uninitialize
Remove
CheckHealth

7.3.2 ToolBox

A toolbox provides an application with access to all essential KCSF services. When a component
is created by a container, the container attaches a toolbox filled with service helpers to the
component. This is a singleton class so (a) all component objects in a container see the same
instance and (b) it implements the I Tool Box interface so the Contai ner Manager can still
manipulate it.

The toolbox also holds all component-specific knowledge that is needed by the common
services. Service helpers can access this information as needed to perform various tasks.
Component subclass access to this information is through the convenience classes mentioned
below. The toolbox manages the following services: Alarm, Connection, Archive, Event, Health,
CA, Logging, and Configuration. Any other service tools are passed on to chained toolboxes (if
any) for handling. Service tools are loaded into the toolbox using a toolbox loader. Normally this
class is not referenced directly; instead, the convenience classes KCSF.cs.service.[ServiceName]
are used. They simply wrap this class, but provide a more mnemonic interface.

7.3.3 Component Info

This class provides simple storage for information about a component as seen by a container.
Items such as the component name, class name and other information are retained.

7.3.4 Component Loader

The Conponent Loader class offloads from the container the work of installing a component into
the container. This separation allows for the ability to locate the class for the component and
instantiate it into a separate namespace. A toolbox is then built and populated with service tools.
The toolbox knows its owner component and is responsible for handling all service requests from

Erik Johansson, Jimmy Johnson, Doug Morrison Page 80 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

that component. The class loader dynamically locates and creates classes, their resources and any
dependencies.

The steps involved in loading a component are as follows:

Create a toolbox in the component’s namespace.

Assign the toolbox to the container.

Populate the toolbox with services.

Start the services.

Use the class loader to create the component (the default constructor is called).

Give container hooks to component and toolbox and assign the toolbox to the component.
e Store information about that component into the Corponent I nf o record.

7.4 Components: Devices and Controllers

Components are the basic building blocks of a control system and are broken down into two
basic types, Devices and Controllers, which form the backbone of the system. All components
must implement the | Techni cal interface to conform to the container component model. These
are the methods needed for lifecycle control of components, and represent the technical portion
of the component interface. In addition, components must implement the | Renot e interface to
support the basic set and get methods, which are the functional portion of the component
interface. These interfaces are shown below in Figure 34.

«interface» «interface»
ITechnical IRemote
«interface»
IDevice Q
- ControllerCore
DeviceCore
Device Controller

Figure 34: Components: Devices and Controllers.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 81 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

KCSF provides further extensions of these interfaces through the I Device interface to
implement components called Devi ce and Control | er. These components provide additional
capabilities such as the ability to execute commands and to monitor attributes. A Controller is a
special case of a Device that is capable of supporting multiple simultaneous commands. Abstract
classes called DeviceCore and ControllerCore implement the business logic for these
components, providing the following:

e Management of component state

e Basic lifecycle methods

e Implementation of the monitor methods

e Single-threaded vs. multi-threaded implementation of the execut e command.
The last point emphasizes the main distinction between devices and controllers: controllers are
essentially multi-threaded devices.

The functional aspects of component behavior are left to the application developer to be
implemented as delegate methods. All the lifecycle methods and the main functional interface
methods have delegate functions (e.g., performnitialize, perfornGet, etc.). KCSF
architecture developers are free to extend these abstract classes as required to best match their
particular application. The Devi ceCor e and Cont r ol | er Cor e classes are shown here as separate
classes, but in the future they may be consolidated into a single class.

The 1 Devi ce interface is logically comprised of actions and attributes. Actions are implemented
through the execut e method and attributes are accessed through the get, set and xxxMoni t or
methods. Actions are just that: actions to be performed on a device (e.g., starting a camera
exposure), whereas attributes represent the parameter set of a particular device (e.g., the
integration time of a sensor).

The 1 Devi ce interface continues the separation of technical and functional aspects of the
component interface that were described earlier. The technical aspect refers to the details of the
framework, whereas the functional aspect refers to application specifics. The technical side of
the interface supports connections to containers, lifecycle support (initialization, startup,
shutdown etc.) and services support. The functional side of the interface supports the domain
specific capabilities (e.g. NGAO control). The technical and functional aspects of the device
interface discussed in further detail in the following sections and are illustrated in Figure 35
below.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 82 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

public < Technical Functional Technical Functional
i SupportedAttributes
Igltt;?-tlhzs gz: DefauIFVaIue
Shutdown Execute I\Tm COSmpo_r;ent
Unlnitialize AddMonitor ax pecinc
_ Remove RemoveMonitor | 7T
private Domain Specific Implementation

Figure 35: The device interface is composed of commands and attributes.

7.4.1 Technical interface

The device technical interface includes the following methods:
public String get Name();
public void initialize(lAttributeTable args);
public void startup(lAttributeTable args);
public void shutdown();
public void unlnitialize();
public void renove();
public String getLanguage();
public String get Host Nane();
public String get Contai ner Nane();

The lifecycle methods i niti al i ze, startup, shutdown, uninitialize, and renove all have
stub delegate “perform” methods (e.g., perfornstartup) which should be overridden by the
application developer to implement the appropriate device specific lifecycle behavior.

The component lifecycle states were discussed in detail in Section 6.11.1, so only an overview is
provided here. Containers create components using the component’s default constructor, which
should do as little as possible. Initialization activities are implemented in the initialize
method. At the time initialize is called, the toolbox and a full set of services are available to the
component. The base class method calls the configuration service to get the component’s
configuration data. The delegate method should connect to any device drivers and create any
local resources that are needed. The component is put into its operational state by calling the
startup method. shut down and uninitialize are essentially the opposites of startup and

Erik Johansson, Jimmy Johnson, Doug Morrison Page 83 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

initialize, placing the component in a stopped state and undoing the initialization tasks,
respectively. r enove is called before a component is destroyed and allows for resource cleanup.

7.4.2 Functional interface

The device functional interface API was discussed in detail in Section 6.3.1, so only a summary
is provided here. The basic interface is implemented through the get, set, execute and
xxxMoni t or methods. get, set, and execute are implemented in both synchronous and
asynchronous forms, the asynchronous forms requiring the use of callbacks. The application
specific behavior of the device is achieved using the delegate functions perforntCet,
perforntet, and perfornExecute, which the application developer must implement (the
delegate methods are also discussed in Section 6.11.2). The base classes provide stubs of these
functions which do nothing and should be overridden to provide the desired application behavior.
The APl is as follows:
o (Cet:

Attributelist get(Attributelist requestList);
boolean get (Attri butelList requestList, |CommandCall back call Back);

e Set:

AttributelList set(AttributeList setList);
boolean set (AttributeList setList, |ComandCall back cal |l Back);

e [EXxecute:

boolean execut e(ConmandSet commandSet, | CommandCal | back cal | Back) ;
boolean pause(long conmandl D) ;

boolean resunme(long commandl D) ;

boolean cancel (long commandl D) ;

long get Commandl () ;

e Monitors:
boolean addMonitor(String conponent, |AttributelList attributelist,

| ConmandCal | back cal | back, iInt rate);
boolean addToMonitor(String component, |AttributeList attributelist);

boolean renoveFromvbnitor(String component, |AttributelList
attributeList);

boolean renoveMonitor(String conponent);
boolean refreshMnitor(String conponent);

e Callback methods:
AttributelList getConplete(lAttributelList attributeList);
AttributelList setConplete(lAttributeList attributeList);
AttributelLi st executeConplete(lAttributelList attributelist);
Attributelist nmonitorTriggered(lAttributelList attributeList);

Erik Johansson, Jimmy Johnson, Doug Morrison Page 84 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

7.5 Commands

There are two basic classes of commands used in KCSF:

e Lifecycle commands. These are commands used by KCSF system management to control
the lifecycle characteristics of applications. Users generally do not need to be concerned
with the lifecycle commands because they are implemented by the underlying KCSF
infrastructure.

e Functional commands. These are commands that implement the specific functional
characteristics of a component. Because the KCSF uses a narrow command interface, the
number of APIs to support functional commands is quite small though the
implementation can be as rich as a developer needs.

Commands are implemented using two simple paradigms: command/response for synchronous
commands, and command/action/response for asynchronous commands. Every command has an
associated response which indicates the command completion status. Both paradigms isolate the
transmission of the command from the resulting action that is performed.

7.5.1 Middleware Binding for Commands

The framework is designed to be middleware neutral. More than one third-party communication
middleware can be bound to the framework. This section describes how the middleware is
encapsulated into a simple interface seen by the user.

The bi nd method associates a unique name to a component instance to act as a global address for
the object. Although not every server object needs to be addressable, every published component
name must map to one and only one component instance. The connect method is used by the
client to find and open a connection to a component identified by the unique name.

Connection
Service

connect(Name) <Name, Object>

___ >

Figure 36: Connection Service Overview.

bind(Name, Object)

Server

In order to hide the details of the underlying communication middleware, abstract object
wrappers are used to bridge the application layer with the communication protocol. Wrappers are
separated into two main types: proxies and stubs. For each proxy implementation there is a
corresponding stub implementation, and vice versa. Proxies and stubs expose an interface
identical to the component they wrap, and are responsible for translating the data that is sent
across the wire.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 85 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Client Server

|AttributeList |AttributeList 4
Proxy Stub
A A
Wire Format . Wire Format

Middleware

Figure 37: Proxies and Stubs.

On the client side, a proxy is used to represent the existence of a remote object and maintain an
open connection to the component. Since the proxy exposes an interface identical to the actual
remote object instance, the client can treat it as a local object, without knowledge of the
communication protocol or concern for its location. Any data that is passed during a call to one
of the proxy’s methods is translated to the format required by the communication protocol and
sent on the wire. The proxy may then wait for a response from the remote component, and
dispatch any callbacks events that occur.

On the server side, a component stub is used to delegate incoming communication requests to the
component implementation. The stub performs a mirror opposite form of data translation to that
of the proxy, by converting the data received on the wire to the original format expected by the
component middleware. The corresponding method on the wrapped component is then executed,
passing the data to the instance. If necessary the stub will wait to receive a result status from the
component and issue a callback event to the client proxy.

To aid in the creation of proxies and server stubs a set of object factories have been developed
known as Connectors. The connection service uses connectors with the bi nd and connect
operations to determine the type of proxy and stub to incarnate.

7.5.1.1 Connectors

Connectors are used by the connection service to determine the appropriate stub and proxy to use
for binding and connecting to components. Essentially, connectors are a conditional proxy/stub
factory, where the successful creation of a wrapper is dependent on the type of component. As
with proxies and stubs, there is a corresponding connector implementation for each class of
object. Specifically, the following connectors will be implemented,

e | Renot eConnect or

e | Devi ceConnect or

e | Cont ai ner Connect or

e | Cont ai ner Manager Connect or

The actual proxies and stubs created by a connector are related to the class type of the connector.
For example, a Controller Connector will only produce Controller proxies and stubs. Connectors
expose a very simple interface for creating proxies and stubs:

Erik Johansson, Jimmy Johnson, Doug Morrison Page 86 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Class | Connector {
Stub bind(ILocal object);
Proxy connect (1 Renot e object);

}

In the above pseudo-code, bi nd and connect methods are provided that accept an instance of an
| Local and I Renot e base object. All server-side component implementations inherit from the
| Local base class. All client-side proxy implementations inherit from the | Renot e base class,
which is itself a subclass of | Local . Both interfaces represent a component level software object
that is communication middleware agnostic. The connector is responsible for generating a
communication middleware specific wrapper that is capable of accepting and delegating
commands between the transport and component.

However, not just any wrapper can be created: it has to be specific to the actual class of
component passed to the connector. To this end, the connector will test the I Local /I Renot e
reference to see if it is an instance of the class type implemented by the connector. If it is, a
corresponding proxy/stub is created for the class type and returned to the connection service. If
the object reference is not an instance of the connector's class type, a null object is returned.

The advantage of using connectors is that proxy and stub creation logic can be removed from the
Connection Service and contained within simple object factories. This continues the inversion of
control principal promoted throughout the framework. Since connector types are built in an
increasing complexity class hierarchy that mirrors the class hierarchy of components (Renot e <
Conponent € Control |l er, etc.), the creation of stubs and proxies can be done by simply
iterating through a list of connectors and attempting to bind/connect a component until a valid
wrapper is returned. Connectors are arranged in the sequence from most complex to least
(Cont ai ner Manager Connect or —> Local Connect or). The first valid wrapper returned by a
connector represents the highest level type of the component. The Connection Service will use
the wrapper returned by the connector to bridge the component and communication middleware
layers.

7.5.1.2 Proxies

Proxies are the client-side interface to distributed objects, and implement an identical set of
methods and class signature as the component they represent. Proxies are designed to give the
client the sense that they are directly operating on a local object. Any data marshaling and
formatting required by the communication middleware is handled by the proxy opaquely: the
client does not need to be aware of how the data is transported.

There are five types of proxies representing each of the main base classes of objects that can be
developed with the Keck Component Framework:

e | Renot ePr oxy

e | Devi ceProxy

e | Cont ai ner Pr oxy

e | Cont ai ner Manager Pr oxy

Each of these proxies implements the client-side interface for the |Renote, | Device,
| Cont ai ner, and | Cont ai ner Manager classes, respectively. Proxies may also implement

Erik Johansson, Jimmy Johnson, Doug Morrison Page 87 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

additional methods outside of those defined by their associated component. For example, proxies
inheriting the 1 Renot e interface will implement asynchronous versions of the standard get and
set methods:
| AttributeList get(lAttributeList); /'l Synchronous inplenmentation
boolean get (I AttributeList, ICallback) // Asynchronous inplenentation

| AttributeList set(lAttributeList); /'l Synchronous inplenmentation
boolean set (I AttributeList, ICallback) // Asynchronous inplenentation

The asynchronous version accepts an | Cal | back object and returns a boolean value. The return
value indicates whether or not the get command could be dispatched to the communication
middleware. This call should return immediately, and will fail only if there are network issues.
The callback object will receive the response from the server when the task has been completed.
This allows the client to receive and handle event status without blocking the issuing thread.

Proxy objects are generated and returned to the client during the call to the connection service’s
connect method. This method will find and connect to the remote object specified by the
component name, and then attempt to determine the appropriate proxy to create by iterating
through the various connectors. When the respective connector has been found the proxy will be
generated and returned to the client. The proxy will remain valid for the lifetime of the remote
object or until the network connection is broken or client application is shutdown. Depending on
the capabilities of the communication middleware, a variety of fault recovery and operation
failure techniques may be implemented into the proxies. This can include automatic
reconnection, server redundancy and failover, and invocation retry. Additionally, proxies may
implement middleware specific efficiency and quality of service strategies to improve
throughput and bandwidth utilization, including batching and one-way invocations.

7.5.1.3 Stubs

Stubs implement the bridge between the communication middleware and the server components.
As with proxies, stubs implement an identical interface to the component they represent. Stubs
however, work as the inverse to proxies by forwarding data and commands from the
communication middleware to the components. Stubs are essentially a wrapper for component
implementations to bridge the communication specific environment with the abstract KCSF
middleware. Components implemented in KCSF are completely unaware of how their methods
are invoked, and do not need to take any specific action to format data for one stub
implementation over another. The logic to transform and send data is handled entirely by the
stub.

There are five classes of stubs:
e |Local Stub
e | DeviceStub
e | Cont ai ner St ub
e | Cont ai ner Manager St ub

Each of these stubs implements the server-side bridge between the middleware and the I Local ,
| Devi ce, | Cont ai ner, and | Cont ai ner Manager classes. Stub implementations react to events

Erik Johansson, Jimmy Johnson, Doug Morrison Page 88 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

from the communication middleware by processing and pushing data to components. The stub
receives information from the client proxy to determine the operation to be executed in the
component, and invoke the corresponding method. When the operation has completed, any data
returned by the component method call will be transformed and returned to the invoking client.
From the perspective of the component, all calls appear to be performed by local clients. Data is
processed and returned as usual, without required knowledge of whether the client is local or
remote.

7.6 Events

Events are transmitted using a publish-subscribe decoupled pattern. Events allow a collection of
data in the form of attribute lists to be given a name and published in a fire-and-forget manner.
Interested parties can subscribe to these named events and will receive them anytime they are
posted. Subscribers can come and go without affecting publishers.

AbstractServicaTaol

AbstractEventServiceTool

7Y

leeEventServiceTool DdzsEventServiceTool

Figure 38: Event service class hierarchy.

The event service can use any middleware that has publish-subscribe capabilities. CSF provides
an implementation based on ICE, and KCSF has prototyped implementations based on two
different implementations of DDS. In either case the actual implementations extends from
Abst ract Event Servi ceTool and present the same API to the end user.

Event subscriptions are kept track of by the service and are organized by source and event name
in a hash table. The table subl nf o contains the subscriptions by event Name (or topic). Each
event Name may have multiple subscriptions.

7.6.1 ICE Event Service Tool

The ICE implementation makes use of an ICE service called IceStorm. IceStorm is a publish—-
subscribe event distribution service and is a standard part of the ICE package.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 89 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Subscribears

{lce Servers)
Monitor
Publisher q}ﬁ
{lce Client) . Monitor
e

Data Evers lceSt
Collector ERSEOITE £

SR R T

Sensors

Monitor

Figure 39: ICE Event Service Tool.

IceStorm provides a lot of flexibility: topics can be federated to provide custom event
propagation. In addition IceStorm can operate in a high-availability mode where a number of
servers form a replica group. If a server goes down, lIceStorm automatically reroutes
communication to servers that are still running, and when a server comes up, it automatically
resumes event delivery via that server without any manual intervention. Event subscriptions can
be made persistent, so clients do not require special action after a restart for event flow to
resume. IceStorm also provides a configurable mechanism that allows you to deal with stale
subscriptions to clients that become dysfunctional, for example, by being disconnected from the
network for an extended time.

7.6.2 DDS Event Service Tool

The DDS implementation is based directly on DDS which is by design a publish-subscribe
middleware. Unlike the ICE implementation there is no intermediary server (IceStorm) required.
Posted events go directly to the subscribers. The DDS event service uses a single DDS Topic
called Event Topi ¢ which contains the source name, event name and attribute list. The event
name is configured to be a DDS key.

7.6.3 Strategies
Regardless of the implementation there are various strategies that can be applied to tweak or fine
tune the service as needed. Some of these have already been explored by ATST for ICE others
can be explored further with DDS. Some of the different strategies that can be explored further
are:
e Batching of events to improve performance (at the risk of latency)
e Use of best effort delivery instead of reliable
e Executing event callbacks on separate threads to increase decoupling
e Use of single vs. multiple data writers and readers for DDS

7.6.4 Event Callback Adapter

KCSF provides an adapter class that can be extended by subscribers to simplify callback
processing. This class is called Event Cal | backAdapt er and implements | Event Cal | back. Use

Erik Johansson, Jimmy Johnson, Doug Morrison Page 90 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

of this class is not mandatory but it provides a simple standardized way to handle callbacks and
retrieve event data.

7.7 Tasks

Application development should focus on the development of simple tasks. A simple task is one
that is atomic in some respect. This definition is intentionally loose, but basically refers to
implementing an activity that from the control system's perspective cannot be broken down into
simpler steps. Simple tasks might be used to implement a basic instrument or telescope
command such as opening the shutter of a camera, or moving the telescope. Simple tasks form
the basic building blocks of the set of activities provided by the application.

Simple tasks fall into one of two categories: asynchronous and synchronous. These correspond to
typical patterns of command processing in distributed systems. An asynchronous task is one
whose "business logic" is handled by some externally active subsystem (e.g. an "open shutter"
command issued to an instrument control system). A synchronous task on the other hand is one
whose logic is implemented in the task code itself (e.g. calculating a point spread function on an
image region). Externally, the two types of tasks can operate the same way with non-blocking
start and wait capabilities. The difference manifests itself internally in the implementation of the
task methods, and which methods are overridden from the base class.

7.7.1 Asynchronous Task Development

An asynchronous task is one that relies entirely on external components to perform the system
control. The task is responsible for invoking a command on the remote component(s), and then
providing a mechanism to notify the user when the commands have completed. Development of
asynchronous tasks focuses primarily on the start and wait methods. The following pseudo-
code outlines an asynchronous command.

class Poi nt Tel escope extends Task {

public Point Tel escope(l AttributelList args) {
super(args);
}

public void initialize(Task parent) ({
/'l Connect to TCS controller
this. TCS = ..

}

public void start() {
this. command = new CommandSet (this. paranms, “point”);
try {
this. TCS. execut e(command, null);
catch(...) {
/1 Failed conmand execution

}
}

public I AttributelList wait(float tinmeout) ({
AttributelList res;

try {
res = this. TCS. wai t (this. command, tineout);

Erik Johansson, Jimmy Johnson, Doug Morrison Page 91 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

done(res);

catch(...) {
/] Set res to fail ed
}

return res;

}
}
}

This Poi nt Tel escope class only overrides the base class methods for i niti ali ze, start and
wai t . The class constructor will perform the required preparation for the task. The constructor
arguments are passed up to the superclass to be saved in the par ans member of the base class.
As an attribute list these arguments can be passed directly to target components in the system, or
processed for specific formatting prior to command execution.

In this simplified example we assume that the i ni tial i ze method connects the task with the
Telescope Control System (TCS) controller. This provides the task with a handle for interfacing
with the telescope control system. When the task is ready for execution the start method is
called. This will create a command set from the class arguments (containing the pointing
coordinates for the telescope), assign the action, and issue the call to the TCS controller. The call
to start will then return immediately as required by the Command pattern. The application can
then wait on the completion of the task by executing the wai t method. In the wait method the
task again interfaces to the TCS controller, in this case to wait for the completion of the
command or the timeout (if one was specified - the default is 0). If an exception occurs the return
argument will be properly formatted to indicate the call failed.

The important point here is not how the methods are implemented, but that they are
implemented, and obey the proper behavior. start is always required to return "as soon as
possible” after initiating the activity of a task. In asynchronous tasks this is not too onerous
because (as shown) they are generally invoking an asynchronous command in some external
subsystem and then returning. The wai t method is a little more complicated, but basically needs
to synchronize with the external subsystem for the end of that command, and return the result, if
any. The timeout parameter complicates this effort, but it must be obeyed.

Asynchronous tasks are ideal for external or rapidly executed commands. As asynchronous tasks
do not use the internal thread pool, developers must ensure that the application control does not
block or suspend activity for any significant period. Using asynchronous tasks effectively can
improve application performance by reducing system resource usage and the number of
concurrently active threads.

7.7.2 Synchronous Task Development

A synchronous task is one where the business logic is implemented entirely within the task class,
potentially with command and execution of external controllers as well. Unlike asynchronous
tasks, synchronous tasks have the potential to block the application control for a substantial
duration while the command logic is executed. As the command pattern calls for rapid non-

Erik Johansson, Jimmy Johnson, Doug Morrison Page 92 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

blocking method execution, start needs to be able to invoke that logic and yet return
immediately, without significantly impacting application responsiveness.

The standard recipe for such a requirement would be to create an auxiliary thread to do the
computation, which st art would be responsible for initiating. The wai t method could then wait
on, or join the thread and collect the result. However, requiring all synchronous-style tasks to
perform this sort of thread management is tedious and quickly leads to various sorts of
concurrent programming errors, in addition to the overhead required to create and destroy
threads regularly. This complexity cannot be eliminated completely, but the task framework does
provide some help in the form of task executors. These classes implement an execution
environment for tasks allowing the user to start and forget about the task. Executors are
responsible for the lifecycle and asynchronous execution of tasks, allowing the developer to
focus on the functional details of the task instead.

The base Task class is all set up to enable synchronous-style tasks, where the subclass only
needs to provide an execute method. If a task subclass does not override it, the task's start
method simply adds the task instance (itself) to the desired task executor. When the resources are
available to process the task the executor will activate and execute the task. Similarly, if not
overridden, wai t understands how to listen and block for the result of a task and obey the
timeout parameter. This is shown in Figure 40.

Appl i cation Task Execut or

I I I
start () addTask(t his) - Add task

< <
<« <«

v

v

s p [Vait on task... A, - Wit for resources
» to process task.
< execut e()
lAttributeli st >
[
Trigger Callbacks - < done(res)
Rel ease wait | ock -

| AttributeList

A

Figure 40: Task Execution.
As a result of this design, implementing a synchronous-style task can be as simple as defining a
single method. The following example pseudo code outlines the creation of a synchronous task.

class Poi nt Spread extends Task {

public Point Spread(l AttributelList paranms) ({
super(par amns) ;

Erik Johansson, Jimmy Johnson, Doug Morrison Page 93 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

}

public void initialize(Task parent) {
// Connect to a canera
this. canera = ...

}

public I AttributeList execute() {
| AttributeList res = new AttributeList();

/'l Get inmage data...
double [] imge = this.canera.get(.);

/1 Cal cul ate point-spread function on inmage

return res;

}
}

This task inherits the start and wait methods from base Task, while overloading the
i nitializeandexecut e methods to implement the task logic. By inheriting most of the default
methods, synchronous simple tasks can clearly express the business logic of a task without much
extraneous task-related detail cluttering up the code. The full range of the Java standard library is
available, and the task is free to define other methods to subdivide up the problem and make the
program structure more manageable, provided they conform to the Command pattern and do not
conflict with the task interface method names.

7.7.3 Task Executors

Task Executors are responsible for managing the execution and lifecycle of tasks. Typically an
executor will be designed to queue or schedule tasks as they arrive, and when resources are
available or an event occurs, the task will be removed and processed.

The following details the base task executor interface which all task executors must implement.

public interface | TaskExecutor {
public boolean addTask(Task task);
public boolean renoveTask(Task task);
public int pendi ngTasks();

}

The executor interface defines a set of methods to add and remove a task, as well as report the
total number of tasks waiting to be executed. How the executor manages and executes tasks is up
to the developer. The task library however, provides a thread pool executor implementation
which may be satisfactory for most task processing requirements.

7.7.3.1 Command Thread Pool

The task library command thread pool executor abstracts the implementation of a group of
threads responsible for processing information from a shared queue. Hidden behind a class
interface, there are methods for adding, modifying, and removing work objects from the queue.
Threads compete to read items from the queue, process them, and iterate back to the queue.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 94 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

The executor creates a thread pool object whose worker threads are all blocked waiting for
available tasks from the queue. A worker thread will pick up a new task reference when it
arrives, and try to invoke its execution method. By convention, the execute method does
whatever work needs to be done and returns the result, which is stored away in the task object.
The worker thread then returns its attention to the queue.

The conceptual model of a thread pool is simple: the pool starts threads running; work is queued
to the pool; available threads execute the queued work. In our case all tasks will be handled
identically because of the standardized interface. In the thread pool pattern, a number of threads
are created to perform a number of tasks, which are usually organized in a queue. Typically,
there are many more tasks than threads. Generally a thread pool allows a server to queue and
perform work in the most efficient and scalable way possible. As soon as a thread completes its
task, it will request the next task from the queue until all tasks have been completed. The thread
can then terminate or sleep until there are new tasks available.

Task Gueue

—bO—l
gl (o] [¢][[¢]| &)l

Compleled Tiesks

-~ +—0Q

Figure 41: Simple Thread Pool.

The number of threads used is a parameter that can be tuned to provide the best performance.
Additionally, the number of threads can be dynamic, based on the number of waiting tasks. The
cost of having a larger thread pool is increased resource usage. The advantage of using a thread
pool over creating a new thread for each task is that thread creation and destruction overhead is
negated, which may result in better performance and better system stability. As with any
technique that utilizes threads, the task queue and task class must be developed with thread
safety and read/write synchronization in mind.

Using a thread pool also allows us to develop additional capabilities to tune and control the
execution of tasks in a control system. These include:
e Adding a priority to tasks
Utilize thread priorities, per task or per group
Removing a task before it has been dequeued
Tasks can be scheduled for execution
Compound commands can distribute tasks over multiple threads

Erik Johansson, Jimmy Johnson, Doug Morrison Page 95 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

The following pseudo-code details the CormandThr eadPool executor interface.

public class ConmandThr eadPool implements | TaskExecutor {

private class ThreadControl implements Runnabl e {
public CommandHandl er () ;
public void run();

}

public ComandThr eadPool (int pool Si ze);

public boolean addTask(Task task);
public boolean renoveTask(Task task);
public int pendi ngTasks();

public void fl ushQueue();

protected Execut or Service threadPool
protected Bl ocki ngQueue<Task> taskQueue;

}

The CommandThr eadPool class makes use of the Java Execut or Ser vi ce to create and manage
an internal pool of threads of a desired size. Each of the threads created by the executor will be
started in its own instance of the task processing control class, ThreadControl . This class
implements the individual thread logic to pop a task from the queue, call execut e, and finally
invoke the task’s done method before returning for new tasks. The queue is implemented as a
blocking queue, where thread access to items is synchronized and blocking is performed until
items are available for processing.

The following methods are defined for the CommandThr eadPool class:

e addTask: This method will add a new task to the command thread pool queue for
processing. Typically this method will be called by the tasks themselves when start is
executed. The method will return false if it is unable to add the task.

e renoveTask: Allows the client to remove a task from the queue. This method can only be
performed on tasks which have not already been removed for processing. If the task is not
currently on the queue this method will return false.

e pendi ngTasks: Returns the total number of tasks waiting in the queue for processing.

e flushQueue: Removes all of the pending tasks.

7.7.4 Handling Errors, Dynamic Task Control

The previous examples have all been somewhat simplified. In reality, tasks have to deal with
issue like cancellation, error handling, and so forth. In crafting the task interface, we have tried to
ensure that writing code to the interface still remains as object oriented as possible. The standard
approach to error handling in Java is to make use of exceptions. Therefore the same applies to
tasks: a task is considered to have succeeded unless it raises an exception (of course the return
values of tasks can also be used and interpreted, if desired).

In a distributed command and control system it can be difficult to cancel or pause some
commands, especially once they are released to an external subsystem. Nevertheless, it is good to
provide a mechanism to do so for those tasks that can support it. The task interface defines a set

Erik Johansson, Jimmy Johnson, Doug Morrison Page 96 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

of execution control methods that can be implemented by the developer to provide this extra
level of control (st op, pause, st ep, and r esune.) Depending on what a specific task is designed
to do, some of these capabilities may not apply (for example, you can not step through a
concurrent task sequence since everything runs in parallel). At the very least, if possible, all tasks
should implement a technique to halt and cancel a command through the st op method.

7.8 Sequencers

Sequencers are implemented as a state-driven KCSF Controller. Each sequencer has its own
unique state mappings based on the role it will fill. These mappings are typically built into the
code of the sequencer or represented by an external class. A suggested freeware tool that can be
used to develop state mappings is the State Machine Compiler (SMC). This java application
takes a file containing the user defined state-transition mappings and generates a fully operable
state machine in the desired target language (e.g. Java). The sequencer implements the business
logic for the transitions, and binds to the state-machine instance. Invocating transitions on the
state-machine executes the corresponding tasks and sets the new state.

/ State Machine I
transitinn
S « \ «
NN R J
P a < 0
Task Task
A->B B->C
Sequencer

N J

Figure 42: Executing Transition Logic.

Developing a state-machine, and by extension, a sequencer, requires careful consideration to
account for all of the intended responsibilities of the design. Each state should reflect a specific
configuration or step identified within an observing or motion control sequence.

7.8.1.1 Common States

Although each sequencer will have many unique states, there are a set of states that will be
common to all sequencers. These states are derived from the typical state-machine design used
by hardware devices — the control targets for the majority of sequencer implementations.

e START — The entry state of the sequencer. It is assumed that a sequencer in this state has
recently been created, but not yet initialized or configured.

e INT — The initialization and configuration state of the sequencer. Typically the
operations performed during this state only need to be performed once after startup. This
may include gathering configuration information, creating and initializing class members,
and obtaining services.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 97 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e REIN T - A fast or repeatable initialization phase. This state typically implements a set of
the sequencer initialization that may have to be repeated multiple times during a night
(e.g. connecting to devices, refreshing telemetry, etc.) Usually execution of the I NI T state
will automatically transition through REI NI T, and then to STANDBY.

e HALT - Indicates that an operation has been interrupted. This is usually entered by explicit
command from the operator.

e STANDBY — the sequencer is in an idle state, and is ready to receive and process
commands.

e SHUTDOMN — the termination state of the sequencer. This state is responsible for closing
connections, releasing resources, and shutting down the sequencer.

e FAULT - this state indicates that an unhandled or non-recoverable error has occurred and
the sequencer had to stop. Operator intervention is expected to resolve the problem.

In addition, Sequencers that are responsible for acquiring targets or positioning devices will also
typically use a SLEWTRACK state pattern. In this design, any sequencer operation that involves
starting a process and then waiting for one or more devices to achieve a specific state will
quickly execute the task(s), and enter a SLEwstate. The sequencer will wait in the SLEwstate until
the tasks are complete.

Acquire
TRACK

ACQUI RE

Figure 43: SLEW-TRACK States.

The sLEwstate is known as a transient state: a temporary state that will automatically transition
out when an internal event occurs (i.e. not caused by an explicit user action). When the devices
have reported in position the task will issue its own transition to move to the TRACK state. As
with other states, if there is a problem during the task execution of a transient state the state
machine will typically enter FAULT to signal a system error.

7.8.1.2 Developing with SMC

The State Machine Compiler library is used to convert state-transition mappings into a callback
processing class. Developers define a state machine using the SMC syntax. For each state, the
mapping will define each of the available transitions and the target state when the transition
completes. The following example illustrates a simple SMC mapping for a single state.

START
/1 START wi |l recognize and accept an Init(void) transition.
Init()
/1 When the transition conpletes the state nmachine wl |
/1 be put into the INIT state.
INIT
/1l The transition process will execute the
Erik Johansson, Jimmy Johnson, Doug Morrison Page 98 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

/'l InitializeTask routine defined by the Sequencer
initializeTask();

}

Faul t ()
FAULT

{
}
}

The compiler will read this definition in the following way:
e The state machine will posses a START state.
e The START state can be left by issuing an 1 ni t or Faul t transition.
e Whenan i nit isissued the machine will transition to the I NI T state, after executing
InitializeTask.
e When aFaul t is issued the machine will transition directly to the FAULT state.

Only those transitions and tasks defined in the mapping will be permitted. If the client attempts
to issue a transition not recognized by the current state an exception will be thrown. The
following pseudo-code details the interface produced when the mapping is compiled.

public class Generat edSt at eMachi ne {
public CGenerat edSt at eMachi ne(<Type> nachi nel npl emrent ati on);

public void Init();
public void Faul t ();

}

The machi nel npl enent at i on parameter of the class constructor refers to the actual object that
implements the state machine transition tasks (e.g. I ni ti al i zeTask). This will be a reference to
the Sequencer itself.

public class Sequencer extends Controller {
public Sequencer(.) {
t hi s. stateMachi ne = new Gener at edSt at eMachi ne(t hi s);
}

public void initializeTask() {
/1 1nmplenents the actual work to be perforned for an INIT
}

}

The SMC syntax offers additional capabilities including transition parameters, conditions,
guards, code injection, default transitions and more. See the http://smc.sourceforge.net/ for more
information on the SMC compiler.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 99 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

7.8.1.3 Processing Transition Requests

As Controller subclasses, Sequencers will receive transition requests from clients through the
execut e method. Transitions are defined in Attribute Lists in a similar way as standard device
commands,
e The reserved _Action keyword defines the transition. This may be a string, integer, or
other compatible type.
e Parameters custom to the transition will be defined in additional attributes. It is the
responsibility of the client to be aware of all the attributes required by the sequencer.

The doExecut e of the Sequencer is responsible for transitioning the state machine, and may be
implemented in the following way.

void doExecute(l AttributeList command) {
int transition = conmand. get String(“_Action”);
switch(transition) {
case INT:

/1l Get additional paraneters, if required by transition.
[l 1ssue transition.
this.stateMachine.lnit();
break;

}
}

When executing a transition on the internal state machine, the Sequencer’s thread will block until
the transition task has completed, and the state machine enters the target state. This should be
kept in mind when determining the default size for the Controller’s thread pool. At a minimum
two threads should be active to allow the user to halt or asynchronously command the sequencer
while a transition is being processed.

7.9 Key differences between KCSF and CSF

Figure 44 shows a snapshot of the current code base from ATST. Items shaded in green represent
code that is completely reusable from ATST. Items shaded in blue represent completely new
code that will be provide by Keck. Items in white represent code not used as part of KCSF. Dual-
colored items represent ATST code that has been modified to better suit Keck needs. Note: that
if Keck decides to stay with ICE as the communication middleware then the DDS code will not
be needed.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 100 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Component database
CCM Util
Sequences

Services

|:| Keck
[] Atst

Figure 44: KCSF Code base

Many changes for KCSF are minor, in many cases resulting in method or class name changes for
the sake of clarity or aesthetics. Examples include the renaming of I AttributeTabl e and
AttributeTabl e to AttributeLi st (since it was actually a list and not a table). These decisions
can be revisited as needed.

Fundamental design changes are related to the concept of components, controllers, their
interfaces and interactions and the data transfer objects used to pass data between them.

KCSF currently does not plan to use the CSF property service of the IDDB service. New services
introduced by KCSF are the alarm service, the CA service and configuration service (which
replaces the CSF property service)

7.9.1 Attribute Internal Representation

KCSF shares the same concept of Attri but es (as named value pairs) and Attri buteLists (a
collection of attributes) as CSF. The I Attribute and I Attri but eLi st interfaces in KCSF are
almost identical to CSF. The two frameworks differ though in how an Attri but e internally
represents its data and how they are marshaled on the wire. In ATST an attribute value is
represented as an array of strings. In KCSF an attribute value is represented as a union of raw
data types which can be scalar or multi-dimensional. These changes constitute the code changes
to the “data” package.

7.9.2 Components, Controllers and their interfaces

The greatest difference between CSF and KCSF relates to Components, Controllers, their
interfaces and commands. It should be noted that both KCSF and CSF share the same Container

Erik Johansson, Jimmy Johnson, Doug Morrison Page 101 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Component Model and technical interfaces. In CSF a Component is the foundation for all
applications in ATST. Most ATST applications extend the Controller class, a subclass of
Component that adds configuration-management features. Components are managed by
Containers, which are responsible for managing the lifecycle characteristics of components.
Consequently, there are no main functions for Components - Components do not exist as
standalone entities. Containers also provide components with access to the services and tools
described in earlier sections.

In ATST a component refers to a concept, i.e. a component is a self-contained piece of software
that conforms to a well-defined interface, and to an actual implementation, in that a component is
a base class from which ATST software developers are generally expected to use derivatives of
(e.g. Controller). For KCSF we wanted to have a clearer distinction between the concept of a
component as part of CBD and the framework basic building block. For this reason in KCSF the
basic building block for application development is a device.

,| IComponent
Component IAttributeTable get (IAttributeTable)
void set (|AttributeTable)

b

|IController

int submit(IConfiguration config, cb)
public void cancel(String configld)
public void pause(String configld)
public void resume(String configld)

Controller

h 4

CSF

. | IDevice

Device IAttributeList get (IAttributeList, [cb])
IAttributeList set (IAttributeList, [cb])
hoolean execute (lAttributeList, cb)
public void cancel(String configld)
public void pause(String configld)
public void resume(String configld)
public void addMonitor(String name
Public void removeMonitor(name)

Controller

v

Figure 45: Component and Controller Differences between CSF and KCSF

Figure 45 shows the main differences between the two frameworks. In KCSF we have chosen to
represent everything as a device. A controller is a special type of device that can handle multiple
simultaneous commands. There are a number of differences between the I Devi ce interface and
the combined | Conponent and | Cont rol | er interfaces. These are summarized below:

e In KCSF execut e (similar to CSF subni t) is available to both a device and controller.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 102 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e In KCSF get, set can be called synchronously or asynchronously.
e In KCSF there is the concept of monitors that can be applied directly to a device.

With KCSF a device is the basic building block. The get and set methods support the viewing
and changing of device attributes while the execute method allows operations to be performed.

7.10Service Detalils

The KCSF provides developers with a suite of tools and services that simplify a wide range of
typical software tasks. All service tools must implement or extend the | Ser vi ceTool interface.

A ServiceTool can perform special processing on service access requests. All service helpers
must support wrapping of other service helpers. This interface defines the base methods that all
service helpers must provide. Rather than directly implement the interface, this interface is
implemented by KCSF.cs.services.AbstractServiceTool which all service helpers should
subclass.

The 1ServiceTool API is as follows, and allows a service to be reset, started, stopped,
destroyed or chained. Chaining allows a new service helper to be placed onto the front of the

service list and unchaining removes the top service helper.
public | Servi ceTool Adni n get Tool ();
public boolean sameAs(| Servi ceTool Adm n sTool);
public void reset (B th);
public void startService(B tb, String appNane);
public void stopService(B th, String appNane);
public void kill Service(B th, String appNane);
public void chai nTool (I Servi ceTool Adm n hel per);
public void unChai nTool ();

Typically any new type of service will extend I Servi ceTool adding methods unique to that
service as it does so. For example we see that

public interface | Event Servi ceTool extends | ServiceToo

public interface | Heal t hServi ceTool extends | ServiceToo

and so on. | Event Ser vi ce adds methods for post, subscribe and other event related calls.

Although not mandatory it is expected that in most cases there will be an extension of
Abst ract Servi ceTool for each service. For example

public abstract class Abstract Event Servi ceTool extends
Abst ract Ser vi ceTool <l Tool BoxAdm n> implements | Event Servi ceToo

public abstract class Abstract Archi veServi ceTool extends
Abst ract Ser vi ceTool <l Tool BoxAdm n> implements | Archi veServi ceToo

This allows for different flavors of services to be developed while maintaining common code in
the abstract. An example might be the Log service where they could be implementations to write
to file, a database, console 10 etc.:

public class BufferedLogServi ceTool extends AbstractlLogServi ceToo

Erik Johansson, Jimmy Johnson, Doug Morrison Page 103 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

public class LogServi ceTool extends AbstractLogServiceTool

<interface» AbstractServiceTool

I1ServiceTool <}_:

i i

«interface» AbstractLogServiceTool
ILogServiceTool <=

AN

LogServiceTool BufferLogServiceTool ConsoleLogServiceTool

Figure 46: Log Service Example

Like any wrapper the Abst r act Ser vi ceTool takes care of much of the housekeeping functions
and delegates the interfaces method calls as needed to the real implementation.

7.10.1 Connection
The API for the connection service is as follows:

public interface | Connecti onServiceTool extends | ServiceTool ({

/*

* Makes a conponent available to the network.

*/

void bi nd(I Tool BoxAdmi n, String nane, |Local object);
/*

* Renoves a conponent fromthe network.

*/

void unbi nd(1 Tool BoxAdmi n, String namne);

/*

* Connects to a renote object and returns a proxy.
*/

| Renot e connect (| Tool BoxAdmi n, String target);

/*

* Disconnects a proxy froma renote object.

*/

void di sconnect (1 Tool BoxAdm n, | Renote proxy);

/~k
* Returns a list of all bound objects of the specified type.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 104 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

*/
String[] allRegistered(lTool BoxAdm n, String Type);
}

All connection service implementations implement this interface and extend
Abst r act Connect i onSer vi ceTool . The connection service’s two main methods are bi nd and
connect . The bi nd method accepts an instance of a component object and its unique name. The
bi nd will create an appropriate stub for the component, publish the existence of the object over
the network, and map the name to the object reference. The connect method accepts a string
representing the unique name of a bound object. A corresponding proxy will be determined for
the remote object and returned to the client.

7.10.2 Archive

Modern systems typically involve a database somewhere in the design. The database creation,
updating and management should be abstracted so that the choice of RDBMS has little or no
impact on the overall framework. The database support includes software on which one can
implement persistent stores, engineering archives, and data repositories. Examples of database
usage in KCSF are:

e Configuration. Components may retrieve information from a persistent store.
Configuration parameters for components are maintained in the persistent store and are
retrieved by components on initialization.

e Alarm Logging

e Logging

e Data Archiving

7.10.2.1 Persistent store

The term persistent store will be used to describe one or more databases. The databases are
transaction-based, high-performance databases. Database queries are available via SQL, as are
database insertions. Database accesses however, are hidden behind a persistent store interface to
allow replacement of one database implementation with another. This persistent store interface
provides a mapping between architectural concepts in KCSF and the database model. The most
likely database candidates are PostgresSQL and MySQL. Depending on the application needs
some stores may be optimized for insertion, others may be optimized for queries.

7.10.2.2 Database abstraction

The first level of abstraction will be in the use of a JBDC driver. JDBC is an API for Java that
defines how a client may access a database. It provides methods for querying and updating data
in a database. JDBC is oriented towards relational databases. Through JDBC the steps required
to create a connection to a database, perform queries etc. are uniform regardless of the
underlying database.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 105 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

FPreparedStatement Connection ResultSet Statement

—————3
——3
7

___________________ winterface» | alitility
IDbServer DbU
|
|
|
|
|
pbserver | _ _ _ _ _________ |
ér AN
ArchiveServer I [LogServer | |Ennﬂguratbnn Server l |Alarrn Log Server

Figure 47: Database Support.

An | DbServer interface defines the methods applicable to a database server. A base
implementation called DbServer will provide application access to a specific database while
hiding any database specifics. Using a utility library, operations such as selecting the appropriate
JDBC driver, building queries, opening, closing, inserting, deleting etc. will be handled by the
DbSer ver. The items color coded in grey above represent the JDBC classes; items in white are
part of the framework. Each service that has a property store will have an associated server
which extends DoSer ver . These classes will be tailored to the particular needs of that service.

For Archiving there is an Archi veServer. The server contains code to be able to create an
archive database, backup an archive database, perform single and batch updates to the Archive
table and to perform other maintenance tasks. The Ar chi veSer ver is used directly by the service
where the r ecor d method calls the server to perform the insert. Once in the database the saved
attributes can be viewed with the Ar chi ver Vi ew Ul and managed with the Archive Manager UI.

7.10.3 Health

The health server is virtually fully automatic and implemented in the technical architecture.

Developers need only implement a single method as part of the component:
voi d perfornCheckHeal t h();

In that method, developers determine the health of the component and sets it with
Heal t h. setHeal th(String heal thLevel, String nsg);

Erik Johansson, Jimmy Johnson, Doug Morrison Page 106 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Where heal t hLevel can be one of: Heal t h. GOOD, Heal t h. | LL, Heal t h. BADand nsg iS a
human-readable description of health cause.

Example:
public void perfornCheckHeal th() {

switch (sockets. numAvail abl e()) {

case O:
Heal t h. set Heal t h(Heal t h. BAD, “No sockets left”);
break;

case 1:
Heal t h. set Heal th(Heal th. I LL, “Sockets running |ow');
break;
Def aul t:

Heal t h. set Heal t h(Heal t h. GOOD, null);

break;

}

}

The health system works as follows. During container initialization a class called Heal t hSer ver
is created. The Heal t hServer is made aware of all components added to or removed from a
container. Its sole purpose is to periodically walk through the list of components and to call
checkHeal t h (which will delegate to perf or nCheckHeal t h). For each call a Heal t hReport
event will be issued through the event service. These events can be subscribed to by a health
monitor, typically a Ul or it could be a dedicated application.

7.10.3.1 Health Event/ Report

A health update consists of the following fields:
e name -- name of the application this record is about
health -- last reported health (Good, Bad, Ill, Unknown)
reason — message explaing the health
repeat -- "true" if this is a repeat health status, else "false"
simulated -- "true" if application is simulated, else "false"
acked -- "true™ if status has been acknowledged, else "fasle” (can be used by monitor)

7.10.4 Logging

As with any complex software project, systems developed with KCSF will have the need to log a
wide range of run-time information from simple trace messages to system critical errors. In order
to simplify the logging process a log service will be developed as part of the KCSF
infrastructure. The log service will provide developers with the ability to open and write to
multiple log streams, each one with the option of individual customization. The log service will
be built upon the Java utility logging package. This package provides developers with the basic
framework to issue and publish log messages. Within the KCSF, the abstract log service design
will allow for a variety of logging mechanisms and formats including console, file and database.

The Java logging package follows a simple implementation divided into three concepts: loggers,
handlers, and formatters. Loggers are responsible for accepting and processing log messages
from the application: they are the main interface to the logging system for clients (i.e. the Log
Service). Handlers implement the stream functionality of a specific logging mechanism.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 107 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Common handlers such as the console and file handler are implemented as part of the Java
package. Additional handlers can be developed to write to databases or over a network by
extending the base Handl er class. Formatters are responsible for converting a log record into
readable text. As with handlers, custom formatters can be developed to suit the user’s needs. The
Java package also provides a default formatter that implements a simple time stamped event
output. Each handler can use its own unique formatter, or the same one can be used for all
handlers.

7.10.4.1 Handlers

The Handler class is the base class for all log publishing objects and is primarily responsible for
opening, maintaining, and closing connections to output streams.

public class | LogHandl er {
public | LogHandl er();

/ *
* Set the log | evel
*/
public void setLevel (LogLevel |evel);

/*

* Return the current |og |evel
*/

public LoglLevel getlLevel ();

/*
* Return the handler.
*/
public java.util.l oggi ng. Handl er getHandl er();

/1 The java handl er object.
protected java. util .l oggi ng. Handl er nHandl er;

/1 Current log |leve
protected LoglLevel nlLevel;

}

Log messages are pushed to handlers through the publ i sh method. This method accepts a
LogRecor d instance that defines a single log message — including the level, time of creation, and
the raw application message. The publish operation is responsible for formatting the log record,
and writing it to the output destination.

As with the Logger class, Handlers can be configured to filter messages based on severity levels
through the set Level method. This allows a user to restrict the logging of application messages
on a handler-to-handler basis.

The Java logging package defines two fully implemented handlers for client use:
Consol eHandl er and FileHandler. The Console Handler is used to write data to an xterm or
OS console. The File Handler writes log messages to a file using a rotating file name (as a file

Erik Johansson, Jimmy Johnson, Doug Morrison Page 108 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

reaches a defined maximum file size it is closed and a new file is created appended with an
integer suffix.) There is also a base class implementation for a Socket Handl er, which provide a
simple network interface, and a generic St reanHandl er for stream based logging. Additional
handlers will be developed for KCSF, including a database handler.

7.10.4.2 Formatters

The Formatter is a simple class used by handlers to convert a log record into a human readable
string that can be written to an output. Formatters are invoked during the publ i sh operation of
the handler through the f or mat method. This method accepts a raw LogRecor d instance and is
intended to return a single printable string. The handler is responsible for publishing this string to
the output.

Only one formatter can be assigned to a handler at a time, but each handler can have its own
unique formatting. For consistency it is recommended (and will be enforced by the KCSF) that a
single formatter be used for all human readable outputs. For log files that are intended for use by
applications or other post processing tools, a character- or whitespace-delimited format may be
required.

The Java logging package provides a simple default formatter for basic logging purposes, as well
as an XML formatter that will convert a LogRecor d into XML compliant output.

7.10.5 CA Client Service

Using the Cosylab Channel Access for Java Library makes the implementation of a CA client
service very straight forward. Channel Access for Java (CAJ) is a 100% pure Java
implementation of the EPICS Channel Access server and client library. The steps are as follows:

e In doStartService create a client context
clientContext = (CAJContext) JCALi brary. getlnstance()
. creat eCont ext (JCALI brary. CHANNEL _ACCESS JAVA) ;

e In doStopService remove all monitors, channels and free the context
Enumer ati on<Stri ng> nonitor Nanmes = nonitors. keys();
for (Enuneration<String> nonitorNanme = nonitor Nanes;
noni t or Narres. hasMor eEl enent s() ;)
renoveMoni t or (noni t or Nanes. next El enent ()) ;

Enuner ati on<St ri ng> channel Nanes = channel s. keys();
for (Enuneration<String> channel Name = channel Nanes;
channel Nanes. hasMor eEl enent s() ;)
r enoveChannel (channel Nanes. next El enent ()) ;

cl i ent Cont ext. destroy();

e Forevery put or get check to see if we have a channel created. If not create one and add

it to the cache. Then call the channel put or get method.
/1 Exanple on how to create a channel and add to internal cache
Channel channel = client Context.createChannel (nane);
iT (channel !'= null) {
channel s. put (nane, channel);
cl i ent Cont ext. pendl (ti nmeout) ;

Erik Johansson, Jimmy Johnson, Doug Morrison Page 109 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

}

/1l Exanple inplenentation for put
Channel channel = findChannel (namne);
iT (channel !'= null) {

channel . put (val ue) ;

/1 Exanple inplenentation for get

int nativeCount = channel. get El enment Count () ;

DBR dbr = channel . get (DBR Byte. TYPE, nativeCount);
cl i ent Cont ext . pendl (ti nmeout);

return ((DBR Byte) dbr). getByteVal ue()[0];

}

7.10.6 CA Server

This is not technically a service but a component. It is described here since it is so closely related
to the CA client service in terms of related functionality and implementation.

The CA Server will be implemented using the Channel Access Java (CAJ) and Java Channel
Access Server (JCAS) libraries provided to the EPICS community by Cosylab. This is a 100%
pure Java implementation requiring no JNI and so can work on any platform. The framework is
simple. JCAS is an addition to the existing Channel Access in Java (CAJ) client library; both
share common code and are packed in a same Java Archive (JAR) file.

Creating a server is very straightforward. Server Cont ext requires an implementation of the
Server interface. This interface has two methods which must be implemented:
e processVari abl eExi st anceTest
o0 This method is called each time a CA client broadcasts a search for a particular
process variable, identified by a name. If a positive answer is returned by the
method, JCAS library will announce that it hosts that process variable.
e processVariabl eAttach
0 Once a CA client is knows a process variable exists it will most likely issue a
request for channel creation. A channel is a connection between the server and
client through which a single process variable is accessed. The client never talks
directly to a process variable, only through the channel. To create a new channel
Server Cont ext Will request a ProcessVariabl e instance by calling the
processVari abl eAttach method. Then it will create a channel instance by
calling the processVari abl e creat eChannel () method.

Figure 48 shows the sequence diagram for a client interaction with the CA server.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 110 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

€3 Serverimpl - Server {5 ServerChannel - ServerCrannel (5 ProcessWariablelmpl - ProcessVarisble

| | |

| | |

! | |

u | |

U - - | |
[T \ \ \
| | | | |
Ca Creste Channel Request processWarisklesttach(): ProcessVeriablh | | |

u | |

S | |

cvestteihar\pe\(] ServerCharnel ‘ ‘
| | U

e B Ao ‘

dicossst): book | | |

I U |

| |

T | |

witehccessl): bodlean | I |

| u |

- - S ————— |

| | |

| | |

I - | | |
[| | |
	‘ ‘	

CA Readitiite Request

read(urite () ‘ ‘

readCuwrite() |
\\ S Ll

- 7 |

- — — = = | |

| |

Figure 48 Sequence Diagram for CA Server

7.10.6.1 Process Variables

ProcessVariabl e is an abstract class that should be extended that provides a default
implementation that returns a Server Channel instance. This implementation is a default
implementation of a channel and grants all read and write rights to any user.

& gow::aps:jcaicas::ProcessVariable

@ destroy()

@ getDimensionSizelin dimension: int): int

@ getEnumLabels(): Stringl]

&' getType(: DERType

O,q read(in value: DER, in asyncReadCallback: ProcessVariableReadCallback): CAStatus
O'q weritelin value: DBR, in asyncWiiteCallback: ProcessWarisble\WriteCallback): CAStatus

Figure 49: ProcessVariable class with methods that are important for a developer.

The ProcessVari abl e class has three abstract methods to be implemented:
e get Type() — Return PV native data type. Types used to read/write.

e wite() — Write value to PV. Given DBR type is basic native data type (e.g.
DBR_Doubl e).

e read() — Read value from the PV. Given DBR type is always at least of DBR TI ME type.
If of GRor CTRL type, it depends on the PV to support it.

Methods get Di mensi onSi ze() and get Enuniabel s() are most likely to be overridden.
However, it is recommended that the default PV implementations located in

Erik Johansson, Jimmy Johnson, Doug Morrison Page 111 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

com cosyl ab. epi cs. caj . cas. util package be used. They provide instructions on how to
implement your own process variables.

7.10.7 Alarm

An alarm can be considered an event except that is has an associated condition, one which is
deemed to be abnormal and requiring special attention. A condition is associated with a Source
which is a typically KCSF component. In terms of delivering alarms when a component issues a
set or clear alarm call the framework will use the event service to propagate the alarm
information.

7.10.7.1 Definitions
The following provides more definition for the main alarm concepts.

e Alarm

An alarm is an abnormal condition, which requires special attention outside the control
application. Each alarm instance is associated with a source (or owner) device. For example,
the device AO Careras. TT (the source) may have an active Hi ghAl ar m condition or the
device A0 McS. ML (the source) may have an active LowAl ar mcondition. Each alarm instance
is uniquely identified by the combination of source, and condition.

e Condition
An alarm condition is a named abnormal state for a source. Examples of alarm conditions
are: LowAl ar m Hi ghAl ar m Hi ghHi ghAl ar m Devi at i onAl ar m etc.

e Source

All alarms are owned by named items in the domain. Any component can be an alarm source.
A source may be the owner of several alarm conditions. The term owner is also sometimes
used in place of term source.

e Severity
This specification defines severity as an indication of the urgency of the alarm. This value
may range from 1 to 1,000, with 1 being the lowest urgency and 1,000 being the highest.

e Alarm Area

This specification defines an Alarm Area as a collection of alarm groups. A client of the
Alarm Manager may request a list of all active and unacknowledged alarms for a specified
area.

e Alarm States
An alarm occurrence can be in one of four states:
o Inactive/Acknowledged (not included in active alarm list)
o Active/Unacknowledged
o Active/Acknowledged
o Inactive/Unacknowledged

e Alarm Instance

Erik Johansson, Jimmy Johnson, Doug Morrison Page 112 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

It is expected that the Alarm manger will maintain the following data (or similar) per alarm

instance:
Source String | Identifier for the alarm owner
Condition String Identifier for the alarm condition
Group String Identifier for the native alarm group

Annunciation | String Identifier for annunciation method
TimeStamp | Time Date and time for last state change

Severity Integer | Severity level

Active Boolean | True while alarm is Set

Acked Boolean | True is alarm has been Acknowledged
Enabled Boolean | True if the Alarm is Enabled

HelpText String
AckRequired | Boolean | Acknowledged Required Flag

Source String Identifier for the alarm owner
Condition String Identifier for the alarm condition
Group String Identifier for the native alarm group
ChangeTime | Time Time Alarm last changed state
Comment String | Any user-defined alarm comment

RepeatCount | Integer | Number of set/clears since last ack

e Alarm Categories
Each alarm record is associated with one Alarm Category. The alarm category determines the
possible alarms for a source. For example:

Alarm records with a category of “Process_Inputs” might include the following alarms:
0 Bad input device
o Highalarm limit
o Low alarm limit

Alarm records with a category of “System_Status” might include the following alarms:
o Disk space is low
o Virtual memory usage is too high
o CPU usage is high
0 Fan has failed

7.10.7.2 Alarm Service
From a components perspective there are just two APISs:

e SetAl arnm(Category, Condition, Al arnvalue);
This method is used to set an alarm. The service will automatically add the source name.

e (CearA arn(Category, Condition);
This function is used to clear an alarm.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 113 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

In order to offer filtered lists a client made need to retrieve information as to what categories,
conditions and areas have been defined. The following methods allow clients to get this

information:

Quer yCat egori es

The QueryCategories method gives clients a means of finding out the specific
categories of alarms supported by a given server. This method would typically be
invoked prior to specifying a filter.

Quer yAr eas
The Quer yAr eas method gives clients a means of finding out the specific areas supported
by a given server. This method would typically be invoked prior to specifying a filter.

Quer yCondi ti onNanes

The QueryCondi ti onNames method gives clients a means of finding out the specific
condition names which the alarm server supports for the specified category. This method
would typically be invoked prior to specifying an alarm filter. Condition names are server
specific.

Quer ySour ceCondi ti ons
The Quer ySour ceCondi ti ons method gives clients a means of finding out the specific
condition names associated with the specified source.

QueryAttributes

This may or may not be needed. Most likely we just define a set of standard attributes and
will not need user-defined ones. Using the categories returned by the Quer yCat egori es
method, client applications can invoke the Quer yAt t ri but es method to get information
about the vendor-specific attributes the server can provide as part of a notification for an
alarm within the specified category. Simple servers may not support any vendor-specific

attributes for some or even all categories.

7.10.7.3 APl Summary

API Location Usage
SetAlarm Service Component Calls
ClearAlarm Service Component Calls
API Location Usage

EnableConditionByArea

Alarm Manager

Manager Implements

EnableConditionBySource

Alarm Manager

Manager Implements

DisableConditionByArea

Alarm Manager

Manager Implements

DisableConditionBySource

Alarm Manager

Manager Implements

CreateSubscription

Alarm Manager

Manager Implements

AckCondition

Alarm Manager

Manager Implements

Refresh

Alarm Manager

Manager Implements

CancelRefresh

Alarm Manager

Manager Implements

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture Revision: 1.0

Page 114 of 136
9/4/2009

| OnAlarm

| Alarm Manager

Manager Calls

API Location Usage

QueryCategories Service Clients (Ul) Calls
QueryConditionNames Service Clients (Ul) Calls
QuerySourceConditions Service Clients (Ul) Calls

EnableConditionByArea

Alarm Manager

Clients (Ul) Calls

EnableConditionBySource

Alarm Manager

Clients (UI) Calls

DisableConditionByArea

Alarm Manager

Clients (UIl) Calls

DisableConditionBySource

Alarm Manager

Clients (UI) Calls

CreateSubscription

Alarm Manager

Clients (Ul) Calls

AckCondition

Alarm Manager

Clients (Ul) Calls

Refresh Alarm Manager Clients (UIl) Calls
CancelRefresh Alarm Manager Clients (Ul) Calls
OnAlarm Client Clients Implements (Callback)

7.10.7.4 Alarm Manager

Alarm events can occur as the result of a set alarm, clear alarm or refresh operation. In all cases
the data structure that is sent is the same. A proposed data structure modeled after the OPC
ONALARMSTRUCT is described below.

Member Description

szSource The source of the alarm notification.

ftTime Time of the occurrence - for conditions, time that the
condition transitioned into the new state or sub-
condition. For example, if the alarm notification is for
acknowledgment of a condition, this would be the time
that the condition became acknowledged.

szMessage Notification message describing the alarm.

dwEventType OPC_SIMPLE_EVENT, OPC_CONDITION_EVENT,
or OPC_TRACKING_EVENT for Simple, Condition-
Related, or Tracking events, respectively.

dwEventCategory Standard and Vendor-specific category codes.

dwSeverity Alarm severity (0..1000).
The following items are present only for Condition-
Related Events (see dwEventType)

szConditionName The name of the condition related to this alarm
notification.

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture

Revision: 1.0

Page 115 of 136
9/4/2009

wChangeMask

Indicates to the client which properties of the condition
have changed, to have caused the server to send the
alarm notification. It may have one or more of the
following values:

OPC_CHANGE_ACTIVE_STATE
OPC_CHANGE_ACK_STATE
OPC_CHANGE_ENABLE_STATE
OPC_CHANGE_QUALITY
OPC_CHANGE_SEVERITY
OPC_CHANGE_SUBCONDITION
OPC_CHANGE_MESSAGE
OPC_CHANGE_ATTRIBUTE

If the alarm notification is the result of a Refresh, these
bits are to be ignored.

For a “new alarm”,
OPC_CHANGE_ACTIVE_STATE is the only bit
which will always be set. Other values are server
specific. (A “new alarm” is any alarm resulting from
the related condition leaving the Inactive and
Acknowledged state.)

wNewsState A WORD bit mask of three bits specifying the new
state of the condition: OPC_CONDITION_ACTIVE,
OPC_CONDITION_ENABLED,
OPC_CONDITION_ACKED.

wQuality Quality associated with the condition state.

bAckRequired

This flag indicates that the related condition requires
acknowledgment of this alarm. The determination of
those alarms which require acknowledgment is server
specific. For example, transition into a LimitAlarm
condition would likely require an acknowledgment,
while the alarm notification of the resulting
acknowledgment would likely not require an
acknowledgment.

ftActiveTime Time that the condition became active (for single-state
conditions), or the time of the transition into the current
sub-condition (for multi-state conditions). This time is
used by the client when acknowledging the condition

dwCookie Server defined cookie associated with the alarm

notification. This value is used by the client when
acknowledging the condition. This value is opaque to
the client.

The following is used only for Tracking Events and
for Condition-Related Events which are
acknowledgment notifications (see dwEventType).

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture Revision: 1.0

Page 116 of 136
9/4/2009

szActorID For tracking events, this is the actor ID for the event
notification.

For condition-related events, this is the
AcknowledgerID when OPC_CONDITION_ACKED
is set in wNewState. If the AcknowledgerID isa NULL
string, the event was automatically acknowledged by
the server.

For other events, the value is a pointer to a NULL
string.

The Alarm Manager maintains the alarm information it receives from the framework via the
Set Al armand C ear Al ar mAPIs. It will propagate these alarms to the client based on the client
provided filter (optional implementation) and based on whether or not an area or category is
enabled/disabled. The Alarm Manager responds to alarm acknowledgements and will remove the
alarms as they are cleared and acknowledged.

7.10.7.4.1 EnableConditionByArea

Places all conditions for all sources within the specified process areas into the enabled state.
Therefore, the server will now generate condition-related alarms for these conditions. The effect
of this method is global within the scope of the alarm manager. Therefore, if the manager is
supporting multiple clients, the conditions are enabled for all clients, and they will begin
receiving the associated condition-related alarms.

* Will need to decide if this needs to propagate to each alarm service or if it is just applied to the
Alarm Manager.

7.10.7.4.2 EnableConditionBySource

Places all conditions for the specified sources into the enabled state. Therefore, the alarm
manager will now generate condition-related alarms for these conditions. The effect of this
method is global within the scope of the alarm manager. Therefore, if the alarm manager is
supporting multiple clients, the conditions are enabled for all clients, and they will begin
receiving the associated condition-related alarms.

* Will need to decide if this needs to propagate to each alarm service or if it is just applied to the
Alarm Manager.

7.10.7.4.3 DisableConditionByArea

Places all conditions for all sources within the specified process areas into the disabled state.
Therefore, the alarm manager will now cease generating condition-related alarms for these
conditions. The effect of this method is global within the scope of the alarm manager. Therefore,
if the alarm manager is supporting multiple clients, the conditions are disabled for all clients, and
they will stop receiving the associated condition-related alarms.

* Will need to decide if this needs to propagate to each alarm service or if it is just applied to the
Alarm Manager.

7.10.7.4.4 DisableConditionBySource

Erik Johansson, Jimmy Johnson, Doug Morrison Page 117 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Places all conditions for the specified sources into the disabled state. Therefore, the alarm
manager will no longer generate condition-related alarms for these conditions. The effect of this
method is global within the scope of the alarm manager. Therefore, if the alarm manager is
supporting multiple clients, the conditions are disabled for all clients, and they will stop
receiving the associated condition-related alarms.

* Will need to decide if this needs to propagate to each alarm service or if it is just applied to the
Alarm Manager.

7.10.7.4.5 Create Subscription

This allows a client (for example, Ul or logging service) to connect to the Alarm Manager and to
start receiving alarms. Alarms are sent to the client(s) via an OnAlarm callback.

7.10.7.4.6 AckCondition

The client uses the AckCondi ti on method to acknowledge one or more conditions in the Alarm
Manager. The client receives alarms notifications from conditions via the onAl ar mcallback. This
AckCondi ti on method specifically acknowledges the condition becoming active. One or more
conditions belong to a specific source — the source of the alarm notification. For each condition-
related alarm notification, the corresponding Source, Condition Name, Active Time and Cookie
is received by the client as part of the onAl ar mcallback parameters.

7.10.7.4.7 Refresh

Force a refresh for all active conditions and inactive, unacknowledged conditions whose alarms
notifications match the filter of the subscription. Clients will often need to get the current
condition information from the alarm manager, particularly at client startup, for things such as a
current alarm summary. The Alarm Manager supports this requirement by resending the most
recent alarm notifications which satisfy the filter in the alarm subscription and which are related
to active and/or unacknowledged conditions. The client can then derive the current condition
status from the “refreshed” alarm notifications.

7.10.7.4.8 CancelRefresh

Cancels a refresh in progress for the alarm subscription. If a refresh is in progress, the alarm
manager will send one final callback with the last refresh flag set and the number of alarms equal
to zero.

7.10.7.4.9 OnAlarm

The Alarm Manager invokes the onAl ar mmethod to notify the client of alarms which satisfy the
filter criteria for the particular alarm subscription. Note that callbacks can occur for two reasons:
alarm notification or refresh. A client can determine the ‘cause’ of a particular callback by
examining the bRef r esh parameter in the OnAl ar mcallback.

7.10.7.5 Alarm Summary Display

The Alarm Summary displayed is discussed previously. This display allows alarms to be viewed,
sorted, filter and acknowledged.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 118 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

7.10.7.6 Alarm Logging

All alarms can be logged to a database. It is expected that there will be an Alarm Logging
Display that can be used to view all recent alarm state changes and events. This display may be
used to query the alarm history files in many ways. The alarms may be logged by the Alarm
Manager or there may be a separate system wide component that is responsible for monitoring
and logging alarms.

7.10.7.6.1 Alarm Table

The following shows a possible schema for the alarm table:

e TimeStamp: UT time when the alarm state change or event occurred.

e Category: Alarm category for this alarm. Alarm categories are defined by the alarm
system configuration and are meant to provide logical alarm groupings.

e Source: Owner of the alarm or event.

e Alarm Text: Description of the alarm or event.

e Action: A classification of the alarm state change or event. Typical actions are Set
Alarm, Clear Alarm, or Acknowledge Alarm.

e Value: This field may be used to save the value of some key variable associated with the
alarm or event. Any value shown represents the value at the time of the alarm or event
occurrence.

e Operator: May be used to record the operator performing the event or action.

e Severity: The severity (or priority) of the alarm or event. This may range from 1 to
1,000. Low values indicate a low urgency and high value represent a higher urgency.

7.10.8 Configuration

Most classes within the NGAO system will have some set of configurable properties associated
with each instance. When objects are instantiated these properties and attributes will be
undefined, and will need to be set for the object before standard operations can begin. A
convenient way to store and retrieve object properties is through a Configuration Database. This
database would define all of the configuration information required by each class instance, as
well as any additional metadata and run-time information needed by the system.

7.10.8.1 Database Schema

The database schema is divided into three sets: class definitions, instances, and management.
Class definitions constitute all of the relational tables that define the structure, properties, and
default values of KCSF classes. Every component in the system that utilizes configuration must
have a corresponding class definition in the database. As classes are added to the KCSF
infrastructure new definitions must be created to map configuration attributes to code. The
following schema defines class structure within the database, and will be used to generate
instances.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 119 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

ClassStructure

PK,FK1 | ClassName
PK AttributeName

ClassDefinitions

Type
DefaultValue
MinValue
MaxValue
LOLOAIlarm
LOAlaram
HIAlarm
HIHIAlarm
Description

PK | ClassName

Inherits
Description

Figure 50: Class Schema.

Instances cover all tables and properties that represent application components and define their
configuration state. Every instance of a KCSF component that utilizes configuration will have a
dedicated database instance. All instances in the database are mapped to one of the database class
definitions. At run-time KCSF components will query the database for their configuration to
obtain their initial state and properties. The following diagram details the hierarchical
relationship of instance items in the database.

Containers Attributes
PK,FK1 | ManagerName PK,FK1 | ManagerName
PK ContainerName PK,FK1 | ContainerName
’ PK,FK1 | DeviceName
Type Devices PK AttributeName
ContainerManagers Class PK,FK1 | ManagerName T
Host i ype
PK | ManagerName |— ConnectionServiceName |q—— g?FK“ g:\r,‘it::;;r,::me — DefaultValue
ConnectionServiceClass - MinValue
EventServiceName Type MaxValue
EventServiceClass Class LOLOAlarm
LogServiceName LOAlarm
LogServiceClass HIAlarm
HealthServiceName HIHIAlarm
HealthServiceClass

Figure 51: Instance Schema.

The final set of tables is responsible for the management, versioning, and administrative
requirements of the system. These tables relate primarily to the general requirements of
maintaining a database.

7.10.8.2 Versioning

The database model will be designed to provide versioning capabilities for configuration
information. Versioning allows developers to take a snapshot of the active database and preserve
it in a read-only format, making it available for restoration.

Erik Johansson, Jimmy Johnson, Doug Morrison
KAON 679: NGAO Control Software Architecture

Page 120 of 136

Revision: 1.0 9/4/2009

Container Manager

Tag 2
Tag 1
Container 1 _ , Container 2
Tag 2 A Tag 2
Tag 1
Component 1 Component 2 Component 3
Tag 2 4 Tag 1 Tag 2

Tag 1

Figure 52: Data Versioning.

Figure 52 above shows a versioning example for a simple KCSF system. The system is
comprised of a container manager, containers, and components. Two versions of the system
exist, identified by unique version ids: ‘Tag 1’ and ‘Tag 2’.

Tag 1 represents an early version of the system. In this version there was a single container that
managed two components (Component 1 and Component 2). At some point the developers
decided that it was necessary to make modifications to the design. The current database
configuration was tagged, and the developers started with the modifications.

A new component (Component 3) needed to be added to the system, and based on resources it
was decided a separate container would be used to manage this component. After a design
review the developers realized that they could combine the functionality of Component 1 and
Component 2, simplifying the overall system communication. The product of their upgrade work
can be seen in the database layout identified by ‘Tag 2. In this version, a new container and
component (‘Container 2’ and ‘Component 3’) were added to the system. Component 2 being
obsolete is no longer part of the second version, and is not referenced by Container 1.

7.10.8.3 Tagging the Database

At some point in the development and testing of a system the configuration data will need to be
preserved. This process is known as tagging, and is responsible for taking a snhapshot of the
active database and associating it with a user defined ID. The database allows users to create new
tags or overwrite old tags. When an old tag is overwritten, all of the items’ original configuration

Erik Johansson, Jimmy Johnson, Doug Morrison Page 121 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

values that are affected by the tag process will be lost (retrievable only by restoring the database
from a previous backup). Each unique tag operation creates a new version in the database. The
version is a complete duplication of the database, and is maintained as read-only.

Figure 53: Database Versions.

A database can hold multiple versions simultaneously making it easier and faster to revert to a
previously tested version. Although you can not modify the state of a version directly, you can
overwrite an existing version, completely replacing it in the database.

7.11Scripting Support

Direct scripting support will be provided by the framework by utilizing the standard Java
Scripting API. The scripting API consists of interfaces and classes that define Java ™ Scripting
Engines and provides a framework for their use in Java applications. This API is intended for use
by application programmers who wish to execute programs written in scripting languages in their
Java applications. The scripting language programs are usually provided by the end-users of the
applications. The API is available through the javax.script package. The main areas of
functionality of javax.script package include

e Script execution: Scripts are streams of characters used as sources for programs
executed by script engines. Script execution uses eval methods of ScriptEngine and
methods of the Invocable interface.

e Binding: This facility allows Java objects to be exposed to script programs as named
variables. Bindings and ScriptContext classes are used for this purpose.

e Compilation: This functionality allows the intermediate code generated by the front-end
of a script engine to be stored and executed repeatedly. This benefits applications that
execute the same script multiple times. These applications can gain efficiency since the
engines' front-ends only need to execute once per script rather than once per script
execution. Note that this functionality is optional and script engines may choose not to
implement it. Callers need to check for availability of the Compilable interface using an
instanceof check.

e Invocation: This functionality allows the reuse of intermediate code generated by a script
engine's front-end. Whereas Compilation allows entire scripts represented by
intermediate code to be re-executed, Invocation functionality allows individual
procedures/methods in the scripts to be re-executed. As in the case with compilation, not

Erik Johansson, Jimmy Johnson, Doug Morrison Page 122 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

all script engines are required to provide this facility. Caller has to check for Invocable
availability.

e Script engine discovery and Metadata: Applications written to the Scripting APl might
have specific requirements on script engines. Some may require a specific scripting
language and/or version while others may require a specific implementation engine
and/or version. Script engines are packaged in a specified way so that engines can be
discovered at runtime and queried for attributes. The Engine discovery mechanism is
based on the Service discovery mechanism described in the Jar File Specification. Script
engine implementing classes are packaged in jar files that include a text resource named
META-INF/services/javax.script.ScriptEngineFactory. This resource must include a line
for each ScriptEngineFactory that is packaged in the jar file. ScriptEngineManager
includes getEngineFactories method to get all ScriptEngineFactory instances discovered
using this mechanism. ScriptEngineFactory has methods to query attributes about script
engine.

By providing components with the ability to directly support scripting the end users and
application developers can access and control KCSF devices and controllers from a scripting
environment, using the language of their choice (KCSF will support a number of different
scripting languages) .

7.11.1 Implementation Details

There are a number of ways to provide scripting support from Java, the two most consistent
approaches that will cover a large number of scripting languages are:

e Using shells and external wrappers

e Using Javax Scripting

Either approach allows scripting support to be added to KCF in a very generic way. The
architecture is designed to allow for executing disparate scripts, and nothing in the programming
model depends on a specific scripting language. In either case the full Java library as well as
whatever parts of KCF we choose to expose are fully available to the scripts.

7.11.1.1 Using shells and external wrappers

This is the approach ATST CSF is currently using. It currently supports Groovy, bsh and Python.
Generic linterpreter and IExecutor interfaces are defined to set and get script parameters and
evaluate or execute script code. A concrete implementation of these is provided for each
scripting language supported. This is shown in Figure 54 below. The concrete implementation
itself wraps a shell or interpreter for that language available as a 3" party library. The factory
classes can decide which script specific executor or interpreter to invoke based on file extension
or other means.

There are differences between a script Executor and a script Interpreter:
e An Executor can parse a script and report errors before running.
e An Interpreter can execute a script in fragments, identifying parse errors fragment by
fragment.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 123 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e An Executor runs a script as a separate entity — log messages, events, etc. appear to
come directly from the script.
e With an Interpreter, log messages, events, etc. appear to come from the surrounding

application.
winterfaces uinierlaces
—{;, IExecutor ,(]7 4[;‘. lintorprotor {]7
N
GroovyExecutor PythonExecutor | |BeanSheallExacutor Groavylnteproter Pythonlnbepreter BoanShelllnteprater
ExecutorFactory InterprotarFactory

Figure 54: The IExecutor and lInterpreter scripting classes.

The following are short examples of script usage:

for (int i =limt.getlnteger(); i >=0; --i) {
Systemerr.println(" ")
Event . post ("event Test", i);

M sc. pause(del ay) ;

for i in range(limt.getlnteger(),-1,-1):
print "\t'+i°
Event . post (' event Test', i)

M sc. pause(del ay)

7.11.1.2 Using Javax.Scripting

Since Java 6, the Java now comes with a framework that abstracts various scripting engines and
thus creates general scripting support for Java applications. This support is available through the
Scripting API (javax.script). It enables easy engine registration, instantiating engines through
factory methods and sharing the context between them. Essentially it provides a pluggable
framework for third-party script engines. This concept is shown in There are a large number of
scripting engines now available that are compatible with this API, by default the package comes
with JScript enabled.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 124 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

APPLICATION KCSF Components
and Servcies

Br etl= Imitgetegqer); == 0,—13 {

SEEmerrprivie “+h;]

Btk btpestrewe et b ; —-
Mircpange ik B,]

h

-

JavaX ScriptEngine

Figure 55: Multiple script engines are supported through the Java Scripting API.

Getting started with scripting is easy. The starting point is always the ScriptEngineManager
class. A ScriptEngineManager object can tell you what script engines are available to the Java
Runtime Environment (JRE). It can also provide ScriptEngine objects that interpret scripts
written in a specific scripting language. The simplest way to use this APl is to do the following:

e Create a scriptEngineManager Object.

e Retrieve a scriptEngine object from the manager.

e Optionally add script variables

e Evaluate a script using the scriptEngine object.

The following code example performs all three steps, printing He11o, world! to the console.

Scri pt Engi neManager ngr = new Scri pt Engi neManager () ;
Scri pt Engi ne j séngi ne = ngr. get Engi neByNane("JavaScript");
try {
j sEngine.eval ("print('Hello, world!")");
} catch (ScriptException ex) {
ex. print StackTRace();
}

The APl is only slightly more complex if you want to query the list of supported scripting
engines, to pass values back and forth to the scripting environment, or to compile a script for
repeated execution. Additional APIs allow you to query the scriptEngineManager for engines
that associate a particular file extension, to execute the script from a file, and to call a specific
function in a script.

Conceptually the API is small and simple
e ScriptEngine
o Components that execute scripts.
e ScriptEngineManager

Erik Johansson, Jimmy Johnson, Doug Morrison Page 125 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

0 Used by host application to locate and instantiate ScriptEngines.
e ScriptContext/Bindings

o Provide view of host application to ScriptEngine

o0 Script variables<====>Application objects.

7.12User Interfaces

The goal of the framework is to provide a user interface solution that interacts well with the
framework, is full featured, promotes Ul widget reuse, has a common look and feel, and can
meet the needs of the observatory. That said, working with the end user to establish Ul layouts,
workflow and other operational issues such as how sorting, selection, tooltips etc., should work
is perhaps more important that any technical implementation. It is expected that significant work
will go into working with the OAs, SAs and others to iterate over Ul prototypes.

Regardless of the Ul technical solution the framework will be developed to ensure that there is a
clear division between domain objects that model our perception of the real world, and
presentation objects that are the GUI elements we see on the screen. Domain objects should be
completely self contained and work without reference to the presentation; they should also be
able to support multiple presentations, possibly simultaneously. The basic idea in all cases is that
user gestures are handed off by the widgets to a controller, changes in the domain model are
coordinated separately from the Ul, and finally the Ul is updated from the model as needed.
There are a number of design patterns that support this which have evolved from the “Model
View Controller” pattern, namely “Model View Presenter” and “Supervising Controller” with
“Passive View”.

There are currently a number of technical solutions identified that need to be explored further.

7.12.1 Java Swing

MAGIQ has shown that feature rich performant Uls can be written in Swing and easily and
quickly adapted to user needs. MAGIQ used presentation separation and a number of free open
source third party libraries, namely:

JAI - Java Advanced Imaging

InfoNode — For docking windows

JFreeChart — For graphs

Nom Tam — For FITS processing

Responsiveness, as defined by Jeff Johnson in his book GUI Bloopers: Don'ts and Do's for
Software Developers and Web Designers, is "the software's ability to keep up with users and not
make them wait." Responsiveness is often cited as the strongest factor in users' satisfaction with
software applications. Poor responsiveness can render an otherwise well-designed application
unusable.

Poorly-written Swing applications can appear to freeze when time-consuming code is executing.
This unresponsiveness happens because all Swing applications handle events on the event
dispatch thread. This means painting, layout updates, button presses, rollover effects, and Swing
component interactions. When time-consuming code is executed on the event dispatch thread, all
other-event driven activity waits and the application appears frozen.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 126 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Within any Swing application there are essentially two factors that affect the user’s perception of
responsiveness. These are the swing single threaded model as described above and graphic
performance. How these potential issues are addressed is described below.

7.12.1.1 Concurrency

When a user interacts with Swing components, whether it is clicking on a button or resizing a
window, the Swing toolkit generates event objects that contain relevant event information. The
event objects are then placed onto a single event queue ordered by their entry time. While that
happens, a separate thread, called the event-dispatch thread, regularly checks the event queue's
state. As long as the event queue is not empty, the event-dispatch thread takes event objects from
the queue one by one and sends them to the interested parties. Finally, the interested parties react
to the event notification by processing logic such as event handling or component painting, as
shown in Figure 56.

QAueues up
the generated event=

User Interface x|
Event Queue

Evert n
Cloze |
Event n-1
Evernt n-2
Updates the
User Interface
_ Event 2
Ewvent Listeners Event 1
Action
Listener

Tahle Ewvent Dispatcher Thread
Selection
Liztener w
Meotifies the
interested parties

Figure 56 Swing event-dispatch model

Since the event-dispatch thread executes all event-processing logic sequentially, it avoids
undesirable situations such as painting a component whose model state is partially updated. With
the exception of a very small number of thread-safe methods all SWING code must execute on
the Event Di spat cher thread. The down side to this is that any operation that takes a significant
amount of time to cause the event queue to backup and the Ul to appear frozen.

For Ul applications this has a number of consequences:
e In order to keep the Ul responsive, any potential long running tasks must execute in their

own thread.
e The results of long running tasks need to make their way back onto the event dispatch
thread.
Erik Johansson, Jimmy Johnson, Doug Morrison Page 127 of 136

KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

e Various callbacks that change the model state happen on threads that originate outside the
Ul, examples include application manager callbacks for image update events, telemetry
updates etc. If Swing components, or other non thread safe entities, need to be updated as
part of these callbacks they cannot be updated directly and the updates need to be moved
to the event dispatch thread.

In summary when writing a multi-threaded application using Swing, there are two constraints to
keep in mind:
e Time-consuming tasks should not be run on the Event Dispatch Thread. Otherwise the
application becomes unresponsive, as described above.
e Swing components should be accessed on the Event Dispatch Thread only since the
components are not thread safe.

Java 6 provides two classes that help simplify concurrent operations by providing:
e A way to ensure that any threaded code will run on the event-dispatch thread
(SwingUftilities)
e An easy way to create background threads that can interact with the Ul (SwingWorker)

7.12.1.2 SwinguUtilities

In Swing programs, the initial threads don't have a lot to do. Their most essential job is to create
a Runnable object that initializes the GUI and schedule that object for execution on the event
dispatch thread. Once the GUI is created, the program is primarily driven by GUI events, each of
which causes the execution of a short task on the event dispatch thread. The SwingUTtilities
i nvokeLat er method is used to bootstrap the Ul onto the event dispatch thread.

Application code can schedule additional tasks on the event dispatch thread (if they complete
quickly, so as not to interfere with event processing) using the SwingUtilities class.
SwingUltilities has two methods related to threads these are i nvokeLat er and i nvokeAndWai t .
The i nvokeLat er method creates a special event that wraps around the runnable object and
places it on the event queue. When the event-dispatch thread processes that special event, it
invokes the runnable object's run method in the same thread context, thus preserving thread
safety. i nvokeAndwai t does the same things but waits for the event to complete.

7.12.1.3 SwingWorker
The SWING constraints mean that a GUI application with time intensive computing or methods
that could block needs at least two threads:

e A thread to perform the lengthy task

e The Event Dispatch Thread (EDT) for all GUI-related activities.

SwingWorker is designed for situations where you need to have a long running task run in a
background thread and provide updates to the Ul either when done, or while processing.

MAGIQ has made significant use of the SwingWorker and SwingUtilities to ensure robust and
performant user interfaces.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 128 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

7.12.2 CSF Java Engineering Screens

CSF has the start of a Ul framework that came from Observatory Science Laboratories (OSL). It
is based on Swing and is called Java Engineering Screens (JES). This has some potential at least
for engineering screens (basically DM replacements). Screen layout and composite are
maintained in an XML file. JES supports an Edit and Execute mode. These can be toggle on the
fly. In edit mode widgets can be added to a screen and repositioned as needed and then the Ul
can be executed. A sample image is shown below.

TCS Control

TCS Control

L E—
R

Az Position | El Position | Coude Position

Demand Currant
Ra 09:4203.61 10:2L:58.59 127.0°|MCS Azimith
ECS Azimuth
Dec +13:51:29.2 +44:55:59.5
Sidereal Time 07:06:21
Track 1D: track.000000021183.0000000000107

Configure [MCS ECS | Cover Status | FOCS

Mount Control
Demand Current Position Position Error Velocity
Azimuth 94.0355 49.3313 44.7034 2.2500 o
Elevation 52.2996 44.7660 7.5280 1.4660
Coude -73.9566 -47.6438 -26.3132 -2.2500

Enclosure Control
Current Position Velocity
Azimuth 47.7563 2.2500
Elevation 44.3239 1.5079

-114.0

Mcs Control || ECs Control || Focs conwol || PAC conwol || HsA contol || wecs conwol || m2cs convor || chans

Figure 57: A sample CSF JES GUI.

The basic architecture is as follows:

e JesManager — This is a CSF component and is deployed and managed the same as any
other component. It is used to control and manage all JES Screens and event
subscriptions

e JesScreen — maintains all widgets for a screen, tells widgets if they should be in edit or
execute mode, allows pasting of widgets, setting the screen title, saving layouts and
widget grouping

e JesWdget — base type for all widgets, supports events, get/set etc. This is derived from
Swings JPanel.

e Widgets — numerous widgets based on Swing and derived from JesW dget such as
comboBox, tables, lists, graphs etc.

7.12.3 GTK+

Unlike Swing and JES which are Java based, GTK+ is an open source GUI toolkit with cross
platform support including Linux, Unix, Windows, and Mac OS X. It was used for the GNOME
desktop and GIMP image processing program and is licensed under the GNU LGLP 2.1

GTK+ is a highly usable, feature rich toolkit for creating graphical user interfaces which boasts
cross platform compatibility and an easy to use API. GTK+ is written in C, but has bindings to
many other popular programming languages such as C++, Java, and Python and C# among

Erik Johansson, Jimmy Johnson, Doug Morrison Page 129 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

others. The GNU LGLP 2.1 license allows development of both free and proprietary software
with GTK+ without any license fees or royalties. GTK+ is most notably used in GIMP, VMware
Workstation, GNOME and Gnumeric.

GTK+ has been around a long time and has been developed for over a decade. It is supported by
a large community of developers and has core maintainers from companies such as Red Hat and
Novell.

Key features for us are:

Native look and feel
Theme support

Thread safe

Obiject orientated approach
e Documentation

GTKH+ has not yet been evaluated and there is no direct in house experience with it.

7.12.4 Qt

Qt is another cross-platform application development framework, widely used for the
development of Ul programs, and also used for developing non-Ul programs such as console
tools and servers. Qt is most notably used in KDE, Google Earth, Skype, Qt Extended and Adobe
Photoshop Album. It is produced by Nokia's Qt Software division.

Qt uses C++ with several non-standard extensions implemented by an additional pre-processor
that generates standard C++ code before compilation. Qt can also be used in several other
programming languages such as Java and Python via language bindings. It runs on all major
platforms. Non-GUI features include SQL database access, XML parsing, thread management,
network support and a unified cross-platform API for file handling. It is distributed under the
terms of the GNU Lesser General Public License (among others), Qt is free and open source
software. An example of a Qt GUI screen is shown below.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 130 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

WebKit Database i
G H t
Graphics Wew Network Ul Designer I elp System]

Scripting Unit Tests
QpenGL Benchmarking

Qt modular class library ® (] >
Core XHL _,-f(rﬂﬁ-ula'rlurm 1DE]
Gl Multimadia

Internationalization Tools }(Cross-Platform Build Tool]

=/
_"\‘
Desktop
Mac 05 X Liruix/x11 Embedded Linux I WincE I Sa0]
-
Flexible Licensing Qt Services

Figure 58: An example Qt GUI screen.

Qt is nice in that it has a GUI designer application. There is also a Qt plug-in available for
integrating Qt into the eclipse development. Some quick testing showed that this is an easy
feature to get started with.

Qt provides the building blocks — a broad set of customizable widgets, graphics canvas, style
engine and more — that are needed to build modern user interfaces. It allows easy incorporation
of 3D graphics, multimedia audio or video, visual effects, animations and custom styles The Qt
Creator cross-platform IDE is expected to make it fast to learn and easy to use. QT can be
scripted using JavaScript.

7.12.4.1 QT and GTK+ Comparison

GTK+ and Qt are both open-source cross-platform User Interface toolkits and development
frameworks. These are the two most popular frameworks in use for Linux and BSD because they
are open-source and give developers a powerful toolkit to design Graphical User Interfaces.
GTKH+ is used as the standard toolkit for the GNOME and Xfce Desktop Environments while Qt
is used for KDE.

Qt is developed by Qt Software, a division of Nokia. GTK+ is developed and maintained by the
GNOME Foundation. Qt's API is said to be cleaner and to have better documentation than
GTK+'s. Qt comes with Qt Designer, a tool that allows easy layout of widgets and simple
connections of slots and signals between widgets, QTK doesn’t directly support a builder.

Both Qt and GTK+ were developed from the ground up with Object Oriented Programming in
mind. Qt is developed in C++, GTK+ in C in an object oriented manner using the GObject type
system. Qt is a complete consistent framework. You can easily connect HTTP events to GUI
elements, fill forms with results from a database query or build an interactive visualization of
large datasets. GTK+ is only a GUI toolkit. Both Qt and GTK+ are available on most popular
desktop Operating Systems. For mobile devices, Qt for Embedded allows Qt to run directly on

Erik Johansson, Jimmy Johnson, Doug Morrison Page 131 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

the hardware, without the need of X11 or a window manager. The first Qt application started
becomes the window manager featuring full composition and top-level transparency. GTK+ on
embedded devices (e.g. Maemo) requires an X11 server + window manager, resulting in at least
three processes running for a hello world application.

oS Qt GTK+
Windows XP Native | Native
Windows Vista Native | Native

Windows Mobile (CE) | Native |Not available

Mac OSX Native | Port available [1]
Linux/Unix Native | Native
Symbian (S60) Native | Not available

Figure 59: Comparison of Qt and GTK+ window environments.

Qt looks more native than GTK+ on Windows and Mac platforms. This is because Qt tries to use
native widgets whenever possible. Even so, neither Qt nor GTK+ will look and feel completely
native on Windows or Mac. On the other hand GTK+ brings more consistent user experience
when switching from one platform to another, since the look and feel remains unchanged.
Natively, Qt has C++ based libraries. It also supports Java, Perl, Python, PHP, and Ruby based
development. Qt also ships with the embedded scripting language QtScript, which is an ECMA-
Script (JavaScript) implementation. Natively, GTK+ has C based libraries. It supports several
languages like for example C++, Java, Perl, Python, PHP, Ruby, and Mono/C#. QT looks like a
more modern full featured solution and will be explored first.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 132 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

8 Glossary

ACS: The ALMA Common Software, a software framework based on CORBA.

ALMA: Atacama Large Millimeter Array.

API: Application Programming Interface.

ASKAP: Australian Square Kilometre Array Pathfinder.

ATST: Advanced Technology Solar Telescope.

ATST CSF: ATST Common Services Framework.

Attribute: A name and value pair used to represent a parameter in a distributed system.
CamelCase notation: A common computer notation where compound words are formed by
combining the element words without spaces, with each element’s initial letter capitalized. The
first letter of the entire compound word may be either upper case or lower case. Typically upper

case first letters are used to designate class names. Example: get User Name() .

COM: Component Object Model, a binary interface standard for software componentry
introduced by Microsoft in 1993.

Component: A self-contained piece of software with a well-defined interface or set of interfaces.
Component-based development: A software architecture and development model that
emphasis the decomposition of a distributed system into abstract functional and logical

components with well defined interfaces.

Composition: An object oriented design term describing the inclusion of multiple classes in the
definition of a new class. The new class is said to be “composed” of the constituent classes.

Container component model: A development model that groups software entities into related
sets and provides a distinct separation between the technical and functional tasks of a system
through the use of containers and components.

CORBA: Common Object Request Broker Architecture, an object oriented middleware standard
defined by the Object Management Group.

DBMS: Database Management System.

DDS: Data Distribution Service, a data-centric middleware based on a publish-subscribe
paradigm.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 133 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Dependency injection: A type of inversion of control where high level modules are dependent
on abstract interfaces, and not low level module implementations. In this way the actual
implementation (objects) can be assigned (injected) into the application module.

Encapsulation: The hiding of the internal mechanisms and data structures of a software
component behind a simple well-defined interface.

EPICS: Experimental Physics and Industrial Control System, a middleware commonly used to
implement control systems for several high energy physics accelerators and astronomical
observatories.

Framework: an abstraction in which common code providing generic functionality can be
selectively overridden or specialized by user code providing specific functionality. Frameworks
are similar to software libraries in that they are reusable abstractions of code wrapped in a well-
defined API. (From Wikipedia).

Fully qualified name: A name that uniquely identifies a component’s attributes across an entire
distributed system.

GPL: Gnu Public License.
GUI: Graphical User Interface.
ICE: Internet Communication Engine, an object oriented middleware developed by ZeroC, Inc.

IDL: Interface Definition Language. A standardized language that is used to define the interfaces
used by multiple software components interacting with each other.

Inversion of control: A software abstraction where the flow control logic of an application is
removed from the user and placed within the application framework.

J2SE: Java version 2, Standard Edition

JDBC: An API for the Java programming language that defines how a client may access a
database.

JNI: Java Native Interface, a programming framework that allows Java code running in a Java
Virtual Machine (JVM) to call and to be called by native applications (programs specific to a
hardware and operating system platform) and libraries written in other languages, such as C,
C++ and assembly. (From Wikipedia)

JVM: Java Virtual Machine, the runtime engine required to execute Java Byte Code.

KCSF: The Keck Common Services Framework

Erik Johansson, Jimmy Johnson, Doug Morrison Page 134 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Location transparency: A concept where network resources are accessed by name alone,
without regard to their location or the user’s location.

LGPL: Lesser General Public License.
Loose coupling: Loose coupling occurs when classes have limited knowledge of other classes,
typically through an interface, which can be implemented by any of several concrete classes.

This increases flexibility.

Middleware: Communication software that allows components to communicate with each other
without regard to their physical location on the network.

Narrow interface: A method interface that is only dependent on a few well-defined parameters.
NDDS: The former name of RTI’s DDS product, now simply called RTI DDS.
NOAO: The National Optical Astronomy Observatory.

OLE: Object Linking and Embedding, a technology that allows embedding and linking to
documents and other objects developed by Microsoft.

OPC: Open Connectivity, set of standard interfaces and protocols intended to foster greater
interoperability between automation/control applications, field systems/devices, and
business/office applications in the process control industry.

OS: Operating system.

Peer-to-peer communication: Point-to-point communication between two entities where each
is cognizant of the other.

Publish-subscribe communication: A general form of communication between multiple
entities where there are multiple publishers and subscribers who, without regard to the presence
or location of each other, send and receive data in the form of messages called topics.

RDBMS: Relational Database Management System.

RTC: Real-Time Controller. A CORBA-based framework developed by NASA JPL and used in
the Keck Interferometer.

TANGO: TAco Next Generation Objects, an object-oriented open source control system based
on CORBA.

Tight coupling: Tight coupling occurs when classes have direct knowledge or dependence on
other classes, which limits flexibility.

TINE: Three-fold Integrated Networking Environment, a control system architecture.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 135 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

Ul: User Interface.

Erik Johansson, Jimmy Johnson, Doug Morrison Page 136 of 136
KAON 679: NGAO Control Software Architecture Revision: 1.0 9/4/2009

