
 

Author Modified Notes 
Douglas Morrison 7/27/09 NGAO Configuration Service 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NGAO Software Architecture 
KAON 676: Configuration Service 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

NGAO Configuration Service  2

 

1.0 INTRODUCTION 3 

2.0 CONFIGURATION MODEL 4 

2.1 DATABASE SCHEMA 5 
2.2 VERSIONING 6 
2.2.1 TAG 7 
2.2.2 CHECKOUT 8 

3.0 CONFIGURATION LIBRARY 9 

3.1 DESIGN 9 
3.2 CLIENT INTERFACE 9 
3.3 ADMINISTRATOR INTERFACE 9 

4.0 CONFIGURATION SERVICE API 11 

4.1 GETCONTAINERMANAGERCONFIGURATION 11 
4.2 GETCONTAINERCONFIGURATION 11 
4.3 GETCOMPONENTCONFIGURATION 12 
4.4 GETMETADATA 12 

5.0 CCM CONFIGURATION MODEL 13 

5.1 CONTAINER MANAGERS 13 
5.2 CONTAINERS 13 
5.3 COMPONENTS 13 

6.0 ADMINISTRATION TOOLS 15 

6.1 SCRIPTS 15 
6.1.1 DATABASE BUILDER 15 
6.2 CONFIGURATION GUI 16 
6.2.1 CLASS DEFINITIONS 16 
6.2.2 INSTANCES 17 
6.2.3 NAVIGATION 17 

APPENDIX 20 

 



 

NGAO Configuration Service  3

 

1.0 Introduction 
Most classes within the NGAO system will have some set of configurable properties associated with 
each instance. When objects are instantiated these properties and attributes will be undefined, and 
will need to be set for the object before standard operations can begin. A convenient way to store 
and retrieve object properties is through a Configuration Database. This database would define all of 
the configuration information required by each class instance, as well as any additional metadata and 
run-time information needed by the system. 
 
The Configuration Database will be managed and accessed through a set of tools created for the 
KCSF. A distinct separation will be made between administrative and client database access. 
Administrative tools, such as the Configuration GUI, will be permitted to modify the state, contents, 
and properties of the database. Clients on the other hand will be restricted to read-only access of the 
configuration data. The KCSF Configuration Service will provide the primary means of access to 
clients, and will be responsible for opening and maintaining a connection to the database, as well as 
retrieving and formatting data for the clients.  
 
To improve reusability and efficiency when communicating with the Configuration Database, a Java 
library will be created to implement the administrator and client interfaces. This library will 
encapsulate and hide the majority of the database details, as well as format and convert data to and 
from application level objects to database queries. Clients and applications will utilize one of the 
administrator or client interfaces defined in the library to access the configuration data. 
 
The following sections detail the configuration model. 
 



 

NGAO Configuration Service  4

2.0 Configuration Model 
The configuration system for the KCSF infrastructure is designed as a multilayered distributed 
model. 
 
 
 

KCSF 
Tools 

Database

Configuration Library

Components

Configuration Service 

Java JDBC

GUI Scripts KCSF Tools 
 
 
 
 
 

 
Figure 1: Configuration Layers 

 
Each layer of the model is responsible for implementing a black-box interface with the layer below, 
abstracting away the technical and functional details of database connectivity, I/O, and management. 
At the lowest level is the database, which will maintain the configuration data and preserve version 
information. Managing and communication with a database is simplified through the Java Database 
Connectivity API (JDBC). This native Java module provides an interface for connecting to a 
database and performing all of the standard database operations. JDBC is available for a number of 
database implementations including JDB, Sybase, SQL Server, and Oracle. 
 
KCSF clients and components that wish to connect to the database will go through the Configuration 
Library. This API acts as the bridge between the client layers and database layers. Common 
technical tasks such as opening and closing connections to a database can be preformed in a single 
method call. The library also implements a number of functional tasks (such as retrieving and 
writing configuration values) as method calls, automatically converting the request into the 
appropriate SQL statement. Configuration data is also formatted into KCSF compatible attribute lists 
before being returned to clients. (See section 3.0 for more information on the Configuration Library). 
 
Above the Configuration Library sits the client tools and the KCSF Configuration Service. The tools 
provide users with full administrative control of the database and its contents. Clients are able to 
retrieve, modify and remove configuration data, as well as define new classes and instances for 
deployment. The Configuration Services provides read-only access to configuration data for devices 
and controllers. Managers, containers, and components can use this simple interface to retrieve fully 
formatted instance specific information by name.  
 
 
 
 
 
 
 
 
 
 
 



 

NGAO Configuration Service  5

 
 

Tools 
Configuration 

Service  
Configuration 

Database Configuration 
Library 

Java JDBC

Configuration 
Library 

Java JDBC 

 Network 

KCSF Components
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Distributed Database Access 
 
Components and tools will be distributed throughout the network. Typically there will be only one 
configuration database running for a system, although there is nothing that prevents multiple 
instance from running concurrently (redundancy, for example). A Configuration Service, 
Configuration Library, and JDBC instance will exist for every deployed container process. Tools, 
scripts, and GUIs will interface directly to the Configuration Library, and each instance will require 
its own JDBC. Tools and scripts will be started and stopped throughout the night, so the actual 
number of open database connections will vary.  
 

2.1 Database Schema 
The database schema is divided into three sets: class definitions, instances, and management. Class 
definitions constitute all of the relational tables that define the structure, properties, and default 
values of KCSF classes. Every component in the system that utilizes configuration must have a 
corresponding class definition in the database. As classes are added to the KCSF infrastructure new 
definitions must be created to map configuration attributes to code. The following schema defines 
class structure within the database, and will be used to generate instances. 
 

 
 

Figure 3: Class Schema 
 
Instances cover all tables and properties that represent application components and define their 
configuration state. Every instance of a KCSF component that utilizes configuration will have a 



 

NGAO Configuration Service  6

dedicated database instance. All instances in the database are mapped to one of the database class 
definitions. At run-time KCSF components will query the database for their configuration to obtain 
their initial state and properties. The following diagram details the hierarchical relationship of 
instance items in the database. 
 
 

 
 

Figure 4: Instance Schema 
 

he final set of tables is responsible for the management, versioning, and administrative 
aintaining 

2.2 Versioning 
e designed to provide versioning capabilities for configuration 

 
T
requirements of the system. These tables relate primarily to the general requirements of m
a database.  
 

The database model will b
information.  



 

NGAO Configuration Service  7

Container Manager

Tag 1

Tag 2

Container 1

Tag 1

Tag 2

Container 2

Tag 2

Component 3

Tag 2

Component 1

Tag 1

Tag 2

Component 2

Tag 1

 
 

Figure 5: Data Versioning 
 
Figure 3 above shows a versioning example for a simple KCSF system. The system is comprised of 
a container manager, containers, and components. Two versions of the system exist, identified by 
unique version ids: ‘Tag 1’ and ‘Tag 2’.  
 
Tag 1 represents an early version of the system. In this version there was a single container that 
managed two components (Component 1 and Component 2). At some point the developers decided 
that it was necessary to make modifications to the design. The current database configuration was 
tagged, and the developers started with the modifications. 
 
A new component (Component 3) needed to be added to the system, and based on resources it was 
decided a separate container would be used to manage this component. After a design review the 
developers realized that they could combine the functionality of Component 1 and Component 2, 
simplifying the overall system communication. The product of their upgrade work can be seen in the 
database layout identified by ‘Tag 2’. In this version, a new container and component (‘Container 2’ 
and ‘Component 3’) were added to the system. Component 2 being obsolete is no longer part of the 
second version, and is not referenced by Container 1. 
 

2.2.1 Tag 
At some point in the development and testing of a system the configuration data will need to be 
preserved. This process is known as tagging, and is responsible for taking a snapshot of the active 
database and associating it with a user defined ID. The database allows users to create new tags or 



 

NGAO Configuration Service  8

overwrite old tags. When an old tag is overwritten, all of the items’ original configuration values that 
are affected by the tag process will be lost (retrievable only by restoring the database from a 
previous backup). 
 
Each unique tag operation creates a new version in the database. The version is a complete 
duplication of the database, and is maintained as read-only.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Version_X

Version_2

Version_1

Active Database

Figure 6: Database Versions 
 
 
A database can hold multiple versions simultaneously making it easier and faster to revert to a 
previously tested version. Although you can not modify the state of a version directly, you can 
overwrite an existing version, completely replacing it in the database. 
 

2.2.2 Checkout 
The process of restoring a specific version of the database is called checkout. When a checkout is 
performed the current state of the active database is completely overwritten by the values and 
relationships defined in the tagged version. Modifications to the active database will not impact the 
saved version. To update an existing version you must perform a tag with the associated version ID. 
 



 

NGAO Configuration Service  9

3.0 Configuration Library 
The Configuration Library provides the methods, functionality, and administrative controls to the 
Configuration Database. Clients use the library to connect to the database through the KCSF 
Configuration Service and standalone tools. The configuration library is organized into two distinct 
interfaces: administrative and client. The client interface provides basic read-only access to 
configuration data: this is the standard interface used by the Configuration Service. The 
administrative interface adds upon that by providing functionality to modify the contents and 
structure of the database.  
 

3.1 Design 
The Configuration Library is a KCSF Java module that wraps JDBC, acting as a translation layer 
between SQL queries and framework compatible types (Attribute Lists). Database schemas and 
relationships are defined within the library allowing the module to expose simple methods for 
otherwise complex SQL statements. Changes to the database schema or table relationships will need 
to be updated in the library to maintain compatibility. 
 

3.2 Client Interface 
The client interface exposes read only capabilities to users. Within the Keck Common Services 
Framework, the primary user of the client interface is the Configuration Service. This service is the 
main access point for all KCSF components, and therefore, in the majority of systems, will constitute 
the highest number of connections to the database. 
 
The following defines the client interface: 
 

public class ClientInterface { 
 
 public IAttributeList read(String name); 
 public IAttributeList query(String statement); 
}; 

 
The client interface has the following methods: 

 read – Returns the data associated with the component specified by the fully qualified name. 
The following information is returned for each class of component: 

o Container Manager – The manager’s properties and a list of all container names. 
o Container – The container’s properties and a list of all component names. 
o Component – The component’s properties and a list of all its attributes. 
o Attribute – The attribute’s metadata. 

 query – Returns the full qualified names of the components or attributes selected by the 
query. 

3.3 Administrator Interface 
The administrator interface extends the client interface by providing users with the ability to modify 
the state of the database. The Configuration GUI and other KCSF scripts will utilize this interface to 
interact with the database. Other scripts and tools can be developed by users to modify the database 
outside of the Framework. The administrator interface will be inaccessible from within the KCSF 
container / component framework. 



 

NGAO Configuration Service  10

 
The following defines the administrator interface: 
 

public class AdministratorInterface extends ClientInterface { 
  
 public boolean Modify (String name, String value); 
 public boolean AddInstance(String name, String class); 
 public boolean RemoveInstance(String name); 
 public boolean LoadDatabase(String path); 
 public boolean SaveDatabase(String path); 
 public boolean CreateVersion(String ID); 
 public boolean LoadVersion(String ID); 
 public boolean RemoveVersion(String ID); 
 public boolean DefineClass(String name, String inherits = null); 
 public boolean DefineAttribute(String class, String name, String Type,  

IAttributeList metadata = null); 
 public boolean RemoveClass(String name); 
 public boolean RemoveAttribute(String name); 
 
} 

 
The administrator interface has the following methods: 

 Modify – Modifies the value of the property identified by the fully qualified name. This must 
reference an attribute or metadata value (including manager and container poperties).  

 AddInstance – Add a new instance to the database of the specified type based on the fully 
qualified name. The hierarchy defined by the name must exist for an instance to be created. 

 RemoveInstance – Removes an existing instance from the database. In the case of managers 
and containers, all children must be removed before subsequent removal. 

 LoadDatabase – Loads a database from disk. 
 SaveDatabase – Saves the current database to disk. 
 CreateVersion – Saves a version of the active workspace within the database associated with 

the specified ID. 
 LoadVersion – Replace the active workspace with the version specified by the ID. 

Modification to the active workspace will not modify the saved version, unless overwritten 
with a call to CreateVersion. 

 RemoveVersion – Remove a version from the database. 
 DefineClass – Create a new class definition placeholder in the database. The placeholder will 

be empty of attributes unless an inheritance is explicitly specified. 
 DefineAttribute – Add an attribute to the specified class: all instances of the parent class will 

reflect the addition of this attribute. The attribute’s type must be specified, and an optional 
list of meta-data value can be provided. Instances of this attribute will automatically be 
populated with the provided meta-data values. If the attribute already exists in the system the 
class definition will be updated. If the type has changed all instances of the parent class will 
be updated. If only the metadata has changed instance will not be affected.  

 RemoveClass – Removes a class definition from the database. All instances of the class must 
be removed before subsequent removal. 

 RemoveAttribute – Removes an attribute from a class definition: all instances of the parent 
class will be updated to reflect the removal of the attribute. 



 

NGAO Configuration Service  11

4.0 Configuration Service API 
The Configuration Service is the primary means of access of configuration information for software 
components. The service acts as the bridge between the KCSF and the Configuration Database, and 
provides software with read-only access to configuration information. The following pseudo-code 
details the Configuration Service interface. 
 
interface IConfigurationService extends IServiceTool { 
 public IAttributeList getContainerManagerConfiguration(String ManagerName); 
 public IAttributeList getContainerConfiguration(String ContainerName); 
 public IAttributeList getComponentConfiguration(String ComponentName); 
 public IAttributeList getMetaData(String AttributeName); 
}; 
 
Configuration Service implementations provide the capabilities to acquire configuration data for 
each of the base KCSF types. There is a specific method for Container Managers, Containers, and 
Components that accept a fully-qualified name used to lookup the information relevant to each of 
these types. The Configuration Service utilizes attribute lists to return data to the invoking object. 
The specific format of the attribute lists varies for each method and is detailed in the following 
sections. 
 

4.1 getContainerManagerConfiguration 
This method returns an attribute list containing all of the Manager’s configuration information. 
Specifically, this is a set of symmetric lists defining all of the containers the manager will be 
responsible for deploying. 
 
IAttributeList: 

- ContainerName : String [] 
- ContainerClass : String [] 
- ContainerType : String [] 
- ContainerHost : String [] 

 
A container is defined by a name, Java class, type, and host machine. With this information the 
Manager will be able to find, load, create, and deploy any number of Container instances. 
 

4.2 getContainerConfiguration 
This method returns an attribute list containing all of the Container’s configuration information. 
Specifically, the configuration defines the name and Java class for all of the KCSF services, and a 
set of symmetric lists defining all of the components that will be maintained by the Container. 
 
IAttributeList: 

- ConnectionServiceName : String 
- ConnectionServiceClass : String 
- EventServiceName : String 
- EventServiceClass : String 
- LogServiceName : String 
- LogServiceClass : String 



 

NGAO Configuration Service  12

- HealthServiceName : String 
- HealthServiceClass : String 
- ComponentName : String [] 
- ComponentClass : String [] 
- ComponentType : String [] 

 
Each service will be defined in the attribute list by type. The Container only needs to know the name 
and specific class to load and create a service. Similarly, components are defined by a name, Java 
class, and a type. The container will use this information to load, create, and initialize each of its 
child components.  
 

4.3 getComponentConfiguration 
The getComponentConfiguration method returns an attribute list containing the configuration 
information for a component.  
 
IAttributeList: 

- AttributeName : <Type> 
 
Component configuration is simply a name-value pair for each of the object’s configurable 
members. The value returned for each attribute is the default as defined in the Configuration 
Database. The type of the attribute can be any of the KCSF enumerated types. Meta-data is also 
associated with each Component attribute (the default value being one of those meta-data items). 
After the component has obtained it’s list of attributes it will query the Configuration Service for 
each attributes meta-data through the getMetaData method. 
 

4.4 getMetaData 
This method returns an attribute list containing all of an attribute’s metadata. AttributeName must be 
a fully qualified unique name. 
 
IAttributeList: 

- DefaultValue : <Type> 
- MinValue : <Type> 
- MaxValue : <Type> 
- LOLOAlarm : <Type> 
- LOAlarm : <Type> 
- HIAlarm : <Type> 
- HIHIAlarm : <Type> 
- Type : String 

 
Every attribute will have associated with it a set of meta-data properties. These include the default 
value, type, and if applicable, min /max and alarm values. Components and their subclasses can use 
this information to determine acceptable value ranges and trigger automatic alarms if any of the 
thresholds are crossed.  
 



 

NGAO Configuration Service  13

5.0 CCM Configuration Model 
The configuration service is used by the majority of the KCSF application objects. At the highest 
level is the Container Manager. This object is responsible for deploying and initializing containers 
on specific hosts. However, since Container Managers are themselves a type of Component, and can 
not be created on their own, a Container is used to instantiate the Manager. From the Container’s 
perspective the Manager will be treated like any other component, and as such the Container will 
behave in the standard way: configuration will be read from the database, the Manager will be 
created, and services injected.  
 

5.1 Container Managers 
After the Manager has been created and is put into its initialization phase it will be ready to create 
and deploy child Containers. The Manager will execute the Configuration Service’s 
getContainerManagerConfiguration, passing in its fully qualified name. The service will return an 
Attribute List defining all of the containers and their properties in symmetric sequences (index N in 
each sequence pertains to container N). The Manager will use this information to create each 
container, and start the process or task on the appropriate host. The Manager will obtain 
communication proxies with each of the Containers before entering an idle state. The Manager will 
remain in this state until it is commanded by a user, or is shutdown. 
 

5.2 Containers 
Containers are responsible for initializing services and creating and deploying components. A 
Container will obtain its configuration information from the Configuration Service through the 
getContainerConfiguration method. The Configuration Service will return an Attribute List defining 
all of the additional services and components the Container will need to create. 
 
Services are defined by a name and Java class type, and the Container will use this information to 
load the associated class code and create service instances. After the services are instantiated they 
will be initialized and ready for use by components.  
 
Components are defined by a name, class, and type identifier. The Container will once again use a 
Java loader to create instances of each component, followed by injection of services, and object 
initialization. Once the objects have completed their startup phase the Container will deploy them for 
use. 
 

5.3 Components 
Components are responsible for implementing the functional requirements of a system, and are 
created, deployed, and managed by Containers. When a Component is created it will be provided 
with all of its services and dependencies. Components obtain their configuration during the startup 
phase. This is done by executing the getComponentConfiguration method on the Configuration 
Service. The service will return an attribute list containing all of the named attributes and properties 
of the Component and their default value. Java reflection can be used to automatically configure a 
component, or the attribute data can be passed up to user defined method for processing. 
 



 

NGAO Configuration Service  14

Once the Component’s members have been initialized, the meta-data for the attributes will need to 
be collected. Meta-data exists for each configurable attribute, and defines properties for the attribute 
including its type and default value. The Component will iterate through each attribute obtained 
during the previous Configuration Service call, and pass the fully-qualified attribute name to the 
getMetaData method. This will return an attribute list containing all of the attribute’s meta-data. A 
map will be maintained by the component to associate the read-only meta-data with each 
configuration attribute.  
 
 



 

NGAO Configuration Service  15

6.0 Administration Tools 
Users and operators will be provided with a set of tools to configure and maintain the Configuration 
Database. Simple tasks such as loading a specific version, saving a new version, or making or 
restoring a database backup will be provided in the form of simple command line scripts. More 
complex tasks such as setting values and adding or modifying objects will be performed through an 
operator GUI. All script and GUI tasks are performed through the Configuration Library API.  
 

6.1 Scripts 
Scripts provide a simple and fast way to access the configuration database without having to bring 
up and navigate a GUI or tool. Since scripts are only command line tools they are not intended for 
complex operations. As such scripts only provide functionality for a subset of the available 
configuration capabilities.  
 
The following scripts will be available: 

 Start and shutdown a Configuration Server / database. 
 Save and restore a database backup. 
 Save and load version(s). 
 Text dump of the database. 

 
 

6.1.1 Database Builder 
An additional utility that can aid in the development process is a script that will convert code into a 
corresponding class configuration definition. This script would accept a path to one or more class 
files annotated with special tags that define the configurable attributes. When the script parses the 
file(s) it will create a class definition and add it to the database. This utility will allow developers to 
easily create the framework of a project without having to manually define classes twice – once in 
code the other in configuration.  
 
The following example shows what would be generated by the script from a simple Java class. 
 
Java Class: 
 
/** 
 * @ConfigAttribute double ExposureRate 
 * @ConfigAttribute int Binning 
 * @ConfigAttribute string Vendor 
 * / 
class Camera extends Controller { 
 public Camera(); 
 … 
 
 protected double ExposureRate; 
 protected int Binning; 
 protected String Vendor; 
} 
 
 



 

NGAO Configuration Service  16

Database: 
 

ClassInheritance 
ClassName Inherits 

Component  
Controller Component 
Camera Controller 
…  
 

ClassDefinition 
ClassName AttributeName Type DefaultValue MinValue MaxValue … 

…       
Camera ExposureRate double 0.0    
Camera Binning integer 0    
Camera Vendor string “”    
…       
 

Figure 7: Class Definition Example 
 

6.2 Configuration GUI 
The Configuration GUI represents the primary means for full database control and manipulation. 
The GUI will provide all of the functionality available in the scripts, as well as utilize the full extent 
of the Configuration Library administrator interface: 

 Add, modify and remove objects, attributes, and metadata. 
 Perform complex queries and custom windowing. 
 Data validation and version comparison. 
 Display version history and details. 
 Define base types and default values. 

 
The GUI will be divided into two views: class definitions and instances. The class view allows users 
to define the structure of primitive and complex types in the database. Every KCSF class will have a 
corresponding definition in the database. Additional project specific types can also be defined. When 
it comes time to creating a configuration for an application, the user would create an instance of a 
class definition. Instances are shown in the instances view, and define the configuration values for a 
specific object in the system. A user can modify the values of an instance, but can not modify its 
structure from this view.  
 

6.2.1 Class Definitions 
The Class Definition panel shows all of the database definitions of KCSF class types.  In this panel a 
user can create, remove, or modify the definition of a class. A class is defined by a name, optional 
inheritance, and a set of named attributes and their type. The type of the attributes must be one of the 
KCSF enumerated types (primitives and sequences). For each attribute, meta-data and a default 
value can be specified. 

 



 

NGAO Configuration Service  17

 
 

Figure 8: Example Class View 
 
Modifications to an existing class definition will automatically be applied to all instances of the 
class. Modifications to existing attribute will only be applied to existing instances if the type of the 
attribute has been changed. 
 

6.2.2 Instances 
The Instances panel shows all of the object configurations for a project. From this panel a user can 
add and remove instances from a project, and modify their configuration values. When an instance is 
added it will automatically be populated with the default values specified in the class definition. 
Navigating to the object will allow the user to change these defaults and customize the configuration 
for the application object it models.  
 

6.2.3 Navigation 
There are two modes of navigation separated into distinct views: component view and system view. 
Component view presents a simple detailed listing of all the objects in the system in an alphabetical 
organized order. You can search by name for a component and open it up to modify its 
configuration. System view displays objects as hierarchical tree, showing their relationships to other 
objects in the project. The tree is built dynamically by inspecting the mappings in the instance tables. 
(Note: System view is only available in the Instances Panel.) 
 
6.2.3.1 Component View 
The component view presents a simple listing of all the instances defined for a project. 
 



 

NGAO Configuration Service  18

 
 

Figure 9: Example Component View 
 

 
The list can be sorted by type and alphabetized -- opening an item will show its configuration 
information in a side panel. The advantage of this view is that it can provide immediate access to an 
object’s configuration information. If you know the name of the object you simply scroll to it, and 
bring up its configuration. 
 
 
6.2.3.2 System View 
The system view allows users to browse objects in a hierarchical fashion, as they would be deployed 
at run-time. 
 

 
 

Figure 10: Example System View 
 
This view presents users with an easy to navigate hierarchy of object names. On the left of the screen 
is a list of all the top-level items (Container Managers). These items can be expanded to show a tree 
of all their immediate sub-items (Containers). In turn each of these items can be expanded to show 
their sub-items (Components). Clicking on any of the objects in the tree will present the associated 



 

NGAO Configuration Service  19

configuration information in a side window. You can also add or remove objects from the hierarchy 
by clicking on an item and selecting the desired operation. 
 
This view is ideal for visualizing and modeling the system lay out, and makes it easier for traversing 
and finding relationships between components.  
 
 
 



 

NGAO Configuration Service  20

Appendix 
 
Java JDBC: 
http://java.sun.com/docs/books/tutorial/jdbc/index.html 
 
 

http://java.sun.com/docs/books/tutorial/jdbc/index.html

	1.0 Introduction
	2.0 Configuration Model
	2.1 Database Schema
	2.2 Versioning
	2.2.1 Tag
	2.2.2 Checkout


	3.0 Configuration Library
	3.1 Design
	3.2 Client Interface
	3.3 Administrator Interface

	4.0 Configuration Service API
	4.1 getContainerManagerConfiguration
	4.2 getContainerConfiguration
	4.3 getComponentConfiguration
	4.4 getMetaData

	5.0 CCM Configuration Model
	5.1 Container Managers
	5.2 Containers
	5.3 Components

	6.0 Administration Tools
	6.1 Scripts
	6.1.1 Database Builder

	6.2 Configuration GUI
	6.2.1 Class Definitions
	6.2.2 Instances
	6.2.3 Navigation


	Appendix

