

Author Modified Notes
Douglas Morrison 7/31/09 NGAO Sequencer Architecture Design

NGAO Software Architecture

KAON 674: Sequencer Architecture Design

NGAO Sequencer Architecture Design 2

1.0 INTRODUCTION 3

2.0 SEQUENCER OVERVIEW 4

3.0 STATE MACHINES 6

3.1 DEFINING A STATE-MACHINE 6
3.1.1 COMMON STATES 7
3.1.2 DEVELOPING WITH SMC 8
3.2 HANDLING TRANSITIONS 9

4.0 TASKS AND EXECUTORS 10

4.1 USING TASKS 10
4.2 SELECTING AN EXECUTOR 11

5.0 SCRIPTING 12

6.0 DEPLOYMENT 13

7.0 COMMANDING A SEQUENCER 14

REFERENCES 15

NGAO Sequencer Architecture Design 3

1.0 Introduction
Sufficiently complex system built with the Keck Common Services Framework (KCSF), such as the
Next Generation Adaptive Optics (NGAO), will comprise dozens or hundreds of devices and
systems. During normal operation these components will need to be coordinated and managed
throughout the distributed control system to perform their required tasks. Users and developers of
KCSF systems will need a means of efficiently building and coordinating the command logic
between these devices in an organized and repeatable way. The solution will need to manage many
different types of concurrently executing commands, provide common mechanisms for control and
synchronization, and be able to handle many disparate low-level interfaces.

This document details the KCSF Sequencer API and how it can be used to effectively coordinate and
manage a distributed system to perform complex tasks.

NGAO Sequencer Architecture Design 4

2.0 Sequencer Overview
Sequencers are implemented as a state driven KCSF controller with added functionality for
command execution and management. As a controller, Sequencers are capable of receiving
commands, sending responses, pushing events, and triggering alarms. As with other types of KCSF
components, a Sequencer instance is defined by a unique name within the system. Sequencers will
implement the standard get / set / execute Controller interface, which will be used to command the
sequencer and issue state transitions.

An additional benefit to developing sequencers as Controllers is that tasks can be used to allow one
sequencer to command another. In this way, a hierarchy of sequencers can be created allowing the
developer to organize sequencers within domains, all of which can be commanded by a single high-
level multi-system command sequencer.

MSCS

AO LASER TELESCOPE

Figure 1: Multi-System Command Sequencer

States are used to organize a set of related tasks to perform a single coordinated control sequence
(for example, acquiring a target). Operators issue transitions to Sequencer instances through the
KCSF middleware as they would execute actions on standard device controllers. The developer is
responsible for defining the states and transitions for a sequencer, and assigning the tasks that will be
executed within each state.

The Sequencer’s main system control functionality comes from task implementations defined in the
Task Library. Sequencers are responsible for providing the execution environment for the tasks they
will use. Typically a sequencer will utilize an existing lifecycle management object to perform task
scheduling and execution. Alternatively a custom executor can be created to provide unique task
management if required by the sequencer design. As most sequencers rely on immediate execution
of tasks (as opposed to scheduled), many of which contain parallel command processing, the Task
Library Command Thread-pool Executor is an ideal management mechanism for sequencers. This
executor implements a queuing thread-pool, which will allow the sequencer to issue multiple
commands simultaneously, as well as utilize concurrent tasks defined in the Library.

Although a task’s functional requirements tend to be static after development, it is not unusual for a
sequencer’s requirements and control flow to evolve as the system matures, and operators’
understanding of it improves. As such, the Sequencer design offers developers and users with the
ability to modify the execution of a sequencer without making direct modifications to the sequencer
code (this can even be done dynamically at run time). The ability to modify a sequencer’s task
control is provided through the KCSF Script Engine. This utility enables the loading and execution
of external scripts which can be written in a number of different programming languages.
Developer’s can substitute state task(s) with scripting, allowing users to modify the execution logic
as needed.

The following diagram details the basic Sequencer design concept and relationships.

NGAO Sequencer Architecture Design 5

KCSF Sequencer

 State
Machine

Figure 2: Sequencer Design

 Script
Engine

 Executor

Task Library

Task

Task

Task

Scripts Task

NGAO Sequencer Architecture Design 6

3.0 State Machines
Typically, Sequencers will implement a well defined State Machine to control the execution of steps
in an observing sequence. The State Machine design pattern does this through the use of states and
transitions. States represents the current configuration of the sequencer and transitions represent the
valid paths that can be taken to a new configuration. In a state diagram, states are usually depicted as
circles and transitions as arrows, both of which have an associated name.

Figure 3: State Machine Diagram

The various states and transitions a sequencer will implement must be determined during the design
phase of the sequencer, and is based on the intended functionality of the sequencer. It is within the
transition process that the business logic of the sequencer is executed and tasks are performed.

3.1 Defining a State-Machine
Each sequencer will have its own unique state mappings based on the role it will fill. These
mappings are typically built into the code of the Sequencer or represented by an external class. A
suggested freeware tool that can be used to develop state mappings is the State Machine Compiler
(SMC). This java application takes a file containing the user defined state-transition mappings and
generates a fully operable state machine in the desired target language (e.g. Java). The Sequencer
implements the business logic for the transitions, and binds to the state-machine instance. Invocating
transitions on the state-machine will execute the corresponding tasks and set the new state.

Figure 4: Executing Transition Logic

State Machine

C

Task
A->B

A B

Sequencer

B() C()

Task
B->C

transition

INIT

START

StandbyInitialize

STBY

NGAO Sequencer Architecture Design 7

Developing a state-machine, and by extension a Sequencer, requires careful consideration to account
for all of the intended responsibilities of the design. Each state should reflect a specific configuration
or step identified within a science or motion control sequence.

3.1.1 Common States
Although each Sequencer will have many unique states, there are a set of states that will be common
to all Sequencers. Theses states are derived from the standard state-machine design used by
hardware devices – the control targets for the majority of Sequencer implementations.

 START – the entry state of the Sequencer. It is assumed that a Sequencer in this state has
recently been created, but not yet initialized or configured.

 INIT – the initialization and configuration state of the Sequencer. Typically the operations
performed during this state only need to be performed once after startup. This may include
gathering configuration information, creating and initializing class members, and obtaining
services.

 REINIT – a fast or repeatable initialization phase. This state typically implements a set of the
Sequencer initialization that may have to be repeated multiple times during a night (e.g.
connecting to devices, refreshing telemetry, etc.) Usually execution of the INIT state will
automatically transition through REINIT, and then to STANDBY.

 HALT – indicates that an operation has been interrupted. This is usually entered by explicit
command from the operator.

 STANDBY – the Sequencer is in an idle state, and is ready to receive and process commands.
 SHUTDOWN – the termination state of the Sequencer. This state is responsible for closing

connections, releasing resources, and shutting down the Sequencer.
 FAULT – this state indicates that an unhandled or non-recoverable error has occurred and the

sequencer had to stop. Operator intervention is expected to resolve the problem.

In addition, Sequencers that are responsible for acquiring targets or positioning devices will also
typically use a SLEW / TRACK state pattern. In this design, any Sequencer operation that involves
starting a process and then waiting for one or more devices to achieve a specific state will quickly
execute the task(s), and enter a SLEW state. The sequencer will wait in the SLEW state until the
tasks are complete.

 Acquire
 SLEW TRACK

ACQUIRE ACQUIRE

Figure 5: SLEW-TRACK States

The SLEW state is known as a transient state: a temporary state that will automatically transition out
when an internal event occurs (i.e. not caused by an explicit user action). When the devices have
reported in position the task will issue its own transition to move to the TRACK state. As with other
states, if there is a problem during the task execution of a transient state the state machine will
typically enter FAULT to signal a system error.

NGAO Sequencer Architecture Design 8

3.1.2 Developing with SMC
The State Machine Compiler library is used to convert state-transition mappings into a callback
processing class. Developers define a state machine using the SMC syntax. For each state, the
mapping will define each of the available transitions and the target state when the transition
completes. The following example illustrates a simple SMC mapping for a single state.

START
{
// START will recognize and accept an Init(void) transition.

 Init()
 // When the transition completes the state machine will
 // be put into the INIT state.
 INIT
 {
 // The transition process will execute the
 // InitializeTask routine defined by the Sequencer.
 initializeTask();
 }

 Fault()
 FAULT
 {
 }
 }

The compiler will read this definition in the following way:

 The state machine will posses a START state.
 The START state can be left by issuing an Init or Fault transition.
 When an Init is issued the machine will transition to the INIT state, after executing

InitializeTask.
 When a Fault is issued the machine will transition directly to the FAULT state.

Only those transitions and tasks defined in the mapping will be permitted. If the client attempts to
issue a transition not recognized by the current state an exception will be thrown. The following
pseudo-code details the interface produced when the mapping is compiled.

public class GeneratedStateMachine {
 public GeneratedStateMachine(<Type> machineImplementation);

 public void Init();
 public void Fault();
}

The machineImplementation parameter of the class constructor refers to the actual object that
implements the state machine transition tasks (e.g. InitializeTask). This will be a reference to the
Sequencer itself.

public class Sequencer extends Controller {
 public Sequencer(…) {
 this.stateMachine = new GeneratedStateMachine(this);
 }

 public void initializeTask() {
 // Implements the actual work to be performed for an INIT

NGAO Sequencer Architecture Design 9

 }

 ...
}

The SMC syntax offers additional capabilities including transition parameters, conditions, guards,
code injection, default transitions and more. See the appendix for more information on the SMC
compiler.

3.2 Handling Transitions
As a Controller subclass, Sequencers will receive transition requests from clients through the execute
method. Transitions are defined in Attribute Lists in a similar way as standard device commands,

 The reserved _Action keyword defines the transition. This may be a string, integer, or other
compatible type.

 Parameters custom to the transition will be defined in additional attributes. It is the
responsibility of the client to be aware of all the attributes required by the sequencer.

The doExecute of the Sequencer is responsible for transitioning the state machine, and may be
implemented in the following way.

void doExecute(IAttributeList command) {
 int transition = command.getString(“_Action”);
 switch(transition) {
 case INIT:
 // Get additional parameters, if required by transition.
 // Issue transition.
 this.stateMachine.Init();
 break;
 ...
 }
}

When executing a transition on the internal state machine, the Sequencer’s thread will block until the
transition task has completed, and the state machine enters the target state. This should be kept in
mind when determining the default size for the Controller’s thread pool. At a minimum two threads
should be active to allow the user to halt or asynchronously command the Sequencer while a
transition is being processed.

NGAO Sequencer Architecture Design 10

4.0 Tasks and Executors
The business logic of a Sequencer is executed during state transitions when the callbacks are
performed. A developer can implement the functional requirements of a transition in a number of
ways, but an effective technique is to use KCSF Tasks. Tasks are an ideal solution for implementing
sequencer control logic because they provide a simple, scalable, and composable method to build
complex command sequences. By design, Tasks are generic and reusable, allowing developers to
mix and match commands to implement any imaginable system control requirements. As new tasks
are developed they can be saved to the Task library further expanding the capabilities available to
developers.

As mentioned earlier, Tasks must be executed within the environment of their parent application.
Although the exact implementation of a task (synchronous or asynchronous) will dictate the
requirements set on the execution environment, the majority of Sequencer tasks will require parallel
task processing and execution. The KCSF Task Library provides a Command Thread-pool Executor
that will allow Sequencer developers to fully utilize concurrent and complex tasks defined in the
library.

4.1 Using Tasks
The Task library is publicly available to all users of the Keck Common Services Framework. The
Task module will contain a number of implementations from simple tasks that control a single
device, to complex nested tasks that can command an entire system. Usually a task will be designed
to perform a single logical function (e.g., positioning a stage or acquiring a target with the AO).
Compound tasks are formed by the combination of simple tasks with sequential and concurrent
meta-tasks. The Sequencer developer would use these components to build a command sequence to
be executed during a state transition.

public class Sequencer : public Controller {
 public Sequencer() {
 ...
 }

 public void initializeTask() {
 OpenShutter shutter = new OpenShutter(“ngao.ao.prishutter”);
 AlignSensor sensor = new AlignSensor(“ngao.ao.wfs”, “ngao.ao.wl”, 2.0);
 Task [] tasks = new Task[2];
 tasks[0] = shutter;
 tasks[1] = sensor;

 SequenceTask seq = new SequenceTask(tasks);

 seq.initialize();
 seq.run();
 }

 ...
}

This example details the creation and execution of a simple sequential compound task. The
initializeTask method is executed by the State Machine object during the transition to INIT. Task
instances are created of the hypothetical OpenShutter and AlignSensor library tasks. OpenShutter

NGAO Sequencer Architecture Design 11

represents a simple task that opens a single shutter. The AlignSensor task represents a compound
task that will control a sensor and light source with the desired voltage. The instances are added to
an array, and feed to the constructor of a sequential task. The sequential task is then initialized and
run. Once the task completes the transition callback will return and the state machine will move to
the INIT state.

Since tasks are fully self contained they can be created at an early stage in the life cycle of the
Sequencer and simply invoked during the transition callbacks. For example, all of the tasks created
in initializeTask, could be created in the constructor, saved as a class member, and executed during
the transition.

public class Sequencer : public Controller {
 public Sequencer() {
 OpenShutter shutter = new OpenShutter(“ngao.ao.prishutter”);
 AlignSensor sensor = new AlignSensor(“ngao.ao.wfs”, “ngao.ao.wl”, 2.0);
 Task [] tasks = new Task[2];
 tasks[0] = shutter;
 tasks[1] = sensor;

 this.InitializeTask = new SequenceTask(tasks);

}

 public void initializeTask() {
 this.InitializeTask.initialize();
 this.InitializeTask.run();
 }

 ...
}

4.2 Selecting an Executor
The Command Thread-pool Executor is designed to provide an application with queued management
and multi-thread execution of tasks.

T.B.D

NGAO Sequencer Architecture Design 12

5.0 Scripting
The Framework provides sequencer developers and users with the flexibility to modify an observing
sequence or its functionality without impacting the sequencer code itself. This is done through the
KCSF Script Engine. This utility allows developers to load and process external scripts used to
control the execution of state tasks dynamically (even at runtime).

The business logic of a sequencer exists in the implementation of the state machine transition
callbacks. Up till now we have discussed executing Tasks during these callbacks to perform the
system control. However an alternate solution (or to be used in conjunction with Tasks) is to have
the callback load and execute script(s) defined by the developer, and specified in configuration.

public void initializeTask() {
 script = ScriptEngine.load(this.pathToInitScript);
 script.execute();
}

The script would be responsible for providing the functionality for the transitions. Since scripts
executed through the Script Engine are able to use the KCSF services and can be given access to
class members, a script developer can utilize any of the tasks and functionality available to the
sequencer itself. Operators can fine tune script properties as the sequencer is running, or can modify
the entire sequence if a better solution is discovered.

NGAO Sequencer Architecture Design 13

6.0 Deployment
As a KCSF controller subclass, Sequencer instances are deployed using Containers. As with other
deployable components, it is up to the developer / operator to properly balance the load of each
container host to make sure there are sufficient resources available for use. Multiple sequencers and
components can be deployed per container, or a dedicated container can be created for each
Sequencer. (The latter is the safest since you would be able to restart an individual sequencer
without affecting others.)

When a Sequencer is deployed by a Container it will be initialized and put it into its command-ready
state. At this point clients can connect to the Sequencer and issue transitions.

NGAO Sequencer Architecture Design 14

7.0 Commanding a Sequencer
Clients can connect to a sequencer instance by obtaining a proxy reference from the Connection
Service. It will be the responsibility of the sequencer’s parent Container to perform the initialization
of the sequencer to prepare it for commanding. Once the client has a valid proxy they can issue
transitions to the sequencer.

Transitions are issued through the sequencer’s execute method by configuring a CommandSet with
the required transition information. Each transition may have its own unique parameters so clients
must be aware of what each transition requires.

CommandSet command = new CommandSet(“Acquire”);
command.set(“TargetName”, “HD13089”);

if(!TelescopeSequencer.execute(command, null)) {
 // Failed to issue command. Reconnect to Sequencer?
}

In this example a transition request is created to acquire a target with the telescope sequencer. For
this transition only one argument is required, TargetName. This argument is used to lookup target
information (such as coordinates) in a star catalog. The command is then sent to the sequencer
through the execute method.

The advantage of using the Controller execute method to dispatch transitions is that it will utilize the
controller thread pool to allow the Sequencer to operate asynchronously. This permits a user to
interrupt or alter a sequence by issuing a halt, standby, etc.

NGAO Sequencer Architecture Design 15

References

State Machine Compiler (SMC) Website:
http://smc.sourceforge.net/

KCSF Script Engine

KCSF Tasks

http://smc.sourceforge.net/

	1.0 Introduction
	2.0 Sequencer Overview
	3.0 State Machines
	3.1 Defining a State-Machine
	3.1.1 Common States
	3.1.2 Developing with SMC

	3.2 Handling Transitions

	4.0 Tasks and Executors
	4.1 Using Tasks
	4.2 Selecting an Executor

	5.0 Scripting
	6.0 Deployment
	7.0 Commanding a Sequencer
	References

