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1.0 Introduction 
Sufficiently complex system built with the Keck Common Services Framework (KCSF), such as the 
Next Generation Adaptive Optics (NGAO), will comprise dozens or hundreds of devices and 
systems. During normal operation these components will need to be coordinated and managed 
throughout the distributed control system to perform their required tasks. Users and developers of 
KCSF systems will need a means of efficiently building and coordinating the command logic 
between these devices in an organized and repeatable way. The solution will need to manage many 
different types of concurrently executing commands, provide common mechanisms for control and 
synchronization, and be able to handle many disparate low-level interfaces.  
 
This document details the KCSF Sequencer API and how it can be used to effectively coordinate and 
manage a distributed system to perform complex tasks.  
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2.0 Sequencer Overview 
Sequencers are implemented as a state driven KCSF controller with added functionality for 
command execution and management. As a controller, Sequencers are capable of receiving 
commands, sending responses, pushing events, and triggering alarms. As with other types of KCSF 
components, a Sequencer instance is defined by a unique name within the system. Sequencers will 
implement the standard get / set / execute Controller interface, which will be used to command the 
sequencer and issue state transitions. 
 
An additional benefit to developing sequencers as Controllers is that tasks can be used to allow one 
sequencer to command another. In this way, a hierarchy of sequencers can be created allowing the 
developer to organize sequencers within domains, all of which can be commanded by a single high-
level multi-system command sequencer. 
 

 

MSCS

AO LASER TELESCOPE

 
Figure 1: Multi-System Command Sequencer 

 
States are used to organize a set of related tasks to perform a single coordinated control sequence 
(for example, acquiring a target). Operators issue transitions to Sequencer instances through the 
KCSF middleware as they would execute actions on standard device controllers. The developer is 
responsible for defining the states and transitions for a sequencer, and assigning the tasks that will be 
executed within each state. 
 
The Sequencer’s main system control functionality comes from task implementations defined in the 
Task Library. Sequencers are responsible for providing the execution environment for the tasks they 
will use. Typically a sequencer will utilize an existing lifecycle management object to perform task 
scheduling and execution. Alternatively a custom executor can be created to provide unique task 
management if required by the sequencer design. As most sequencers rely on immediate execution 
of tasks (as opposed to scheduled), many of which contain parallel command processing, the Task 
Library Command Thread-pool Executor is an ideal management mechanism for sequencers. This 
executor implements a queuing thread-pool, which will allow the sequencer to issue multiple 
commands simultaneously, as well as utilize concurrent tasks defined in the Library. 
 
Although a task’s functional requirements tend to be static after development, it is not unusual for a 
sequencer’s requirements and control flow to evolve as the system matures, and operators’ 
understanding of it improves. As such, the Sequencer design offers developers and users with the 
ability to modify the execution of a sequencer without making direct modifications to the sequencer 
code (this can even be done dynamically at run time). The ability to modify a sequencer’s task 
control is provided through the KCSF Script Engine. This utility enables the loading and execution 
of external scripts which can be written in a number of different programming languages. 
Developer’s can substitute state task(s) with scripting, allowing users to modify the execution logic 
as needed. 
 
The following diagram details the basic Sequencer design concept and relationships. 
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3.0 State Machines 
Typically, Sequencers will implement a well defined State Machine to control the execution of steps 
in an observing sequence. The State Machine design pattern does this through the use of states and 
transitions. States represents the current configuration of the sequencer and transitions represent the 
valid paths that can be taken to a new configuration. In a state diagram, states are usually depicted as 
circles and transitions as arrows, both of which have an associated name. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: State Machine Diagram 
 
The various states and transitions a sequencer will implement must be determined during the design 
phase of the sequencer, and is based on the intended functionality of the sequencer. It is within the 
transition process that the business logic of the sequencer is executed and tasks are performed. 
 

3.1 Defining a State-Machine 
Each sequencer will have its own unique state mappings based on the role it will fill. These 
mappings are typically built into the code of the Sequencer or represented by an external class. A 
suggested freeware tool that can be used to develop state mappings is the State Machine Compiler 
(SMC). This java application takes a file containing the user defined state-transition mappings and 
generates a fully operable state machine in the desired target language (e.g. Java). The Sequencer 
implements the business logic for the transitions, and binds to the state-machine instance. Invocating 
transitions on the state-machine will execute the corresponding tasks and set the new state.  
 

 
 

Figure 4: Executing Transition Logic 
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Developing a state-machine, and by extension a Sequencer, requires careful consideration to account 
for all of the intended responsibilities of the design. Each state should reflect a specific configuration 
or step identified within a science or motion control sequence.  
 

3.1.1 Common States 
Although each Sequencer will have many unique states, there are a set of states that will be common 
to all Sequencers. Theses states are derived from the standard state-machine design used by 
hardware devices – the control targets for the majority of Sequencer implementations. 

 START – the entry state of the Sequencer. It is assumed that a Sequencer in this state has 
recently been created, but not yet initialized or configured.  

 INIT – the initialization and configuration state of the Sequencer. Typically the operations 
performed during this state only need to be performed once after startup. This may include 
gathering configuration information, creating and initializing class members, and obtaining 
services. 

 REINIT – a fast or repeatable initialization phase. This state typically implements a set of the 
Sequencer initialization that may have to be repeated multiple times during a night (e.g. 
connecting to devices, refreshing telemetry, etc.) Usually execution of the INIT state will 
automatically transition through REINIT, and then to STANDBY. 

 HALT – indicates that an operation has been interrupted. This is usually entered by explicit 
command from the operator. 

 STANDBY – the Sequencer is in an idle state, and is ready to receive and process commands. 
 SHUTDOWN – the termination state of the Sequencer. This state is responsible for closing 

connections, releasing resources, and shutting down the Sequencer. 
 FAULT – this state indicates that an unhandled or non-recoverable error has occurred and the 

sequencer had to stop. Operator intervention is expected to resolve the problem. 
 
In addition, Sequencers that are responsible for acquiring targets or positioning devices will also 
typically use a SLEW / TRACK state pattern. In this design, any Sequencer operation that involves 
starting a process and then waiting for one or more devices to achieve a specific state will quickly 
execute the task(s), and enter a SLEW state. The sequencer will wait in the SLEW state until the 
tasks are complete. 
 
 
 Acquire   
 SLEW TRACK 

ACQUIRE ACQUIRE 
 
 

Figure 5: SLEW-TRACK States 
 

The SLEW state is known as a transient state: a temporary state that will automatically transition out 
when an internal event occurs (i.e. not caused by an explicit user action). When the devices have 
reported in position the task will issue its own transition to move to the TRACK state. As with other 
states, if there is a problem during the task execution of a transient state the state machine will 
typically enter FAULT to signal a system error. 
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3.1.2 Developing with SMC 
The State Machine Compiler library is used to convert state-transition mappings into a callback 
processing class. Developers define a state machine using the SMC syntax. For each state, the 
mapping will define each of the available transitions and the target state when the transition 
completes. The following example illustrates a simple SMC mapping for a single state. 
 

START 
{ 
// START will recognize and accept an Init(void) transition. 

   Init()  
  // When the transition completes the state machine will 
  // be put into the INIT state. 
  INIT 
  { 
   // The transition process will execute the  
   // InitializeTask routine defined by the Sequencer. 
   initializeTask(); 
  } 
 
 Fault() 
  FAULT 
  { 
  } 
 } 

    
The compiler will read this definition in the following way: 

 The state machine will posses a START state. 
 The START state can be left by issuing an Init or Fault transition. 
 When an Init is issued the machine will transition to the INIT state, after executing 

InitializeTask. 
 When a Fault is issued the machine will transition directly to the FAULT state. 

 
Only those transitions and tasks defined in the mapping will be permitted. If the client attempts to 
issue a transition not recognized by the current state an exception will be thrown. The following 
pseudo-code details the interface produced when the mapping is compiled. 
 

public class GeneratedStateMachine  { 
 public GeneratedStateMachine(<Type> machineImplementation); 
 
 public void Init(); 
 public void Fault(); 
} 

 
The machineImplementation parameter of the class constructor refers to the actual object that 
implements the state machine transition tasks (e.g. InitializeTask). This will be a reference to the 
Sequencer itself. 
 

public class Sequencer extends Controller { 
 public Sequencer(…) { 
  this.stateMachine = new GeneratedStateMachine(this); 
 } 
 
 public void initializeTask() { 
  // Implements the actual work to be performed for an INIT 
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 } 
 
 ... 
} 

  
The SMC syntax offers additional capabilities including transition parameters, conditions, guards, 
code injection, default transitions and more. See the appendix for more information on the SMC 
compiler. 
 
 

3.2 Handling Transitions 
As a Controller subclass, Sequencers will receive transition requests from clients through the execute 
method. Transitions are defined in Attribute Lists in a similar way as standard device commands, 

 The reserved _Action keyword defines the transition. This may be a string, integer, or other 
compatible type. 

 Parameters custom to the transition will be defined in additional attributes. It is the 
responsibility of the client to be aware of all the attributes required by the sequencer. 

 
The doExecute of the Sequencer is responsible for transitioning the state machine, and may be 
implemented in the following way. 
 

void doExecute(IAttributeList command) { 
 int transition = command.getString(“_Action”); 
 switch(transition) { 
  case INIT: 
   // Get additional parameters, if required by transition. 
   // Issue transition. 
   this.stateMachine.Init(); 
   break; 
  ... 
 } 
} 

 
 
 
When executing a transition on the internal state machine, the Sequencer’s thread will block until the 
transition task has completed, and the state machine enters the target state. This should be kept in 
mind when determining the default size for the Controller’s thread pool. At a minimum two threads 
should be active to allow the user to halt or asynchronously command the Sequencer while a 
transition is being processed. 
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4.0 Tasks and Executors 
The business logic of a Sequencer is executed during state transitions when the callbacks are 
performed. A developer can implement the functional requirements of a transition in a number of 
ways, but an effective technique is to use KCSF Tasks. Tasks are an ideal solution for implementing 
sequencer control logic because they provide a simple, scalable, and composable method to build 
complex command sequences. By design, Tasks are generic and reusable, allowing developers to 
mix and match commands to implement any imaginable system control requirements. As new tasks 
are developed they can be saved to the Task library further expanding the capabilities available to 
developers.  
 
As mentioned earlier, Tasks must be executed within the environment of their parent application. 
Although the exact implementation of a task (synchronous or asynchronous) will dictate the 
requirements set on the execution environment, the majority of Sequencer tasks will require parallel 
task processing and execution. The KCSF Task Library provides a Command Thread-pool Executor 
that will allow Sequencer developers to fully utilize concurrent and complex tasks defined in the 
library.  
 

4.1 Using Tasks 
The Task library is publicly available to all users of the Keck Common Services Framework. The 
Task module will contain a number of implementations from simple tasks that control a single 
device, to complex nested tasks that can command an entire system. Usually a task will be designed 
to perform a single logical function (e.g., positioning a stage or acquiring a target with the AO). 
Compound tasks are formed by the combination of simple tasks with sequential and concurrent 
meta-tasks. The Sequencer developer would use these components to build a command sequence to 
be executed during a state transition. 
 

public class Sequencer : public Controller { 
 public Sequencer() { 
  ... 
 } 
 
 public void initializeTask() { 
  OpenShutter shutter = new OpenShutter(“ngao.ao.prishutter”); 
  AlignSensor sensor = new AlignSensor(“ngao.ao.wfs”, “ngao.ao.wl”, 2.0); 
  Task [] tasks = new Task[2]; 
  tasks[0] = shutter; 
  tasks[1] = sensor; 
 
  SequenceTask seq = new SequenceTask(tasks); 
 
  seq.initialize(); 
  seq.run(); 
 } 
  
 ... 
} 

   
This example details the creation and execution of a simple sequential compound task. The 
initializeTask method is executed by the State Machine object during the transition to INIT. Task 
instances are created of the hypothetical OpenShutter and AlignSensor library tasks. OpenShutter 
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represents a simple task that opens a single shutter. The AlignSensor task represents a compound 
task that will control a sensor and light source with the desired voltage. The instances are added to 
an array, and feed to the constructor of a sequential task. The sequential task is then initialized and 
run. Once the task completes the transition callback will return and the state machine will move to 
the INIT state. 
 
Since tasks are fully self contained they can be created at an early stage in the life cycle of the 
Sequencer and simply invoked during the transition callbacks. For example, all of the tasks created 
in initializeTask, could be created in the constructor, saved as a class member, and executed during 
the transition. 
 

public class Sequencer : public Controller { 
 public Sequencer() { 
  OpenShutter shutter = new OpenShutter(“ngao.ao.prishutter”); 
  AlignSensor sensor = new AlignSensor(“ngao.ao.wfs”, “ngao.ao.wl”, 2.0); 
  Task [] tasks = new Task[2]; 
  tasks[0] = shutter; 
  tasks[1] = sensor; 
 
  this.InitializeTask = new SequenceTask(tasks);  

} 
 
 public void initializeTask() { 
  this.InitializeTask.initialize(); 
  this.InitializeTask.run(); 
 } 
  
 ... 
} 

 

4.2 Selecting an Executor 
The Command Thread-pool Executor is designed to provide an application with queued management 
and multi-thread execution of tasks.  
 
T.B.D 
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5.0 Scripting 
The Framework provides sequencer developers and users with the flexibility to modify an observing 
sequence or its functionality without impacting the sequencer code itself. This is done through the 
KCSF Script Engine. This utility allows developers to load and process external scripts used to 
control the execution of state tasks dynamically (even at runtime). 
 
The business logic of a sequencer exists in the implementation of the state machine transition 
callbacks. Up till now we have discussed executing Tasks during these callbacks to perform the 
system control. However an alternate solution (or to be used in conjunction with Tasks) is to have 
the callback load and execute script(s) defined by the developer, and specified in configuration.  
 

public void initializeTask() { 
 script = ScriptEngine.load(this.pathToInitScript); 
 script.execute(); 
} 

 
The script would be responsible for providing the functionality for the transitions. Since scripts 
executed through the Script Engine are able to use the KCSF services and can be given access to 
class members, a script developer can utilize any of the tasks and functionality available to the 
sequencer itself. Operators can fine tune script properties as the sequencer is running, or can modify 
the entire sequence if a better solution is discovered. 
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6.0 Deployment 
As a KCSF controller subclass, Sequencer instances are deployed using Containers. As with other 
deployable components, it is up to the developer / operator to properly balance the load of each 
container host to make sure there are sufficient resources available for use. Multiple sequencers and 
components can be deployed per container, or a dedicated container can be created for each 
Sequencer. (The latter is the safest since you would be able to restart an individual sequencer 
without affecting others.) 
 
When a Sequencer is deployed by a Container it will be initialized and put it into its command-ready 
state. At this point clients can connect to the Sequencer and issue transitions. 
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7.0 Commanding a Sequencer 
Clients can connect to a sequencer instance by obtaining a proxy reference from the Connection 
Service. It will be the responsibility of the sequencer’s parent Container to perform the initialization 
of the sequencer to prepare it for commanding. Once the client has a valid proxy they can issue 
transitions to the sequencer. 
 
Transitions are issued through the sequencer’s execute method by configuring a CommandSet with 
the required transition information. Each transition may have its own unique parameters so clients 
must be aware of what each transition requires. 
 

CommandSet command = new CommandSet(“Acquire”); 
command.set(“TargetName”, “HD13089”); 
 
if(!TelescopeSequencer.execute(command, null)) { 
 // Failed to issue command. Reconnect to Sequencer? 
} 

 
In this example a transition request is created to acquire a target with the telescope sequencer. For 
this transition only one argument is required, TargetName. This argument is used to lookup target 
information (such as coordinates) in a star catalog. The command is then sent to the sequencer 
through the execute method.  
 
The advantage of using the Controller execute method to dispatch transitions is that it will utilize the 
controller thread pool to allow the Sequencer to operate asynchronously. This permits a user to 
interrupt or alter a sequence by issuing a halt, standby, etc. 
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