

Author Modified Notes
Douglas Morrison 6/30/09 NGAO Logging Service

NGAO Software Architecture

KAON 673: Logging Service

NGAO Log Service 2

1.0 INTRODUCTION 3

1.1 JAVA LOGGING 3
1.1.1 LOGGER 3
1.1.2 HANDLER 4
1.1.3 FORMATTER 4

2.0 KCSF LOG API 5

2.1 LOG LEVELS 5
2.2 LOG MESSAGE FORMAT 5
2.2.1 STANDARD FORMAT 6
2.2.2 CHARACTER DELIMITED 6
2.3 LOG HANDLERS 6
2.3.1 CONSOLE LOGGER 7
2.3.2 FILE LOGGER 7
2.3.3 DATABASE LOGGER 8
2.4 LOG SERVICE 9

3.0 USE 11

REFERENCES 12

NGAO Log Service 3

1.0 Introduction
As with any complex software project, systems developed with Keck Common Services Framework
(KCSF) will have the need to log a wide range of run-time information from simple trace messages
to system critical errors. In order to simplify the logging process a log service will be developed as
part of the KCSF infrastructure. The log service will provide developers with the ability to open and
write to a multiple log streams, each one with the option of individual customization.

To simplify the development of the log service we will utilize the native Java utility logging package
to do the processing and publishing of log information. The KCSF log service will simply wrap the
Java classes to hide the majority of the initialization and setup requirements, and provide the
standard interface as defined by KCSF.

1.1 Java Logging
The Java logging package follows a simple implementation divided into three concepts: loggers,
handlers, and formatters. Loggers are responsible for accepting and processing log messages from
the application: they are the main interface to the logging system for clients. Handlers implement the
stream functionality of a specific logging mechanism. Common handlers such as the console and file
handler are implemented as part of the Java package. Additional handlers can be developed to write
to databases or over a network by extending the base Handler class. Formatters are responsible for
converting a log record into readable text. As with handler’s, custom formatters can be developed to
suit the user’s needs. The Java package also provides a default formatter that implements a simple
time stamped event output. Each handler can use its own unique formatter, or the same one can be
used for all handlers.

1.1.1 Logger
The Logger class provides a number of methods to log messages and configure a logging system.
Messages are logged based on a specified log level. The Java utility class defines seven severity
levels for log messages,

 FINEST (lowest)
 FINER
 FINE
 CONFIG
 INFO
 WARNING
 SEVERE (highest)

Messages are issued by calling one of the log methods with an explicit log level and string message.
In addition, helper methods corresponding to each of the log level are also provided to allow clients
to implicitly assign a level to a message (e.g. Logger::warning(…)). The log level is used to
determine if the logger should ignore or process the message. A message will only be processed if its
level is greater than or equal to the logger’s. The logger level can be set with the setLevel method.
The logger will pass all log messages that are of a high enough severity level to all of its handlers for
publishing.

NGAO Log Service 4

1.1.2 Handler
The Handler class is the base class for all log publishing objects and is primarily responsible for
opening, maintaining, and closing connections to output streams. Log messages are pushed to
handlers through the publish method. This method accepts a LogRecord instance that defines a
single log message – including the level, time of creation, and the raw application message. The
publish operation is responsible for formatting the log record, and writing it to the output destination.

As with the Logger class, Handlers can be configured to filter messages based on severity levels
through the setLevel method. This allows a user to restrict the logging of application messages on a
handler-to-handler basis.

The Java logging package defines two fully implemented handlers for client use: ConsoleHandler
and FileHandler. The Console Handler is used to write data to an xterm or OS console. The File
Handler writes log messages to a file using a rotating file name (as a file reaches a defined maximum
file size it is closed and a new file is created appended with an integer suffix.) There is also a base
class implementation for a SocketHandler, which provide a simple network interface, and a generic
StreamHandler for stream based logging.

1.1.3 Formatter
The Formatter is a simple class used by Handlers to convert a log record into a human readable
string that can be written to an output. Formatters are invoked during the publish operation of the
handler through the format method. This method accepts a raw LogRecord instance and is intended
to return a single printable string. The Handler would be responsible for publishing this string to the
output.

Only one formatter can be assigned to a handler at a time, but each handler can have its own unique
formatting. For consistency it is recommended (and will be enforced by the KCSF) that a single
formatter be used for all human readable outputs. For log files that are intended for use by
applications or other post processing tools, a character / whitespace delimited format may be
required.

The Java logging package provides a simple default formatter for basic logging purposes, as well as
an XML formatter that will convert a LogRecord into XML compliant output.

NGAO Log Service 5

2.0 KCSF Log API
The KCSF Log Service will simplify the process of creating and initializing Java logging by
wrapping the classes mentioned previously with KCSF compatible interfaces. Developers will
instantiate their desired output handlers and assign them to a Log Service instance. Formatting and
handler configuration will automatically be performed by the KCSF framework during Controller
initialization.

2.1 Log Levels
Although the Java logging package provides its own severity levels they are rather generic and do
not correlate closely enough with actual categories of log messages an application would generate.
In addition, with the goal of abstracting away the actual underlying implementation of the logging
mechanism, a KCSF specific set of log levels will be defined.

public enum LogLevel {

ALL, // Log all messages
TRACE, // Trace the path of execution
DEBUG, // Debug messages
INFO, // Information message, normal operation.
WARN, // Suspicious operation, possible problem.
ERROR, // Recoverable user error has occurred.
CRITICAL, // Critical system error, recoverable.
EMERGENCY, // Non-recoverable severe failure
OFF // Disabled logging

}

The LogLevel enumeration defines seven severity levels (TRACE through EMERGENCY) plus an
ALL and OFF value, which will allow through all or none of the log messages, respectively. The
KCSF log level will map to the Java logging enumerations as follows:

(KCSF) Log Level Mappings (Java)
TRACE FINEST
DEBUG FINER
INFO FINE
WARN CONFIG
ERROR INFO

CRITICAL WARNING
EMERGENCY SEVERE

ALL ALL
OFF OFF

2.2 Log Message Format
It is common that across projects, or within the same project, multiple log message formats may be
used. In some cases this may be required, as the contents of the data or post processing purposes of
the data require a specific format. However, in many cases it is simply an oversight or the result of
each developer’s personal preference.

NGAO Log Service 6

The Keck Common Services Framework aims to reduce the amount of deviation between log files
by encapsulating the selection of the formatters within the framework itself, rather than leaving it
directly up to the application programmer. Developer’s can offer a restricted set of formats through
the implementation of each handler. The programmer would select the appropriate handler for the
purpose they need to fulfill. For example, a tab delimited file logging handler can be developed that
would produce Excel compatible data.

2.2.1 Standard Format
The following format will be used as the standard for human readable log messages (console, file,
etc.)

<Time> [<LEVEL>] <Source> - <Message>

The Time component will be the UT time that the message was logged. Timestamp injection will be
performed automatically by the log service, and will have millisecond resolution. The timestamp
will have the following format:

<Month> <Day>, <Year> <24-HourTime>

The LEVEL component will be the level of the message – one of the Log Level enumeration values.

Source is the name of the component that generated the log message. This will allow a user to
identify the specific software object that produced the message. Source name injection is performed
automatically by the log service.

The Message component will be the raw message passed to the log service.

A typical log message would look something like:

May 7, 2009 13:14:53.378 [TRACE] ngao.ao.wfs.camera0 – Invalid arguments.

2.2.2 Character Delimited
For the majority of post processing purposes a simple character delimited format would be
appropriate. A formatter class will be created that can accept a character as a delimiter between
fields. For example a comma delimited message may look something like:

May,7,2009,13:14:53.378,TRACE,ngao.ao.wfs.camera0,Invalid arguments

The formatter may need to be restricted for using certain characters as a delimiter, such as a space.

2.3 Log Handlers
Log handlers implement the actual mechanism used to write log data to a destination. The following
details the base class for log handlers.

public class ILogHandler {

 public ILogHandler();

NGAO Log Service 7

/**

 * Set the log level.
 */
 public void setLevel(LogLevel level);

 /**
 * Return the current log level.
 */
 public LogLevel getLevel();

 /**
 * Return the handler.
 */
 public java.util.logging.Handler getHandler();

 // The java handler object.
 protected java.util.logging.Handler mHandler;

 // Current log leve.
 protected LogLevel mLevel;
}

The base class provides methods to set and get the handler log level, and return a reference to the
actual Java handler. Subclasses will be responsible for initializing and assigning a compatible
handler during their creation and initialization process.

2.3.1 Console Logger
The Console Logger will provide developers with a simple console logging mechanism. This handler
will use the standard formatting only.

/**
 * The Console Logger interface.
 */
public interface IConsoleLogger {

}

/**
 * Defines a console logger.
 */
public class ConsoleLogger extends ILogHandler implements IConsoleLogger {

 public ConsoleLogger();

};

2.3.2 File Logger
File logging will be the most common logging mechanism used for most projects. The file logger
uses the Java FileHandler class to manage file streams. The Java handler’s rotating file feature will
be used to keep a single log file from growing to large. This capability allows a developer to specify
a base file name and a maximum acceptable file size. Once the file grows larger than the maximum a

NGAO Log Service 8

new log file will be created appended with a rotating integer value (0, 1, 2, etc.). The File Logger
interface is shown below.

For basic file logging the standard formatter will be used. Log files that require special formatting
should be encapsulated in subclasses of the FileLogger implementation.

/**
 * The File Logger interface.
 */
public interface IFileLogger {
 public void setFileName(String filename, int maxsize=512000);
}

/**
 * Defines a file logger.
 */
public class FileLogger extends ILogHandler implements IFileLogger {

 public FileLogger();

 /**
 * Set the path and base file name for the log file.
 */
 public void setFileName(String filename, int maxsize=512000);

};

2.3.3 Database Logger
KCSF will also provide a logger to save messages in a persistent database. The logger will be
responsible for connecting to a specified database and processing messages into appropriate SQL
statements. Since databases use their own techniques for formatting data, no formatter is necessary
for this logger.

public interface IDatabaseLogger {
 public void connect(String utl, String user, String pw);
};

/**
 * Defines a database logger.
 */
public class DatabaseLogger extends ILogHandler implements IDatabaseLogger {

 public DatabaseLogger();

 /**
 * Connect to a database for logging.
 */
 public void connect (String url, String user, String pw);

};

NGAO Log Service 9

2.4 Log Service
The Log Service is the main interface to the logging system as seen by components and their
subclasses. The Log Service will implement a basic log method that is used to publish a message at a
specific severity level. Additional log methods will be provided for each of the severity levels.

/**
 * Defines the Logging Service.
 */
public interface ILogService {
 /**
 * Log a message at the desired level.
 */
 public void log(LogLevel Level, String Message);

 /**
 * Produce a TRACE level log message.
 */
 public void trace(String Message);

 /**
 * Produce a DEBUG level log message.
 */
 public void debug(String Message);

 /**
 * Produce an INFO level log message.
 */
 public void info(String Message);

 /**
 * Produce a WARN level log message.
 */
 public void warn(String Message);

 /**
 * Produce an ERROR level log message.
 */
 public void error(String Message);

/**
 * Produce a CRITICAL level log message.
 */
 public void critical(String Message);

/**
 * Produce an EMERGENCY level log message.
 */
 public void emergency(String Message);
}

The main implementation of the Log Service will extend the KCSF AbstractAppServiceTool, which
provides the life-cycle functionality for services. It will also implement an addHandler method that
will be used by Containers to assign logging objects to the service at startup.

/**
 * Defines the Logging Service.
 */

public class LogService extends AbstractAppServiceTool implements ILogService {

NGAO Log Service 10

 public LogService();

 /**
 * Add a logging handler.
 */
 public void addHandler(ILogHandler handler);

 ...

 // The java logger object: performs actual logging.
 protected java.util.logging.Logger mLogger;

}

As with the KCSF logging implementations discussed previously, the Log Service acts as a wrapper
for the Java Logger object. This class provides the actual functionality responsible for chaining,
filtering, and publishing log messages.

NGAO Log Service 11

3.0 Use

As with other services, the Log Service is created and initialized during the Container startup
process. Each Log Service instance is described by a set of configuration items that define its
domain, handlers, and logging properties. The Container will obtain this information and use it to
load the class file and create the service and handlers.

The following demonstrates a simple example of how to create a log service with multiple output
streams.

FileLogger filelog = new FileLogger();
filelog.setFileName(“./logs/ngao.ao.cameras.log”);

ConsoleLogger console = new ConsoleLogger();

DatabaseLogger database = new DatabaseLogger();
database.connect(“127.64.0.123”, “admin”, “none”);

LogService logger = new LogService();
logger.startService(null, “ngao.ao.cameras”);
logger.addHandler(filelog);
logger.addHandler(console);
logger.addHandler(database);

// Sent to file, console and database.
logger.debug(“A debug message”);

NGAO Log Service 12

References

Java Logging Overview:
http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html

Java Logging Pacakage:
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html

	1.0 Introduction
	1.1 Java Logging
	1.1.1 Logger
	1.1.2 Handler
	1.1.3 Formatter

	2.0 KCSF Log API
	2.1 Log Levels
	2.2 Log Message Format
	2.2.1 Standard Format
	2.2.2 Character Delimited

	2.3 Log Handlers
	2.3.1 Console Logger
	2.3.2 File Logger
	2.3.3 Database Logger

	2.4 Log Service

	3.0 Use
	References

