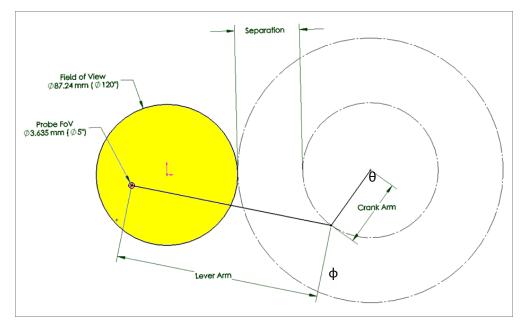
NGAO OSM

Design Study

Alex Delacroix 06/15/2009


Conceptual design and operation

The Ø 5" (3.635 mm) probe covers the entire Ø 120" (87.24 mm) Field of View.

The 2 degrees of freedom probe arm consists of 2 individual arms: A crank arm and a lever arm, driven by 2 corresponding rotation motors: The crank and lever motors.

Any position in the OSM field of view can be acquired by calculating appropriate values for theta and phi, noting that due to a mirror reflection there are always 2 possible solutions.

The crank motor is secured to the Sensor and rotates the crank arm, precisely about the rotation axis of the crank motor referred to as the theta axis. The lever arm motor provides the necessary second degree of freedom by rotating the lever arm and all associated optics, about the phi axis.

Basic Design requirements:

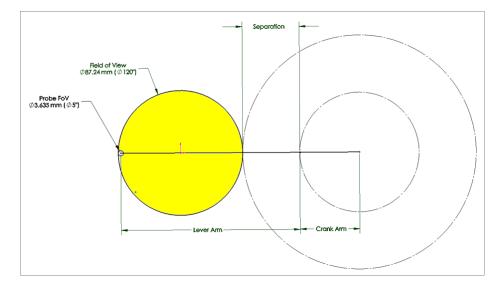
Mechanism Type:	φ/θ
Patrolled Field:	Ø 120" (87.24mm)
Probe FoV:	Ø 5" (3.635mm)
Acquisition accuracy:	40 mas (30µm)
Stability:	5 mas / 3600s (1 μm)
Position knowledge:	< 1 µm (TBC)
Minimum Incrementa	al motion: TBD
Operating Temperatu	re: -10°C +/- 0.3
Note: Separation is a Lever Arm motor enve	distance determined by the elope.

Position Accuracy

Probe Position within the field shall be measured according to the level of desired accuracy: Direct or indirect. Indirect measurement:

Total Position Accuracy of 30µm at the furthest position across the 144mm field requires a minimum crank rotation accuracy of:

 $\sin \alpha = 30 \mu m / 144 \text{ mm} \Rightarrow \alpha = 0.012^\circ = .012 \pi / 180 = .00021 \text{ rad} = 210 \mu \text{ rad}$

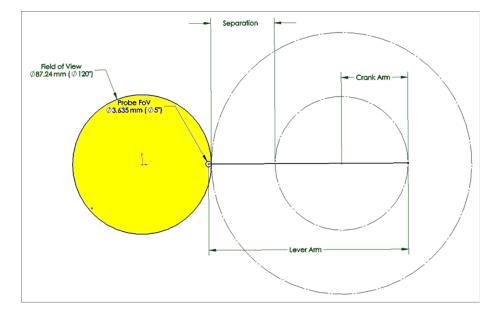

And the 100 mm lever arm motor is 60 % longer than the 40mm Crank arm

Crank motor rotation accuracy: 210 μ rad x 60% = 126 μ rad

Lever motor rotation accuracy: 210 µrad x 40% = 84 µrad

Arms Size Equation

Arm fully extended Equation:



Lever Arm + Crank Arm + Probe = Fov + Separation + Crank Arm

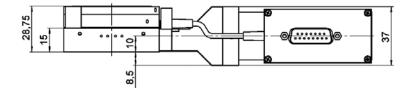
Lever Arm + 1.8175 = 87.24 + 40

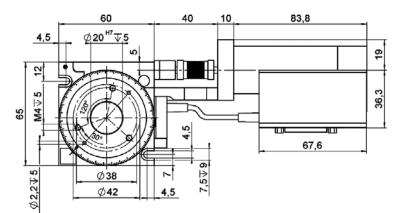
→ Lever Arm = 125.42 mm

Arm fully retracted Equation:

Lever Arm - Crank Arm = Separation + Crank Arm + Probe

→ Crank Arm = 41.30 mm


Servo Motors Vs Stepper Motors


Motion Characteristics	Servo Motors	Stepper Motors
High Torque, Low Speed	Can be considered if cost/ complexity is not an issue.	Continuous duty applications requiring high torque and low speed.
High Torque and high speed (>2000 rpm)	Continuous duty applications requiring high torque and high speed. DC servomotor can deliver greater continuous shaft power at high speeds compared to steppers. High speed up to 12000 rpm is possible. AC servo motors can handle higher current surges compared to DC servos. Can get lot stronger AC servo compared to either DC servo or DC stepper.	If speeds are less than 2000 rpm stepper may be economical. Stepper becomes bulky at high torque.
Short, Rapid Repetitive Moves	Use servo if need high dynamic requirements.	Stepper will offer more economic solution when requirements are more modest.
Positioning Applications	Servo can handle effectively when load is mostly inertia instead of friction. The ability to overdrive servo motor in intermittent duty allows a smaller motor to be used. If positioning is critical in micron level use servo.	Use stepper motor if torque is lower than 500 oz-in, less 2000 rpm, low to medium acceleration rates.
Applications in Hazardous Environments	Use brushless servo motor.	Use step motor.
Low Speed, High Smoothness	Use DC servo.	Use microstepping.
Control Method	Closed loop.	Preferred to be used in open loop applications.

Potential Lever Motor

PI M-037.DG Rotation stage

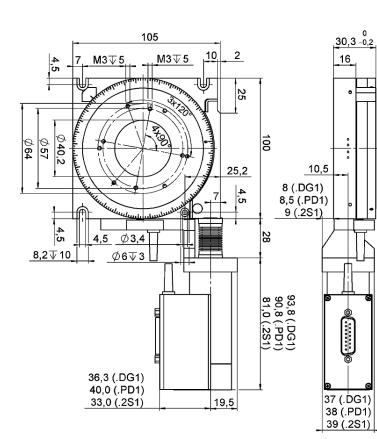
M-037 rotation stages are equipped with ultra-precise worm gear drives allowing unlimited rotation in either direction. An integrated spring preload eliminates backlash. Double-row ball bearings allow zero backlash, high load capacity and extremely low wobble.

Technical Data	Data
----------------	------

Model	M-037.00	M-037.DG	M-037.PD	M-037.2S	
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning	Hotation	notation	Indution	notation	
Rotation range	>360	>360	>360	>360	.0
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	4000	-	cts./rev.
Design resolution	2	0.59 (34 x 10 ⁴)	8.75 (0.0005)	5.45* (0.00031)	urad (°)
Min. incremental motion	4	3.5	27	21	urad
Backlash	-	200	200	200	µrad
Unidirectional repeatability	-	30	30	30	urad
Wobble	<150	<150	<150	<150	µrad
Max. velocity	-	6	45	10	°/s
Mechanical properties					
Worm gear ratio	180:1	180:1	180:1	180:1	
Gear ratio	-	(28/12)* = 29.6:1	-	-	
Motor resolution	-	-	-	6400*	steps/rev
Load capacity/axial force, self-locking	+300	+300	+300	±300	N
Max. torque (0x, 0y)	±3	±3	t3	±3	Nm
Max. torque clockwise (02)	1	1	1	1	Nm
Max. torque counter clockwise (02)		0.5	0.5	0.5	Nm
Drive properties	0.0	0.0	0.0	0.0	
Motor type	-	DC motor, gearhead	ActiveDrive™ DC Motor	2-phase stepper motor*	
Operating voltage	2	0 to ±12	24 (PWM)	24	V
Electrical power	2	3	30		w
Reference switch	-	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	20 to +65	-20 to +65	°C
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.3	0.65	0.62	0.64	kg
Recommended controller/driver	-	C-863 (single-axis) C-843 PCI-Karte (for up to 4 axes)	C-863 (single-axis, p. 4-114) C-843 PCI-Karte (p. 4-120) for up to 4 axes)	C-663 (single-axis, p. 4-112)	

incl. motor cable, 3 m, sub-D connector 15-pin

*2-phase stepper motor, 24 V chopper voltage, max. 0.8 A/phase, 400 full steps/rev., motor resolution with C-663 stepper motor controller



M-037.DG rotation stage with DC Motor and gearhead

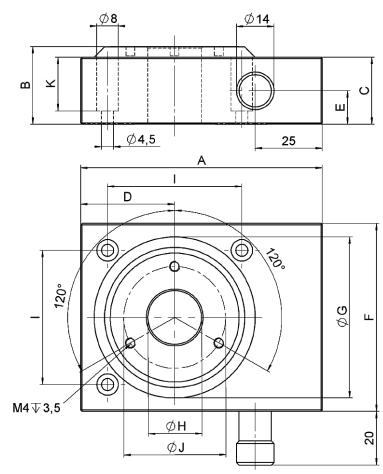
Potential Crank Motor

Technical Data

PI M-038.DG Rotation stage

Model	M-038.001	M-038.DG1	M-038.PD1	M-038.2S1	Units
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360°	>360*	>360°	>360°	
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	4000	-	steps/rev.
Design resolution	-	0.60 (35 x 10*)	8.95 (0.0005)	5.58* (0.00032)	µrad (*)
Min. incremental motion		3.5	27	21	prad
Backlash	-	200	200	200	µrad
Unidirectional repeatability	-	20	20	20	µrad
Wobble	<75	<75	<75	<75	µrad
Max. velocity	-	6	90	10	°/s
Mechanical properties					
Worm gear ratio	176:1	176:1	176:1	176:1	
Gear ratio	-	2401:81 = 29.6:1	-	-	
Motor resolution	-	-	-	6400*	steps/rev.
Max. load/axial force	±400	±400	±400	±400	N
Maximum torque (9 _x , 9 _y)	±6	±6	±6	±6	
Maximum torque CW**	2	2	2	2	Nm
Maximum torque CCW**	0.8	0.8	0.8	0.8	Nm
Drive properties					
Motor type	-	DC Motor, gearhead	ActiveDrive™ DC Motor	2-phase stepper motor*	
Electrical power	-	3	30		W
Reference switch	143	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating voltage	-	12 V differential	24 (PWM)	24	v
Operating temperature range	-20 to +65	-20 to +65	-20 to +65	-20 to +65	°C
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.9	1.25	1.35	1.25	kg
Recommended controller/driver		C-863 (single-axis) C-843 PCI board (for up to 4 axes)	C-863 (single-axis, p. 4-114) C-843 PCI board (p. 4-120) (for up to 4 axes)	C-663 (single-axis, p. 4-112)	154

*2-phase stepper motor, 24 V chopper voltage, max. 0.8 Alphase, 400 full steps/rev., motor resolution with C-663 stepper motor controller *CW: clockwise; CCW: counter-clockwise



M-038.PD1 Rotation Stage

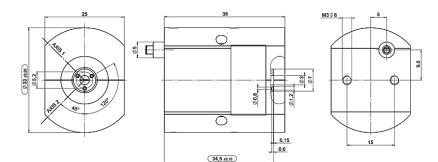
Custom M-038 with folded drive

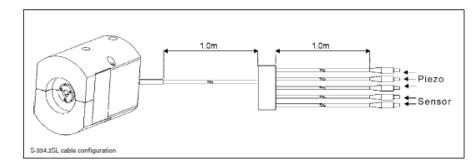
Other Possible Crank motor: M-06X.DG Rotation stage

Dimensions	M-060.M0	M-061.M0	M-062.M0
A	90	130	150
В	29	34	42
С	25	30	38
D	35	55	65
E	12,5	15	21,5
F	70	110	130
G	60	100	120
Н	20	35	45
	50	90	110
J	38	50	60
К	20	20	28

Technical Data

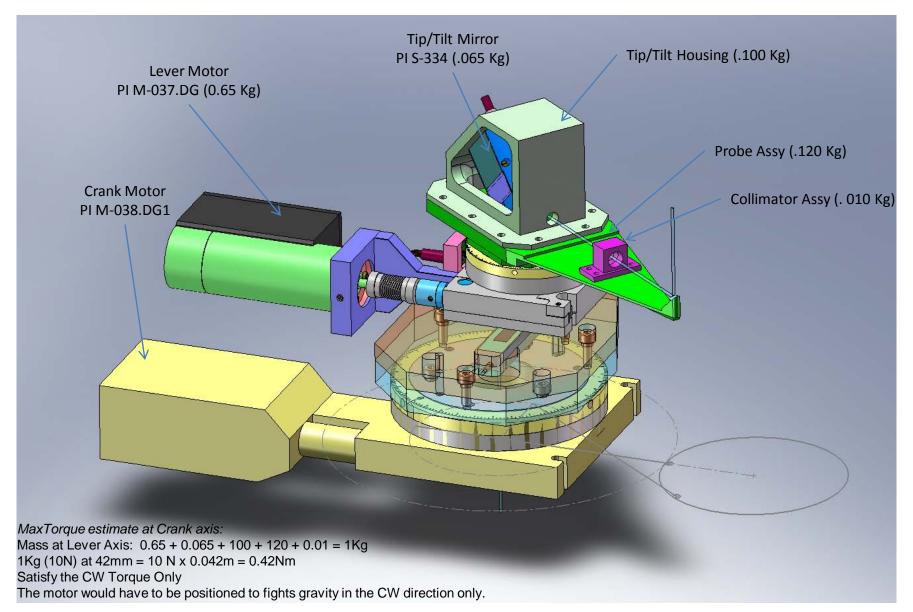
Model	M-060.M0 / M-061.M0 / M-062.M0	M-060.PD / M-061.PD / M-062.PD	M-060.DG / M-061.DG / M-062.DG	M-060.2S / M-061.2S / M-062.2S	Units
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360	>360	>360	>360	0
Integrated sensor	-	Rotary encoder	Rotary encoder		
Sensor resolution	-	4000	2000		Cts./rev.
Design resolution	-	32 (0.0018) / 17.5 (0.001) / 15 (0.0008)	2.1 (0.00012) / 1.2 (6.9 x 10 ⁻⁵) / 0.96 (5.5x10 ⁻⁵)	19.7 (0.0011) / 10.9 (0.00063) / 8.9 (0.00051)*	µrad (°)
Min. incremental motion	-	32 / 17.5 / 15	6.3 / 6 / 5	40 / 20 / 18*	µrad
Backlash	-	200 / 200 / 240	200 / 200 / 240	200 / 200 / 240	µrad
Unidirectional repeatability	-	50 / 50 / 60	50 / 50 / 60	50 / 50 / 60	µrad
Max. velocity	-	90	16 / 9 / 7.3	36 / 20 / 16	°/s
Mechanical properties					
Worm gear ratio	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	
Gear ratio	-	-	(28/12) ⁴ :1 ≈ 29.6:1	-	
Motor resolution	-	-	-	6400*	steps/rev.
Axial force	±500 / ±550 / ±650	±500 / ±550 / ±650	±500 / ±550 / ±650	±500 / ±550 / ±650	Ν
Max. torque θ_X,θ_Y	±6 / ±6 / ±7	±6 / ±6 / ±7	±6 / ±6 / ±7	±6 / ±6 / ±7	Nm
Max. torque θ_Z	±4 / ±6 / ±8	±4 / ±6 / ±8	±4 / ±6 / ±8	±4 / ±6 / ±8	Nm
Drive properties					
Motor type	-	ActiveDrive [™] DC-Motor	DC-Motor, gearhead	2-phase Stepper-Motor	**
Operating voltage	-	24 (PWM)	12 differential	24	V
Electrical power	-	30	3	-	
Reference switch	Hall-effect	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	-20 to +65	-20 to +65	°C
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.42 / 1.36 / 2.24	0.94 / 1.88 / 2.76	0.94 / 1.88 / 2.76	0.96 / 1.9 / 2.78	kg
Recommended controller/driver		C-863 single-axis C-843 PCI board, for up to 4 axes	C-863 single-axis (p. 4-114) C-843 PCI board (p. 4-120), for up to 4 axes		12)

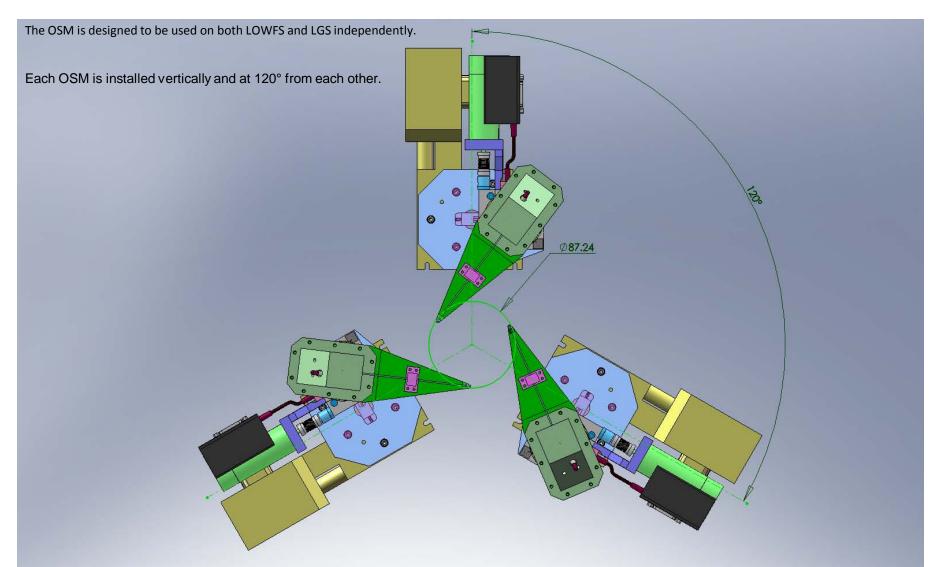

*with C-663 stepper-motor controller **2-phase stepper-motor, 24 V chopper voltage, max. 0.8 A/phase, 400 full steps/rev



Potential Tip / Tilt Mirror

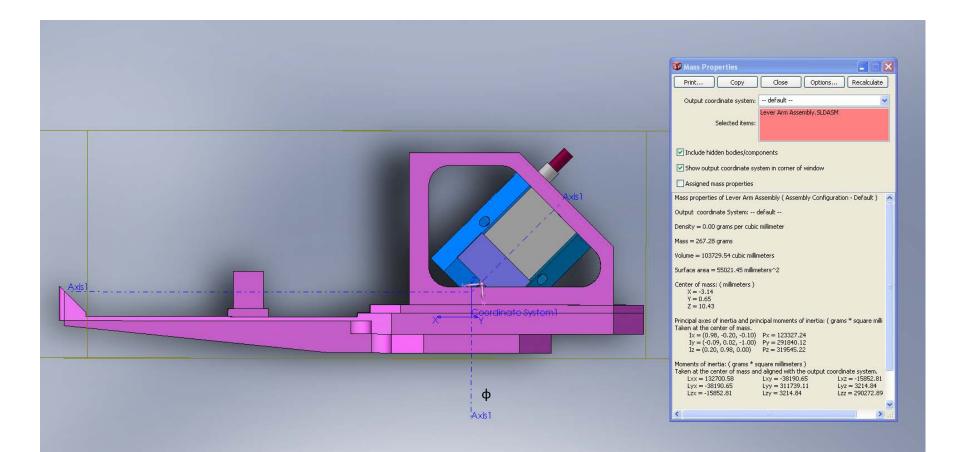
PI S-334 Miniature Piezo Fast Steering Tip/Tilt-Mirror up to 120 mrad Deflection




Technical Data

S-334.2SL	S-334.2SD	Units	Tolerance
θχ, θγ	θx, θy		
SGS	SGS		
60	60	mrad	min. (+20%/-0%
50	50	mrad	
0.5	0.5	µrad	typ.
5	5	µrad	typ.
0.05	0.05	%	typ.
5	5	µrad	typ.
1.0	1.0	kHz	±20%
0.8	0.8	kHz	±20%
0.2	0.2	N	Max.
6	6	mm	±1 mm
1530	1530	g x mm²	±20%
diameter: 10 mm, thickness: 2 mm, BK7, λ/5, R > 98% (λ = 500 nm to 2 μm)	diameter: 10 mm, thickness: 2 mm, BK7, λ/5, R > 98 % (λ = 500 nm to 2 μm)		
PICMA• P-885	PICMA® P-885		
6	6	μF	±20%
-20 to 80	-20 to 80	°C	
Titanium	Titanium		
0.065	0.065	kg	±5%
2	2	m	±10 mm
LEMO connector	25-pin sub-D connector		
Modular piezo controller system E-500 (p. 2-144) with amplifier module E-603.005 (three channels) (p. 2-146) or 1 x E-505.00S and 2 x E-505 (high speed applications) (p. 2-147) and E-509 servo controller (p. 2-152)	for tip/tilt mirror systems (p. 2-132)		
	θ _x , θ _y SGS 60 50 0.5 5 0.05 5 1.0 0.8 0.2 6 1530 diameter: 10 mm, thickness: 2 mm, BK7, λ/5, R > 88% N, - 500 nm to 2 μm) PICMA* P-885 6 -20 to 80 Titanium 0.065 2 LEMO connector Modular piezo controller system E-500 (p. 2-144) with amplifier module E-503.00S (three channels) (n. 2-146) or 1 x E-505.00S and 2 x E-505 (high speed applications) (p. 2-147)	θx. θy θx. θy SGS SGS 60 60 50 50 55 5 0.05 5.0 5 5 1.0 1.0 0.8 0.2 6 6 1530 1530 diameter: 10 mm, thickness: 2 mm, BK7, λ/5, R > 89%, A, = 500 nm to 2 μm) 0.2 PICMA* P-885 PICMA* P-885 6 6 -20 to 80 -20 to 80 Titanium Titanium 0.065 2.2 2 25-pin sub-D connector Modular piezo controller system E-500 (p. 2-147) E-616 controller for tip/tilt mirror systems (p. 2-132) ad 2 x E-505 (high speed applications) (p. 2-147) systems (p. 2-132)	θx. θr θx. θr SGS SGS 60 60 mrad 50 50 mrad 50 50 mrad 0.5 90 90 90 5 5 µrad 0.05 0.05 % 5 5 5 µrad 0.05 0.05 % 5 5 µrad 0.05 0.05 % 5 0.2 N 6 6 mm 1530 1530 g x mm ² diameter: 10 mm, thickness: 2 mm, BK7, N5, R > 98 % N A 500 nm to 2 µm) PICMA* P-885 PICMA* P-885 6 6 % µF -20 to 80 -20 to 80 "C 7 10.65 0.065 kg 2 2 m 25-pin sub-D connector Modular piezo controller system E-500 (p. 2-144) with amplifier module E-503.00S (hips peed applications) (p. 2-147) Sistems (p. 2-132)

Preliminary Design Model



OSM Situation and orientation in its Assembly

NOTE: This configuration seems to be challenging the LOWFS Pizza box model...

Lever Arm CG Location

The Lever Arm Assembly shall be designed to locate its CG as close as possible to the Lever Motor Axis ϕ Balancing the Lever Arm about its CG will facilitate the Lever motor control and stability at full stop.

Remaining work to be done

- Choosing a probe Anti-collision System (Kaman?...)
- Analyze Tip/Tilt Mirror Vibrations and Impact on Probe stabilization.
- System rigidity Analysis
- System Integration within higher Assemblies
- Compare other motors and Tip / Tilt Mirrors.

Questions:

- Controller System: USB or RS232?

Remarks:

- Need Interface Solid model to verify dimensional assumptions?

Rejected Lever Motors

Idea

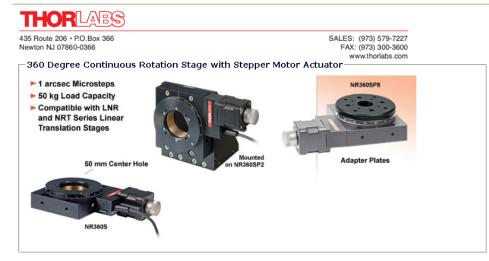
435 Route 206 · P.O.Box 366 SALES: (973) 579-7227 Newton NJ 07860-0366 FAX: (973) 300-3600 www.thorlabs.com -Motorized Rotation Stage ► Continuous 360° Motorized Rotation With 1arcsec Resolution Application ► Houses Ø1" Optics up to 0.50" Thick ► Compatible With Our SM1 Lens Tube Accessories

PRM1Z8

Features	Specification	Value
1° Graduations on Main Dial Connect Design (23 pp. Design)	Bidirectional Repeatability	±0.1°
 Compact Design (23 mm Deep) Precision Home Limit Switch 	Backlash	±0.3°
 Post Mountable Ideal for SM1 (1.035"-40) Compatible Accessories 	Max Rotation Velocity	25 deg/sec
 Directly Accepts Ø1" Optics up to 0.50" (12.5 mm) Thick 	Horizontal On-Axis Load Capacity	1.5 kg
 Fully Compatible with Our SM1 Lens Tube (1.035"-40 Thread) Accessories 	Vertical On-Axis Load Capacity	0.5 kg
	Min Achievable Incremental Motion	25 arcsec
	Min Repeatable Incremental Motion	0.03°
	Absolute On-Axis Accuracy	0.1%
	Max Percentage Accuracy	0.08%
	Home Location Accuracy	±0.2"
	Range	360° Continuou

PRM1 Wit Rot The user can measure the angular displacement by using the Vernier dial in conjunction with the graduation marks that are marked on the rotating plate in 1* increments. The precision DC motor actuator provides 1 arcsecond of resolution over the entire 360° of rotation. This rotation stage/mount is also equipped with a precision home limit switch to facilitate automated rotation to the zero datum position, thus ensuring absolute angular positioning thereafter. The limit switch is designed to allow continuous rotation of the stage over multiple 360° cycles.

The TDC0001 DC | Servo Controller is the ideal companion for achieving smooth, continuous motion that can be automated via the software interface. The stage/mount and controller are sold together below with the item number PRM1Z8E and PRM1/MZ8E.


Normally the PRM1Z8 is mounted horizontally. The stage can be fixed directly to the work surface using the counter-bored holes in the main body. For complete flexibility, the stage/mount can be used vertically on a standard @1/2" post and has an option to mount in a vertical inclined orientation. When in the vertical orientation, the reduced thickness of the stage is extremely beneficial for optical path applications where space is limited.

The PRM1Z8 is supplied with 19.6" (0.5 m) of cable. An 8 ft (2.5 m) extension cable (PAA632) is available separately.

The rotating platform features several accessories. The central aperture has a standard SM1 internal thread, for

Done

Rejected Crank Motors

Overview

Features

- Resolution Better than 1 arcsec
- Manual Control of the Rotating Carriage
- High Capacity, 50kg Maximum Axial Load
- · Preloaded Worm Gear Drive Mechanism with Minimal Backlash
- Origin Indicating Switch Every 360°
- Mounting Options: Four 1/4" (M6) Countersunk Holes and Nine M6 Tapped Holes

The NR series rotation stage provides arc-second resolution when driven from a micro-stepping stepper motor controller, such as the BSC100 Series. The low profile design has a height of just 55 mm due to the use of two compact precision bearings. The rotating carriage of the stage features continuous rotation and can support loads up to 50 kg. The 50 mm clear aperture through the center of the rotation stage allows the stage to be used in applications where the optical axis and rotation axis are parallel. The frame of the stage is made from aluminum and has four 1/4" (M6) countersum kholes that allow the stage to be secured to a translation stage or optical table using one of the adapter plates presented below. In addition, 9 M6 tapped mounting holes are located on the side of the frame to provide additional mounting options. A worm gear assembly transfers the rotary motion of the stepper motor into rotary motion of the carriage. The mechanical reduction in this gear assembly provides one revolution of the carriage for every 66 turns of the stepper motor.

We encourage you to review the tabs above for detailed specifications of the NR360S and the recommended Stepper Motor Controller, the BSC100 Series. Please note that Thoriabs offers bottom mounting adapter plates and brackets to secure the NR360S as well as several types of rotating adapter plates; these items are featured below with more detailed product descriptions.

NR360S Specs

Specification	Value	Motor Sp	ecs
Travel	360° Continuous Rotation	Step Angle	1.8°
On Axis Load Capacity	110 lbs (50 kg)	Rated Phase Current	1 A
Drive Mechanism	Worm Drive	Phase Resistance	4.6Ω
Limit Switches	Reference Signal Every 360°	Phase Inductance	0.6 mH
Motor Type	2 Phase Stepper	Holding Torque	23.1 N-cm
Theoretical Resolution	1 arcsec (If Used with BSC101)	Detent Torque	1.7 N-cm
Speed Range	15% sec (If Used with BSC101)	Rotor Inertia	32 g-cm ²
Recomended Controller	BSC101		
Weight (Actuator)	3.11 lbs (1.4 kg)	1	