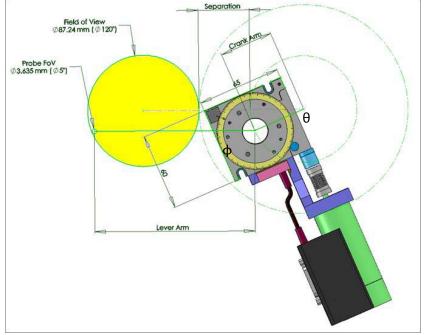
NGAO OSM

Design Study

Alex Delacroix 08/05/2009 Version 9


1. Conceptual design and operation

The Ø 5" (3.635 mm) probe covers the entire Ø 120" (87.24 mm) Field of View.

The 2 degrees of freedom probe arm consists of 2 individual arms: A crank arm and a lever arm, driven by 2 corresponding rotation motors: The crank and lever motors.

Any position in the OSM field of view can be acquired by calculating appropriate values for theta and phi, noting that due to a mirror reflection there are always 2 possible solutions.

The crank motor is secured to the Sensor and rotates the crank arm, precisely about the rotation axis of the crank motor referred to as the theta axis. The lever arm motor provides the necessary second degree of freedom by rotating the lever arm and all associated optics, about the phi axis.

1.1 Basic Design requirements:

Mechanism Type:	ф/Ө
Patrolled Field:	Ø 120" (87.24mm)
Probe FoV:	Ø 5" (3.635mm)
Acquisition accuracy	/: 40 mas (30μm)
Stability:	5 mas / 3600s (1 μm)
Position knowledge:	: < 1 μm (TBC)
Minimum Incremen	tal motion: TBD
Operating Temperat	ture: -10°C +/- 0.3
	a distance determined by the velope to clear the Field of view

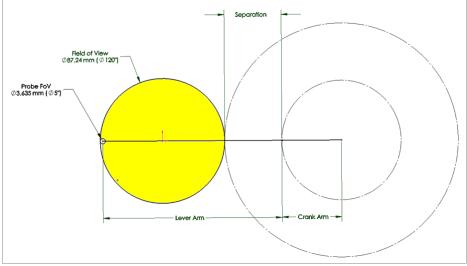
at any angle of Crank rotation.

1.2 Position Accuracy

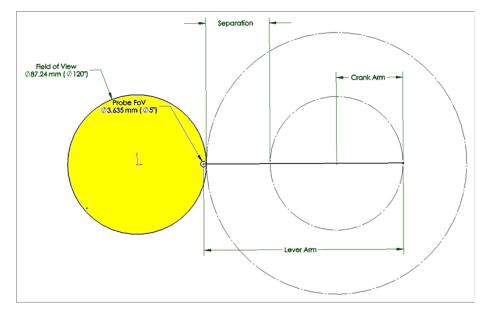
Probe Position within the field shall be measured according to the level of desired accuracy: Direct or indirect. Indirect measurement:

Total Position Accuracy of 30µm at the furthest position across the 144mm field requires a minimum crank rotation accuracy of:

sin α = 30μm / 144 mm → α = 0.012° = .012 π / 180 = .00021 rad = 210 μrad


And the 100 mm lever arm motor is 60 % longer than the 40mm Crank arm

Crank motor rotation accuracy: 210 μ rad x 60% = 126 μ rad


Lever motor rotation accuracy: 210 μ rad x 40% = 84 μ rad

2. Arms Size Equation

2.1 Arm fully extended Equation:

2.2 Arm fully retracted Equation:

2.1.1) Using 40 mm separation for the PI M-038 and M-037 Lever Arm + Crank Arm + 1.8175 Probe = 87.24 Fov + 40 Separation + Crank Arm Lever Arm + 1.8175= $87.24 + 40 \Rightarrow$ Lever Arm = 125.42 mm 2.1.2) Using 63.5 mm separation for the Newport URS75B Lever Arm + 1.8175 = $87.24 + 63.5 \Rightarrow$ Lever Arm = 148.9225 mm 2.2.3) Using a 200mm Lever Arm, separation = Crank Arm + Fov = need to be: 200 + 1.8175 = 87.24 + Separation \Rightarrow Separation = 114.5775 mm 2.2.4) Using a 230mm Lever Arm, separation need to be: 200 + 1.8175 = 87.24 + Separation \Rightarrow Separation = 144.5775 mm

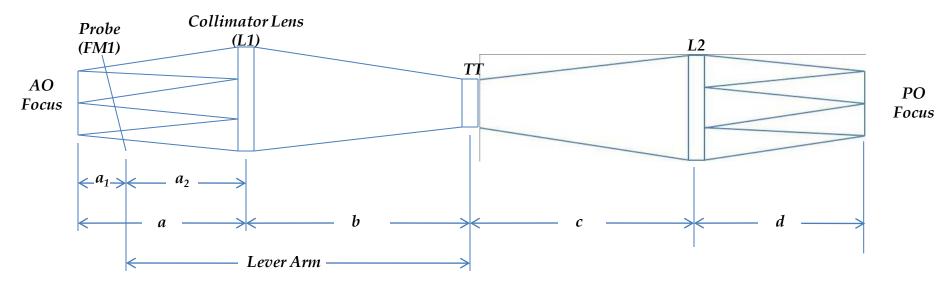
2.2.1) Using 40 mm separation for the PI M-038 and M-037

Lever Arm - Crank Arm = Separation + Crank Arm + Probe

→Crank Arm = 41.30 mm

2.2.2) Using 63.5 mm separation for the Newport URS75B

148.9225 - Crank Arm = 63.5 + Crank Arm + 1.8175


→Crank Arm = 41.8025 mm

2.2.3) Using a 200 mm Lever Arm and 114.5775 mm Separation

200 - Crank Arm = 114.5775 + Crank Arm + 1.8175

→Crank Arm = 41.8025 mm

3. Optical Equation

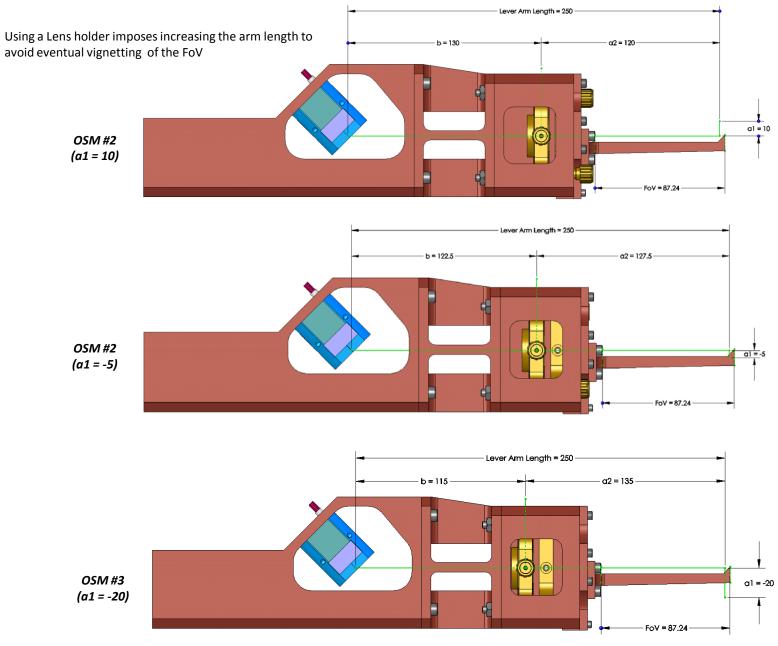
Optical Layout is optimized when the following equations are verified: 3.1) a = b = c = d

3.2) a + b = x (c + d)

Keeping the AO Focus away from the Probe mirror (FM1) gives: 3.3) $a = a_1 + a_2$

Keeping each Lever arms on a different plane to avoid collision between each other gives a different value of a1 for each OSM The Lever Arm Length previously determined gives:

3.4) Lever Arm length = $b + a_2$


Replacing 3.3 & 3.4 in 3.1 gives: $a = b \rightarrow a_1 + a_2 = \text{Lever Arm length} - a_2$ Solving for $a_2 \rightarrow 2a_2 = \text{Lever Arm length} - a_1 \rightarrow a_2 = (\text{Lever Arm length} - a_1)/2$

Using a 250mm Lever Arm , would give the following results :

a1 = 10 mm for OSM #1 \rightarrow 10 + 2 a_2 = 250 \rightarrow 2 a_2 = 250 - 10 \rightarrow a_2 = 120 a1 = -5 mm for OSM #2 \rightarrow -5 + 2 a_2 = 250 \rightarrow 2 a_2 = 250 + 5 \rightarrow a_2 = 127.5 a1 = -20 mm for OSM #3 \rightarrow -20 + 2 a_2 = 250 \rightarrow 2 a_2 = 250 + 20 \rightarrow a_2 = 135

OSM#	a ₁	a ₂	a =a ₁ + a ₂	a+b
I	10	120	130	260
II	-5	127.5	122.5	245
- 111	-20	135	115	230

4. Lever Arm Design

Compact Lens Positioners

LPV-1

Search for: LPV-1

- Ô.
- Positions 1.0 in. (25.4) optical elements
- Precision positioning using 100 TPI adjustment screws
- · Compact size is ideal for limited-space applications
- English/metric compatibility

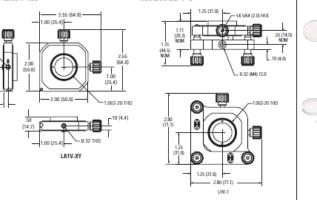
The new LAIV-XY and LPV-1 Compact Lens Positioners provide an economical solution for applications requiring two (XY) or five (XY2. $\theta_X \theta_Y$) axes of precision adjustment. Their compact size makes them ideal for OEM applications, or research projects with limited table space. Precise positioning is achieved with the integration of 100 TPI drive screws. Additionally, an integral 5/64 (M2) hex hole in the drive knobs allows for optional Allen key adjustment. Each unit is supplied with two non-marring Delrin retaining rings to safely secure optical elements with a maximum outer diameter of 1.0 in. (25.4mm). Post mounting on the LAIV-XY is achieved by accessing one of the tapped 8-32 or M4 threaded holes in the mount body. The LPV-1 is post mounted via a counterbored hole sized for 8-32 or M4 screws.

LAIV-X

Specifications

1	LA1V-XY	LPV-1
Degrees of Freedom	ХҮ	XYZ 0 _X 0 _Y
Maximum Optic Diameter [in. (mm)]	1.0 (25.4)	1.0 (25.4)
Optical Axis Height [in. (mm)]	1.0 (25.4)	1.25 (31.8)
Range, XY [in. (mm)]	±0.125 (3.2)	±0.125 (3.2)
Range, Z [In. (mm)]		±0.18 (4.6)
Range, 0 _X 0 _Y		±5"
Sensitivity, XY (µm)	0.75	0.75
Sensitivity, Z (µm)		1
Sensitivity, 0 _X 0 _Y (arc sec)		2

Ordering Information


Model	Description
LA1V-XY	XY Lens Positioner
LPV-1	Five-Axis Lens Positioner

Model LA1V-XY

(25.4)

18 (4.4)

Model LPV-1

Rear View of the LPV-1

Related Products

Post mounting options (see page 705)

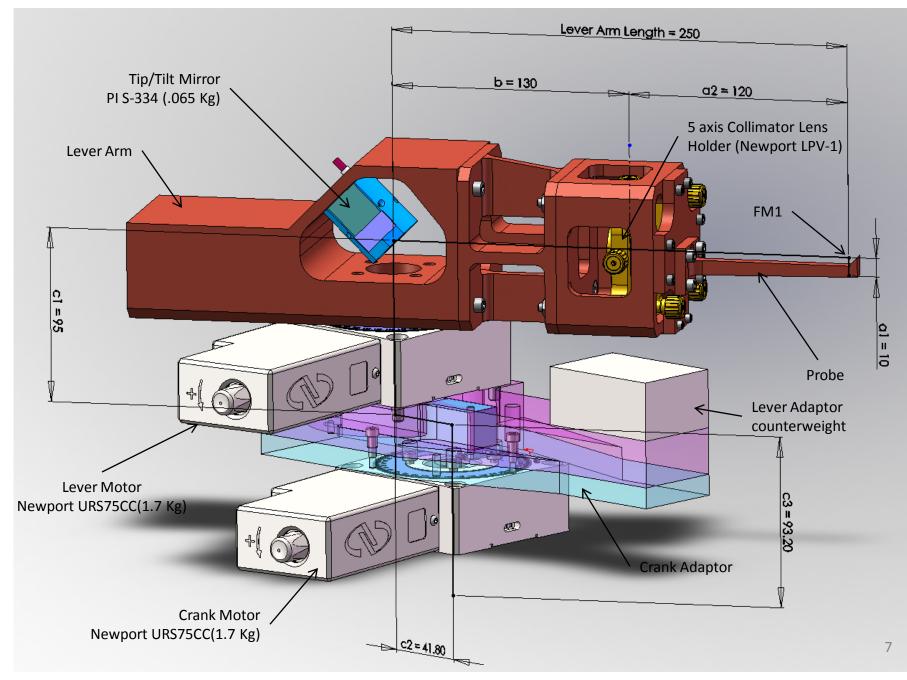
LP Series Precision Multi-Axis Lens Positioners (see page 679)

BK 7 Precision Plano-Convex Lenses (see page 457)

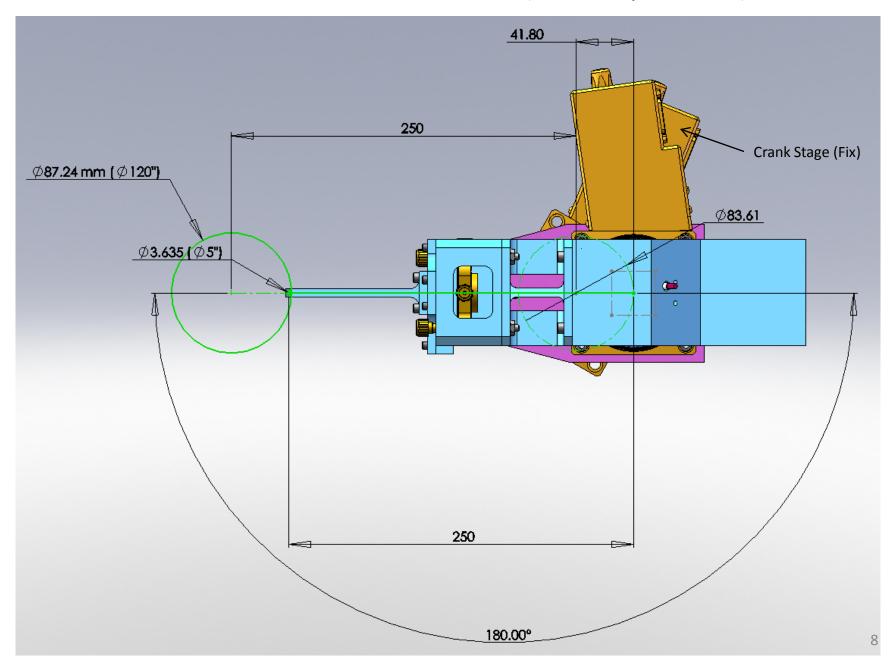
See our website for CAD files

Doublet Lenses (see page 467) The new LA1V-XY and LPV-1 Compact Lens Positioners provide an economical solution for applications requiring two (XY) or five (XYZ $\theta_X \theta_Y$) axes of precision adjustment. Their compact size makes them ideal for OEM applications, or research projects with limited table space. Precise positioning is achieved with the integration of 100 TPI drive screws. Additionally, an integral 5/64 (M2) hex hole in the drive knobs allows for optional Allen key adjustment. Each unit is supplied with two non-marring DeIrin retaining rings to safely securing the amaximum outer diameter of 1.0 in. (25.4mm). Post mounting on the LA1V-XY is achieved by accessing one of the tapped 8-32 or M4 threaded holes in the mount body. The LPV-1 is post mounted via a counterbored hole sized for 8-32 or M4 screws.

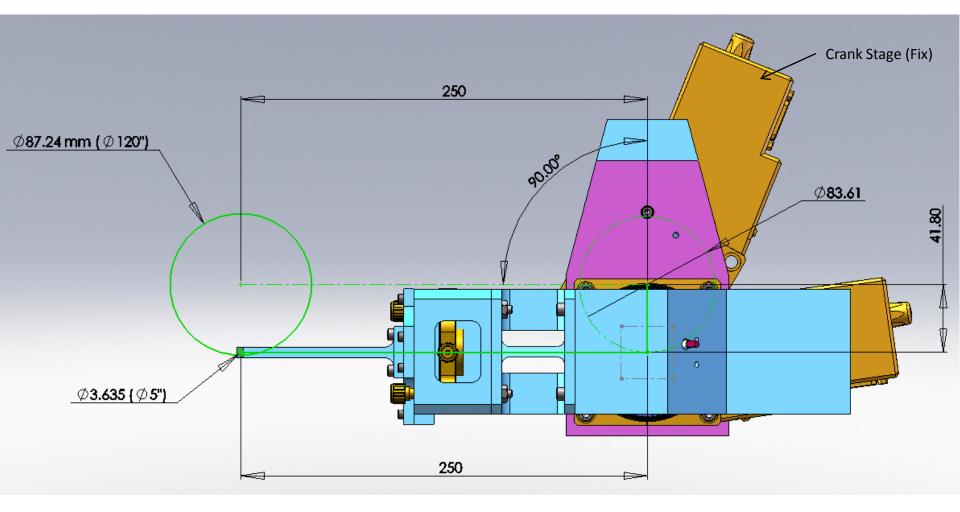
Model: LPV-1 | 5-Axis Compact Lens Positioners, 1-in. Diameter

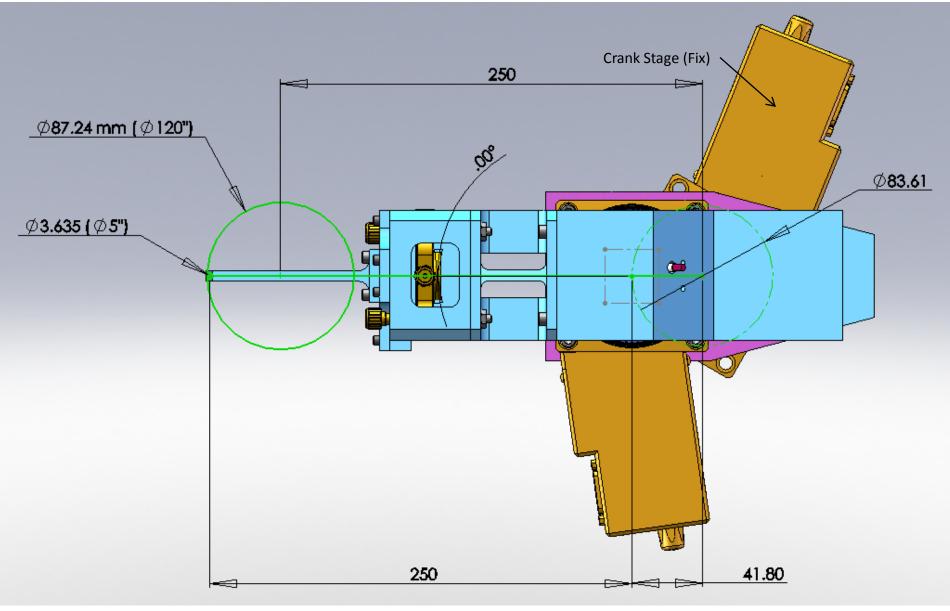

⇒

Opto Mechanics > Lens Holders > Compact Lens Positioners

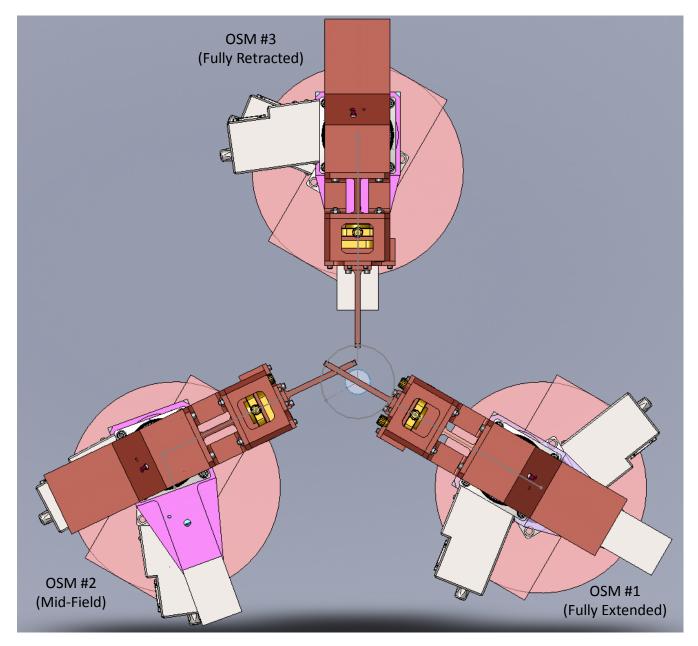


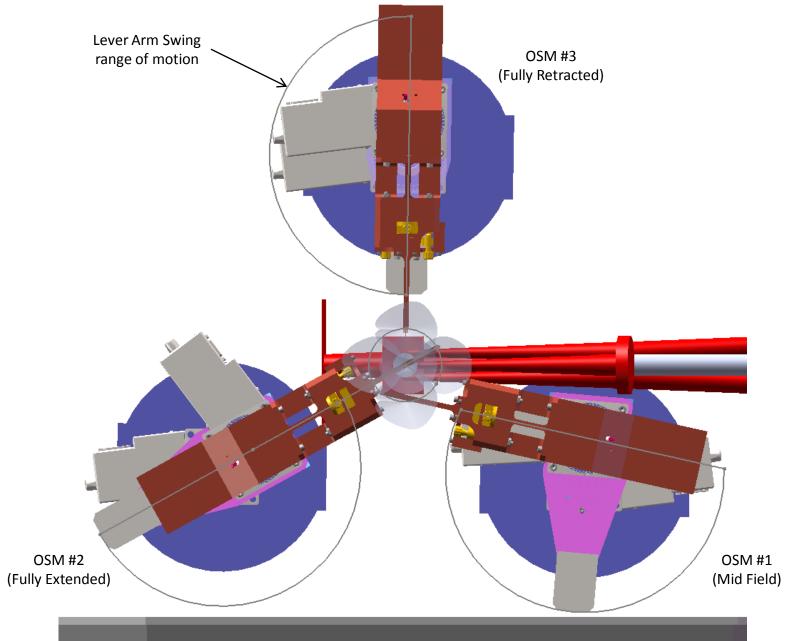
Newport


Preliminary Design With Newport Stages

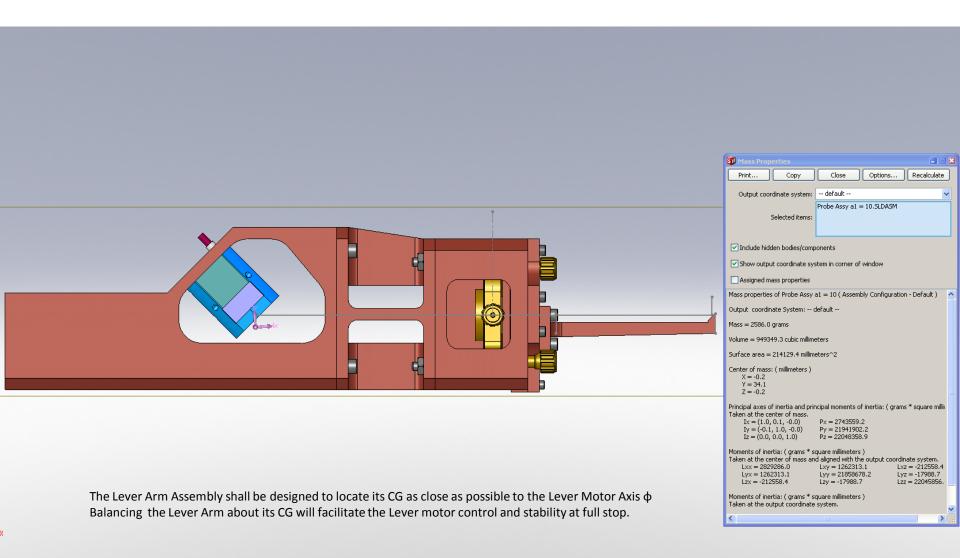

Crank & Lever Motor @ 0° : Probe at 0° (Probe Fully Retracted)

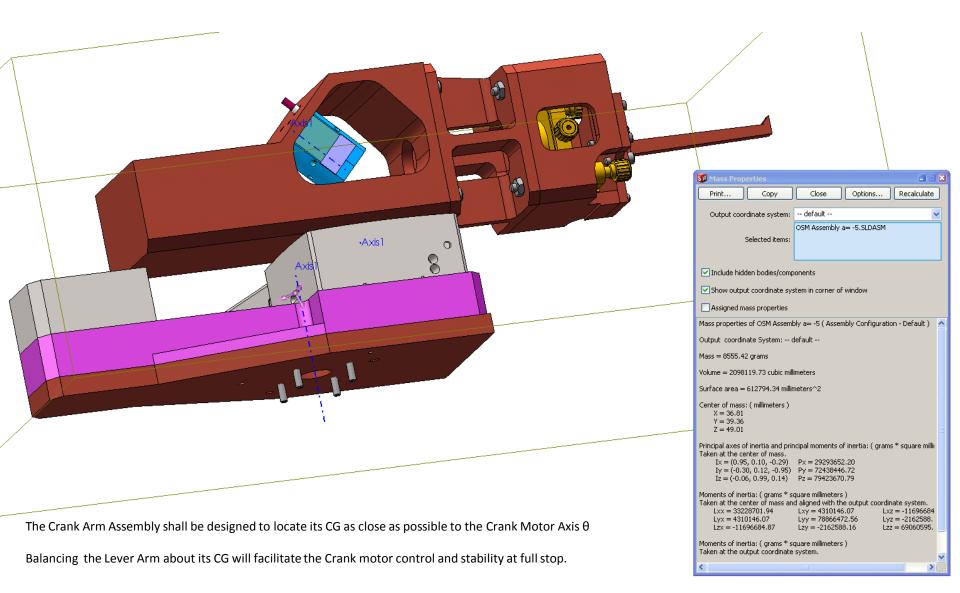
Crank @ 90° CW & Lever Motor @ 90° CCW° : Probe at 90° CW

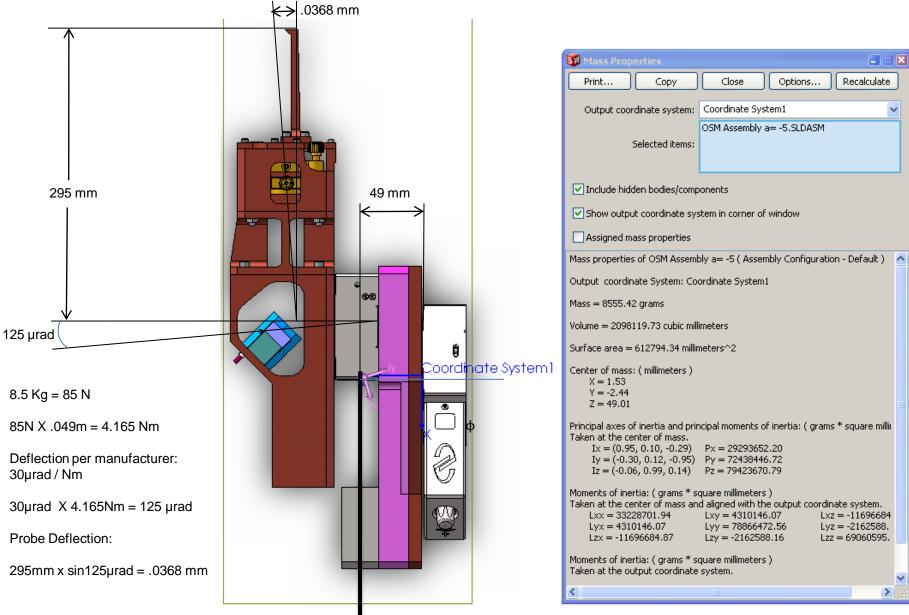

Crank @ 180° CW & Lever Motor @ 180° CCW° : Probe Fully Extended


Conclusion:

The whole 120" field can be covered using 180° Rotation for each stages!...


LOWFS OSM Assy shown at various probe position


LOWFS OSM Assy shown at various probe position

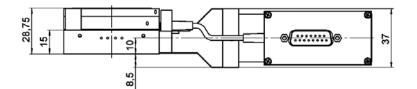

Lever Arm CG Location

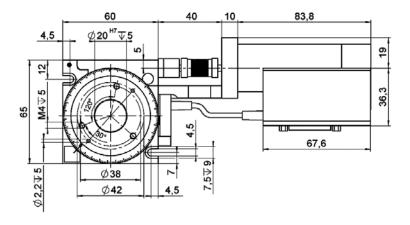
Crank Arm Assy CG Location

Max Cantilever Torque and Deflection

5. Servo Motors Vs Stepper Motors

Motion Characteristics	Servo Motors	Stepper Motors
High Torque, Low Speed	Can be considered if cost/ complexity is not an issue.	Continuous duty applications requiring high torque and low speed.
High Torque and high speed (>2000 rpm)	Continuous duty applications requiring high torque and high speed. DC servomotor can deliver greater continuous shaft power at high speeds compared to steppers. High speed up to 12000 rpm is possible. AC servo motors can handle higher current surges compared to DC servos. Can get lot stronger AC servo compared to either DC servo or DC stepper.	If speeds are less than 2000 rpm stepper may be economical. Stepper becomes bulky at high torque.
Short, Rapid Repetitive Moves	Use servo if need high dynamic requirements.	Stepper will offer more economic solution when requirements are more modest.
Positioning Applications	Servo can handle effectively when load is mostly inertia instead of friction. The ability to overdrive servo motor in intermittent duty allows a smaller motor to be used. If positioning is critical in micron level use servo.	Use stepper motor if torque is lower than 500 oz-in, less 2000 rpm, low to medium acceleration rates.
Applications in Hazardous Environments	Use brushless servo motor.	Use step motor.
Low Speed, High Smoothness	Use DC servo.	Use microstepping.
Control Method	Closed loop.	Preferred to be used in open loop applications.


6. Potential Lever Motor


PI M-037.DG Rotation stage

M-037 rotation stages are equipped with ultra-precise worm gear drives allowing unlimited rotation in either direction. An integrated spring preload eliminates backlash. Double-row ball bearings allow zero backlash, high load capacity and extremely low wobble.

Model M-037.DG is closed-loop DC motors with shaft-mounted position encoders and precision gearheads providing 3.5 μ rad at a design resolution of 0.6 μ rad.

Model M-037.2S models feature a cost-effective direct drive, 2-phase stepper motor, providing very smooth operation and a resolution of 5.45 μ rad at a minimum incremental motion of 21 μ m.

Technical Data

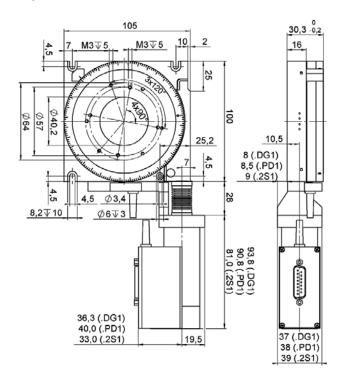
Model	M-037.00	M-037.DG	M-037.PD	M-037.25	
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning		A CONTRACTOR OF A CONTRACT			
Rotation range	>360	>360	>360	>360	
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	4000	-	cts./rev.
Design resolution	-	0.59 (34 x 10 ⁴)	8.75 (0.0005)	5.45* (0.00031)	µrad (°)
Min. incremental motion	4	3.5	27	21	prad
Backlash	-	200	200	200	µrad
Unidirectional repeatability	-	30	30	30	µrad
Wobble	<150	<150	<150	<150	µrad
Max. velocity	-	6	45	10	°/s
Mechanical properties					
Worm gear ratio	180:1	180:1	180:1	180:1	
Gear ratio	-	(28/12)* = 29.6:1	-	-	
Motor resolution –		-	-	6400* step	
Load capacity/axial force, self-locking	±300	±300	+300	±300	N
Max. torque (0x, 0y)	±3	±3	±3	±3	Nm
Max. torque clockwise (02)	1	1	1	1	Nm
Max. torque counter clockwise (02)	0.5	0.5	0.5	0.5	Nm
Drive properties					
Motor type	-	DC motor, gearhead	ActiveDrive™ DC Motor	2-phase stepper motor*	
Operating voltage	2	0 to ±12	24 (PWM)	24	V
Electrical power	2	3	30		w
Reference switch	-	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	20 to +65	-20 to +65	°C
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.3	0.65	0.62	0.64	kg
Recommended controller/driver	-	C-863 (single-axis) C-843 PCI-Karte (for up to 4 axes)	C-863 (single-axis, p. 4-114) C-843 PCI-Karte (p. 4-120) for up to 4 axes)	C-663 (single-axis, p. 4-112)	

incl. motor cable, 3 m, sub-D connector 15-pin

*2-phase stepper motor, 24 V chopper voltage, max. 0.8 A/phase, 400 full steps/rev., motor resolution with C-663 stepper motor controller

M-037.DG rotation stage with DC Motor and gearhead

7. Potential Crank Motor


PI M-038.DG Rotation stage

Model M-038.DG1 equipped with a closed-loop DC motor with shaft-mounted position encoder and precision gearhead providing minimum incremental motion of 3.5 µrad at a design resolution of 0.6 µrad.

Model M-038.2S1 models feature a cost-effective directdrive, 2-phase stepper motor, providing very smooth operation and a resolution of 5.45 µrad at a minimum incremental motion of 21 µm.

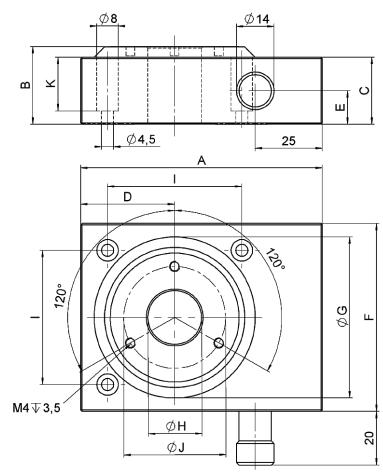
ActiveDrive™

Model M-038.PD is equipped with the highly efficient Active Drive[™] direct drive and reaches velocities up to 45°/s. The ActiveDrive™ design, developed by PI, features a high-efficiency PWM (pulse width modulation) servo-amplifier mounted side-by-side with the DC motor and offers several advantages: Increased efficiency, by eliminating power losses between the amplifier and motor. Reduced cost of ownership and improved reliability, because no external driver is required Elimination of PWM amplifier noise radiation, by mounting the amplifier and motor together in a single, electrically shielded case

Technical Data

Model	M-038.001	M-038.DG1	M-038.PD1	M-038.2S1	Units
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360°	>360*	>360°	>360°	
Integrated sensor	-	Rotary encoder	Rotary encoder	-	
Sensor resolution	-	2000	4000	-	steps/rev.
Design resolution	-	0.60 (35 x 10*)	8.95 (0.0005)	5.58* (0.00032)	µrad (*)
Min. incremental motion	-	3.5	27	21	prad
Backlash	-	200	200	200	µrad
Unidirectional repeatability		20	20	20	µrad
Wobble	<75	<75	<75	<75	µrad
Max. velocity	-	6	90	10	°/s
Mechanical properties					
Worm gear ratio	176:1	176:1	176:1	176:1	
Gear ratio	-	2401:81 = 29.6:1	-	-	
Motor resolution	-	-	-	6400*	steps/rev.
Max. load/axial force	±400	±400	±400	±400	N
Maximum torque (0 _x , 0 _y)	±6	±6	±6	±6	
Maximum torque CW**	2	2	2	2	Nm
Maximum torque CCW**	0.8	0.8	0.8 0.8		Nm
Drive properties					
Motor type	-	DC Motor, gearhead	ActiveDrive™ DC Motor	2-phase stepper motor*	
Electrical power	-	3	30		W
Reference switch		Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating voltage	-	12 V differential	24 (PWM)	24	v
Operating temperature range	-20 to +65	-20 to +65	-20 to +65	-20 to +65	°C
Material	Alumínum	Aluminum	Aluminum	Aluminum	
Mass	0.9	1.25	1.35	1.25	kg
Recommended controller/driver	r	C-863 (single-axis) C-843 PCI board (for up to 4 axes)	C-863 (single-axis, p. 4-114) C-843 PCI board (p. 4-120) (for up to 4 axes)	C-663 (single-axis, p. 4-112)	

*2-phase stepper motor, 24 V chopper voltage, max. 0.8 A/phase, 400 full steps/rev., motor resolution with C-663 stepper motor controller **CW: clockwise; CCW: counter-clockwise



Custom M-038 with folded drive

Other Possible Crank motor: M-06X.DG Rotation stage

Dimensions	M-060.M0	M-061.M0	M-062.M0
A	90	130	150
В	29	34	42
C	25	30	38
D	35	55	65
E	12,5	15	21,5
F	70	110	130
G	60	100	120
н	20	35	45
I	50	90	110
J	38	50	60
K	20	20	28

Technical Data

Technical Data					
Model	M-060.M0 / M-061.M0 / M-062.M0	M-060.PD / M-061.PD / M-062.PD	M-060.DG / M-061.DG / M-062.DG	M-060.2S / M-061.2S / M-062.2S	Units
Active axes	Rotation	Rotation	Rotation	Rotation	
Motion and positioning					
Rotation range	>360	>360	>360	>360	•
Integrated sensor	-	Rotary encoder	Rotary encoder		
Sensor resolution	-	4000	2000		Cts./rev.
Design resolution	-	32 (0.0018) / 17.5 (0.001) / 15 (0.0008)	2.1 (0.00012) / 1.2 (6.9 x 10⁵) / 0.96 (5.5x10⁵)	19.7 (0.0011) / 10.9 (0.00063) / 8.9 (0.00051)*	µrad (°)
Min. incremental motion	-	32 / 17.5 / 15	6.3 / 6 / 5	40 / 20 / 18*	µrad
Backlash	-	200 / 200 / 240	200 / 200 / 240	200 / 200 / 240	µrad
Unidirectional repeatability	-	50 / 50 / 60	50 / 50 / 60	50 / 50 / 60	µrad
Max. velocity	-	90	16 / 9 / 7.3	36 / 20 / 16	°/s
Mechanical properties					
Worm gear ratio	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	50:1 / 90:1 / 110:1	
Gear ratio	-	-	(28/12) ⁴ :1 ≈ 29.6:1	-	
Motor resolution	-	-	-	6400*	steps/rev.
Axial force	±500 / ±550 / ±650	±500 / ±550 / ±650	±500 / ±550 / ±650	±500 / ±550 / ±650	N
Max. torque θ_X,θ_Y	±6 / ±6 / ±7	±6 / ±6 / ±7	±6 / ±6 / ±7	±6 / ±6 / ±7	Nm
Max. torque θ_Z	±4 / ±6 / ±8	±4 / ±6 / ±8	±4 / ±6 / ±8	±4 / ±6 / ±8	Nm
Drive properties					
Motor type	-	ActiveDrive [™] DC-Motor	DC-Motor, gearhead	2-phase Stepper-Motor	**
Operating voltage	-	24 (PWM)	12 differential	24	V
Electrical power	-	30	3	-	
Reference switch	Hall-effect	Hall-effect	Hall-effect	Hall-effect	
Miscellaneous					
Operating temperature range	-20 to +65	-20 to +65	-20 to +65	-20 to +65	°C
Material	Aluminum	Aluminum	Aluminum	Aluminum	
Mass	0.42 / 1.36 / 2.24	0.94 / 1.88 / 2.76	0.94 / 1.88 / 2.76	0.96 / 1.9 / 2.78	kg
Recommended controller/driver		C-863 single-axis C-843 PCI board, for up to 4 axes	C-863 single-axis (p. 4-114 C-843 PCI board (p. 4-120), for up to 4 axes		112)

*with C-663 stepper-motor controller **2-phase stepper-motor, 24 V chopper voltage, max. 0.8 A/phase, 400 full steps/rev

8. Potential Crank & Lever Motor

Newport URS Series Precision Rotation Stages

Dimensions

Dimensions in inches (millimeters) MODEL URS100B

	А	В	С	D	E	F	G	н	J	K	L	М	N	Р
URS75B	1.97 (50)	8.19 (208)	20 ⁽¹⁾ (-5) ⁽¹⁾	3.54 (90)	1.18*0051 (30*013)	.08 (2)	.83 (21)	M3	1.26 (32)	.24 (6)	-	1.50 (38)	1.34 (34)	2.98 (75.6)
URS100B	3.07 (78)	9.13 (232)	.71 (18)	4.49 (114)	1.97 * 500k3 (50 * 516)	.26 (6.5)	1.02 (26)	M6	1.97 (50)	.24 (6)	SQR 1.89 (SQR 48)	2.28 (58)	2.13 (54)	3.97 (100.8)
URS150B	5.18 (131.5)	11.14 (283)	2.56 (65)	6.50 (165)	3.54 ° 00087 (90 ° 022)	.41 (10.5)	1.14 (29)	M6	2.95 (75)	.31 (8)	ø4.92 (Ø 125)	4.13 (105)	3.86 (98)	5.91 and 6 ⁽²⁾ (150 and 152.4) ⁽²⁾

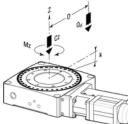
Notes:

17 The drive box of the URS75BCC exceeds .20 in. (5 mm) from the body.

2 URS150B: 4 slots counterbored.

Base Material	Hardened steel with aluminum body
Bearings	
Drive Mechanism	Ground worm gear with self-compensating preload. Additional 1:2.75 drive belt with URS-CC versions (no belt on URS-PP versions)
Worm Gear Ratio	1:90
Feedback	CC: Worm mounted rotary encoder, 8,000 cts/rev, index pulse. PP: None
Limit Switches	Two independently adjustable optical limit switches
Origin	Optical, fixed at position 0°. Typical 0.0005° repeatability for URS-CC and 0.04° repeatability for URS-PP
Manual Adjustment	Via allen wrench at the end of the worm screw. Allen wrench is included.
Motor	CC: UE34CC DC servo motor PP: UE34PP Two phase stepper motor, 1 full step = 0.02°
Cable	

Specifications


	PP		CC	
	Typical	Guaranteed	Typical	Guaranteed
Travel Range (°)	360 contir	nuous ⁽¹⁾		
Resolution (°)	0.0002 ⁽²⁾		0.0005	
Minimum Incremental Motion (*)	0.0002		0.002	
Uni-directional Repeatability (*)	0.001	0.002	0.001	0.002
Reversal Value (Hysteresis) (°)	0.006	0.01	0.002	0.004
Absolute Accuracy (*)	0.016	0.030	0.012	0.023
Maximum Speed (*/s)	40		80	
Wobble (µrad)	20	50	20	50
Eccentricity (µm)		3		3
MTBF	20,000 h a	at 25% load and wi	th a 30% duty	cycle

1) With disabled limit switches

2) Equal to 1/100 of a full step

See the Motion Control Metrology Primer section (see Motion Control Metrology Primer) for more information on typical and guara

Load Characteristics

	URS75	URS100	URS150	
Cz, Normal centered load capacity (N)	200	300	300	
a, Construction parameter (mm)	25	35	55	
kα, Transversal compliance (µrad/Nm)	30	10	5	
Mz, Nominal Torque (Nm)	+/- 0.5	+/- 1	+/- 2	
Q, Off-center load	Q ≤ Cz/(1 +	(/a)		
D, Cantilever distance in mm				20
Weight [lb (kg)]	3.7 (1.7)	4.4 (2)	7.5 (3.4)	20

9. Comparison between Potential Stages.

Specifications	URS75BPP Typ. Guaranteed	URS75BCC Typ. Guaranteed	M-037.DG	M-038.DG1
Motor Type	Stepper	DC servo	DC servo	DC servo
Feedback	None	Worm mounted encoder	Shaft mounted encoder	Shaft mounted encoder
Worm Gear Ratio	1:90	1:90	180:1	176:1
Sensor Resolution (cts/rev)	None	8000	2000	2000
Resolution (°)	0.0002	0.0005	0.00003	.000003
Minimum Incremental Motion (°)	0.0002	0.002	.0002	.0002
Uni-directional Repeatability (°)	0.001 0.002	0.001 0.002	.0017	.0011
Reversal Value (Hysteresis) (°)	0.006 0.01	0.002 0.004	.01	.01
Absolute Accuracy (°)	0.016 0.030	0.012 0.023	TBD	TBD
Maximum Speed (°/s)	40	80	6	6
Wobble (µrad)	20 50	20 50	<150	<75
Eccentricity (µm)	3	3	TBD	TBD
Max Axial Load (N)	200	200	300	400
Max CW Torque (CCW)	0.5 (0.5)	0.5 (0.5)	1 (0.5)	2 (0.8)
Max Cantilever Torque (Nm)	5	5	6	6
Mass (N)	17	17	6.5	12.5
MTBF at 25% load and with a 30% duty cycle	20,000 h	20,000 h	TBD	TBD
Integrated limit switch	Adjustable	Adjustable	No	No
Price	\$2940	\$3436	\$4178	\$4724

Comparison between Potential Stages.

Mass on Lever motor: Tip Tilt Mirror (0.065 Kg) + TT Mirror Housing (0.100 Kg) + Probe Assy (0.120 Kg) + Collimator Assy (0.01 Kg) = 0.295 Kg

Mass on crank motor:

Mass on lever motor + Crank Adaptor (0.100 Kg) + Lever Adaptor (0.100 Kg) + Periscope Assy(0.015 Kg) + Counterweight (1 Kg) + Lever Motor = 1.215 Kg + Lever Motor

Distance between Crank Motor and center of Mass installed on Crank motor: 40mm

1) Using the PI Motors as follow: M-038.DG1 as Crank Motor and the M-037.DG as the Lever motor:

Mass on Crank motor: 1.215 Kg + 0.65 Kg = 2 Kg (20N)

Cantilever Torque at Crank motor: 0.04m X 20 = 0.8 Nm

2) Using the URS75BCC Newport Motor for both Crank and Lever motor:

Mass on Crank motor: 1.215 Kg + 1.7 Kg = 3 Kg (30N)

Cantilever Torque at Crank motor: 0.04m X 30 = 1.2 Nm

Off Center Load: Q < 200 / (1 + 40/25) = 77 N

CONCLUSION: The Newport URS75BCC is cheaper and faster than the PI Stages and comparatively as accurate.

The Newport URS75BCC is a bigger stage than the PI Stage: The Arm length will have to be proportionally longer.

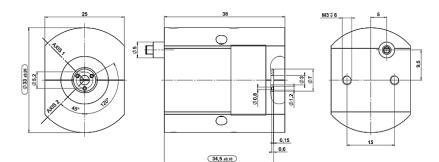
Lever Arm + Crank Arm + Probe = Fov + Separation + Crank Arm

Lever Arm + 1.8175 = 87.24 + 63.5

→ Lever Arm = 148.9225 mm

Needs Update

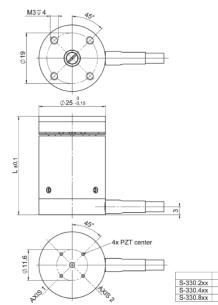
Lever Arm - Crank Arm = Separation + Crank Arm + Probe


148.9225 - Crank Arm = 63.5 + Crank Arm + 1.8175

→ Crank Arm = 41.8025 mm

10. Potential Tip / Tilt Mirror

PI S-334 Miniature Piezo Fast Steering Tip/Tilt-Mirror up to 120 mrad Deflection


Technical Data

Common Data				
Model	S-334.2SL	S-334.2SD	Units	Tolerance
Active Axes	θχ, θγ	θχ, θγ		
Motion and positioning				
Integrated sensor	SGS	SGS		
*Open-loop tilt angle at -20 to +120 V	60	60	mrad	min. (+20%/-0%
*Closed-loop tilt angle	50	50	mrad	
Open-loop resolution	0.5	0.5	µrad	typ.
Closed-loop resolution	5	5	µrad	typ.
Linearity	0.05	0.05	%	typ.
Repeatability	5	5	µrad	typ.
Mechanical properties				
Resonant frequency under load (with standard mirrors)	1.0	1.0	kHz	±20%
Resonant frequency with 12.5 mm diam. x 2 mm glass mirror	0.8	0.8	kHz	±20%
Load capacity	0.2	0.2	N	Max.
Distance of pivot point to platform surface	6	6	mm	±1 mm
Platform moment of inertia	1530	1530	g x mm²	±20%
Standard mirror (mounted)	diameter: 10 mm, thickness: 2 mm, BK7, λ/5, R > 98% 0, = 500 nm to 2 μm)	diameter: 10 mm, thickness: 2 mm, BK7, λ/5, R > 98 % (λ = 500 nm to 2 μm)		
Drive properties				
Ceramic type	PICMA® P-885	PICMA® P-885		
Electrical capacitance	6	6	μF	±20%
Miscellaneous				
Operating temperature range	-20 to 80	-20 to 80	°C	
Material casing	Titanium	Titanium		
Mass	0.065	0.065	kg	±5%
Cable length	2	2	m	±10 mm
Sensor / voltage connection	LEMO connector	25-pin sub-D connector		
Recommended controller / amplifier	Modular piezo controller system E-500 (p. 2-144) with amplifier module E-503.005 (three channels) (b. 2-148) or 1 x E-505.00S and 2 x E-505 (high speed applications) (p. 2-147) and E-509 servo controller (b. 2-152)			
	Open-loop: E-663 three channel amplifier (p. 2-136)		23

Potential Tip / Tilt Mirror

PI S-330-2XX Miniature Piezo Fast Steering Tip/Tilt-Mirror

Technical Data

roominoar bata							
Model	S-330.2SL	S-330.4SL	S-330.8SL	S-330.2SD S-330.4SD S-330.8SD	S-330.20L S-330.40L S-330.80L	Units	Tolerance
Active axes	θ _χ , θ _γ	Θ_{X}, Θ_{Y}	Θ_{X}, Θ_{Y}	θ _χ , θ _γ	θ _χ , θ _γ		
Motion and positioning							
Integrated sensor	SGS	SGS	SGS	SGS	-		
Open-loop tip/tilt angle, -20 to +120 V	3.5	7	15	as SL version	as SL version	mrad	min.
Closed-loop tip/tilt angle	2	5	10	as SL version	-	mrad	
Open-loop tip/tilt angle resolution	0.02	0.1	0.2	as SL version	as SL version	µrad	typ.
Closed-loop tip/tilt resolution	0.05	0.25	0.5	as SL version	-	µrad	typ.
Linearity in Θ_X, Θ_Y	0.1	0.2	0.25	as SL version	-	%	typ.
Repeatability Θ_X, Θ_Y	0.15	0.5	1	as SL version	-	µrad	typ.
Mechanical properties							
Unloaded resonant frequency (Θ_X, Θ_Y)	3.7	3.3	3.1	as SL version	as SL version	kHz	±20%
Resonant frequency loaded in Θ_x , Θ_y (with 25 x 8 mm glass mirror)	2.6	1.6	1.0	as SL version	as SL version	kHz	±20%
Distance of pivot point to platform surface	6	6	6	6	6	mm	±1 mm
Platform moment of inertia	1530	1530	1530	1530	1530	g x mm²	±20%
Drive properties							
Ceramic type	PICMA®	PICMA®	PICMA®	PICMA®	PICMA®		
Electrical capacitance	3/axis	6/axis	12.5/axis	as SL	as SL	μF	±20%
Dynamic operating current coefficient	0.22/axis	0.4/axis	0.8/axis	as SL	as SL	µA//Hz • mrad)	±20%
Miscellaneous							
Operating temperature range	-20 to 80	-20 to 80	-20 to 80	-20 to 80	-20 to 80	°C	
Material case	Stainless steel	Stainless steel	Stainless steel	Stainless steel	Stainless steel		
Material platform	Invar	Invar	Invar	Invar	Invar		
Mass	0.2	0.38	0.7	as SL version	as SL version	kg	±5%
Cable length	1.5	1.5	1.5	1.5	1.5	m	±10 mm
Sensor / voltage connection	LEMO	LEMO	LEMO	Sub-D connector	LEMO		

Recommended controller / amplifier

Versions with LEMO connector: modular piezo controller system E-500 (p. 2-142) with amplifier module E-503.00S (three channels) (p. 2-146)

or 1 x E-505.00S and 2 x E-505 (high speed applications) (p. 2-147) and E-509 controller (p. 2-152) (optional)

Open-loop: E-663 three channel amplifier (p. 2-136)

Versions with Sub-D connectors: E-616 servo controller for tip/tilt mirror systems (p. 2-132)

Ordering Information

55

91

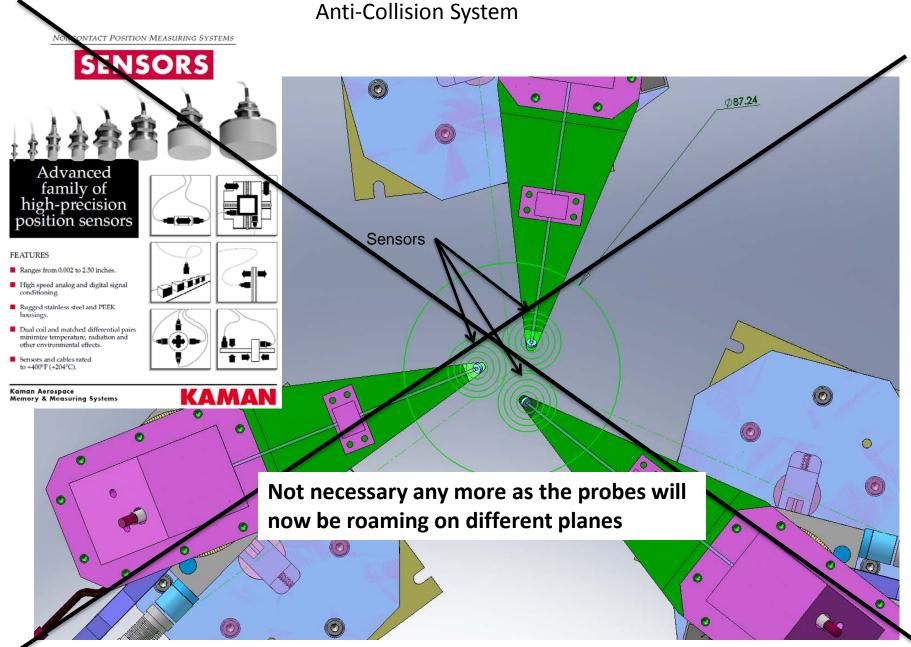
S-330.2SL High-Dynamics Piezo Tip/Tilt Platform, 2 mrad, SGS, LEMO Connector

S-330.2SD High-Dynamics Piezo Tip/Tilt Platform, 2 mrad, SGS, Sub-D Connector

S-330.20L High-Dynamics Piezo Tip/Tilt Platform, 2 mrad, Open-Loop, LEMO Connector

S-330.4SL High-Dynamics Piezo Tip/Tilt Platform, 5 mrad, SGS, LEMO Connector

S-330.4SD High-Dynamics Piezo Tip/Tilt Platform, 5 mrad, SGS, Sub-D Connector


S-330.40L High-Dynamics Piezo Tip/Tilt Platform, 5 mrad, Open-Loop, LEMO Connector

S-330.8SL High-Dynamics Piezo Tip/Tilt Platform, 10 mrad, SGS, LEMO Connector

S-330.8SD High-Dynamics Piezo Tip/Tilt Platform, 10 mrad, SGS, Sub-D Connector

S-330.80L

High-Dynamics Piezo Tip/Tilt Platform, 10 mrad, Open-Loop, LEMO Connector 24

Remaining work to be done

-Analyze Tip/Tilt Mirror Vibrations and Impact on Probe stabilization.

- System rigidity Analysis

Questions:

-Probe position Accuracy: 40 (KAON 562) or 70 mas (Contour)

- Minimum Incremental motion ?
- Max Wobble?
- Position Stability (5 mas / 3600 s) TBC
- TT Requirements (Deflection, response, resolution,...)

Rejected Lever Motors

435 Route 206 · PO.Box 366 Newton NJ 07860-0366
Motorized Rotation Stage
Continuous 360° Motorized Rotation With 1arcsec Resolution
Houses Ø1" Optics up to 0.50" Thick
Compatible With Our SM1 Lens Tube Accessories
Image: Comparison of the state of th

Overview

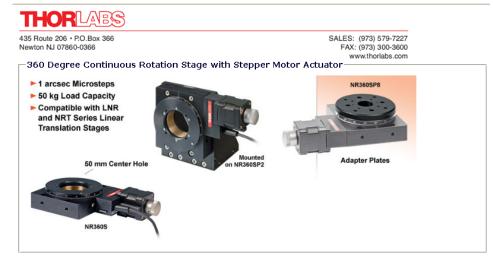
Features

- 1° Graduations on Main Dial
- Compact Design (23 mm Deep)
- Precision Home Limit Switch
- Post Mountable
- Ideal for SM1 (1.035"-40) Compatible Accessories
- Directly Accepts Ø1" Optics up to 0.50" (12.5 mm) Thick
- Fully Compatible with Our SM1 Lens Tube (1.035"-40 Thread) Accessories

Specification	Value
Bidirectional Repeatability	±0.1°
Backlash	±0.3°
Max Rotation Velocity	25 deg/sec
Horizontal On-Axis Load Capacity	1.5 kg
Vertical On-Axis Load Capacity	0.5 kg
Min Achievable Incremental Motion	25 arcsec
Min Repeatable Incremental Motion	0.03°
Absolute On-Axis Accuracy	0.1%
Max Percentage Accuracy	0.08%
Home Location Accuracy	±0.2°
Range	360° Continuous

With a depth of only 23 mm (0.9"), the PRM128 is a small, compact, motorized rotation stage and mount that accepts Ø1" optics and is based on our popular PRM1 Rotation Mount. Rotation is driven via a DC serve motor that is equipped with a 67:1 gearbox and a rotary encoder for accurate closed-loop position control. The user can measure the angular displacement by using the Vernier dial in conjunction with the graduation marks that are marked on the rotating plate in 1° increments. The precision DC motor actuator provides 1 arcsecond of resolution over the entire 360° of rotation. This rotation stage/mount is also equipped with a precision home limit switch to facilitate automated rotation to the zero datum position, thus ensuring absolute angular positioning thereafter. The limit switch is designed to allow continuous rotation or the stage over multiple 360° cycles.

The <u>TDC0001 DC | Servo Controller</u> is the ideal companion for achieving smooth, continuous motion that can be automated via the software interface. The stage/mount and controller are sold together below with the item number PRM1 28E and PRM1 MZ8E.


Normally the PRM128 is mounted horizontally. The stage can be fixed directly to the work surface using the counter-bored holes in the main body. For complete flexibility, the stage/mount can be used vertically on a standard @1/2" post and has an option to mount in a vertical inclined orientation. When in the vertical orientation, the reduced thickness of the stage is extremely beneficial for optical path applications where space is limited.

The PRM1Z8 is supplied with 19.6" (0.5 m) of cable. An 8 ft (2.5 m) extension cable (PAA632) is available separately.

The rotating platform features several accessories. The central aperture has a standard SM1 internal thread, for

Done

Rejected Crank Motors

Overview

Features

- Resolution Better than 1 arcsec
- Manual Control of the Rotating Carriage
- High Capacity, 50kg Maximum Axial Load
- · Preloaded Worm Gear Drive Mechanism with Minimal Backlash
- Origin Indicating Switch Every 360°
- Mounting Options: Four 1/4" (M6) Countersunk Holes and Nine M6 Tapped Holes

The NR series rotation stage provides arc-second resolution when driven from a micro-stepping stepper motor controller, such as the BSC100 Series. The low profile design has a height of just 55 mm due to the use of two compact precision bearings. The rotating carriage of the stage features continuous rotation and can support loads up to 50 kg. The 50 mm clear aperture through the center of the rotation stage allows the stage to be used in applications where the optical axis and rotation axis are parallel. The frame of the stage is made from aluminum and has four 1/4" (M6) countersum kholes that allow the stage to be secured to a translation stage or optical table using one of the adapter plates presented below. In addition, 9 M6 tapped mounting holes are located on the side of the frame to provide additional mounting options. A worm gear assembly transfers the rotary motion of the stepper motor into rotary motion of the carriage. The mechanical reduction in this gear assembly provides one revolution of the carriage for every 66 turns of the stepper motor.

We encourage you to review the tabs above for detailed specifications of the NR360S and the recommended Stepper Motor Controller, the BSC100 Series. Please note that Thoriabs offers bottom mounting adapter plates and brackets to secure the NR360S as well as several types of rotating adapter plates; these items are featured below with more detailed product descriptions.

NR360S Specs

Specification	Value	Motor Specs	
Travel	360° Continuous Rotation	Step Angle	1.8"
On Axis Load Capacity	110 lbs (50 kg)	Rated Phase Current	1 A
Drive Mechanism	Worm Drive	Phase Resistance	4.6Ω
Limit Switches	Reference Signal Every 360°	Phase Inductance	0.6 mH
Motor Type	2 Phase Stepper	Holding Torque	23.1 N-cm
Theoretical Resolution	1 arcsec (If Used with BSC101)	Detent Torque	1.7 N-cm
Speed Range	15% sec (If Used with BSC101)	Rotor Inertia	32 g-cm ²
Recomended Controller	BSC101		
Weight (Actuator)	3.11 lbs (1.4 kg)		