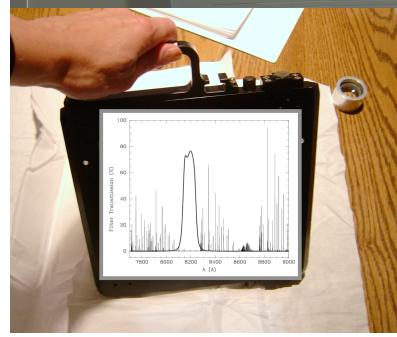
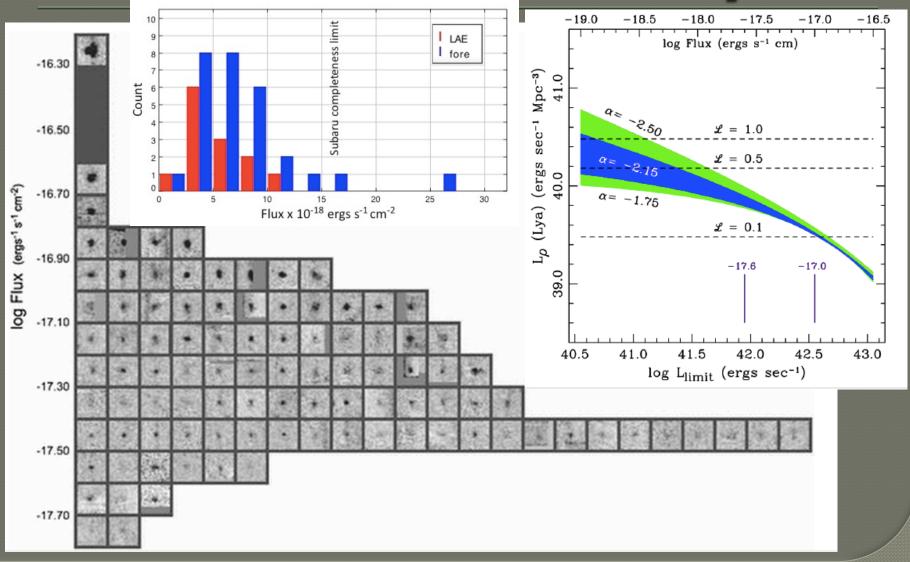
Science Capabilities of WMKO Spectrographs Fed by GLAO


Crystal Martin (UC Santa Barbara)

Motivation


Historical strengths of WMKO

- Multi-object spectroscopy
- High-resolution AO
- What limits efficiency of multi-object spectroscopy?
 - Number of photons (Solution = TMT)
 - Larger field of view (Solution = Prime Focus)
 - Sky brightness
 - Go to space (JWST)
 - Improve the image quality delivered to spectrograph (GLAO)

Low Background Spectroscopy in the OH Windows

Sky Background Limits Spectroscopic Sensitivity

$$\left(\frac{S}{N}\right)_{0\lambda} = \frac{F_{\lambda} \cdot \Delta \lambda' \frac{A \epsilon t}{h\nu}}{\sqrt{F_{\lambda} \cdot \Delta \lambda' \frac{A \epsilon t}{h\nu} + \sum_{j=1}^{j sky} \theta_{j} \theta_{j} \Delta \lambda' \frac{A \epsilon t}{h\nu} + R_{\lambda}^{2} n_{pix} + D^{2} n_{pix}}$$

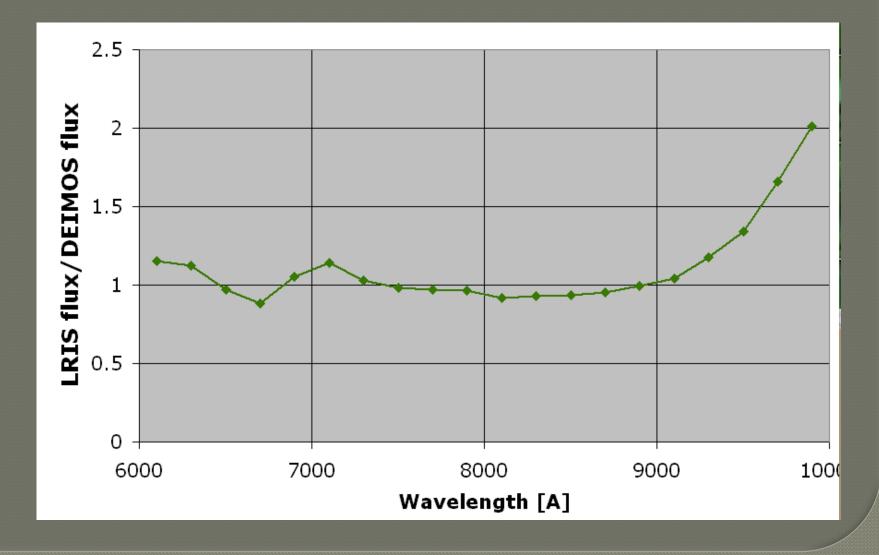
$$\frac{S}{N} \approx \frac{F_{\chi} \cdot \Delta \lambda}{\sqrt{F_{\chi} \cdot \Delta \lambda^{L} + \Sigma_{\chi}^{1SK_{\gamma}} \Theta_{L} \Theta_{M} \Delta \lambda^{C}} \sqrt{\frac{Aet}{h\lambda}}}$$

1

$$\frac{S}{N} \approx \frac{F_{\lambda}}{\sqrt{F_{\lambda} + \Sigma_{\lambda}^{1sky} \Theta_{\perp} \Theta_{\parallel}}} \frac{\Delta \lambda^{L}}{\sqrt{\Delta \lambda^{L} + \Delta \lambda^{c}}} \sqrt{\frac{A \epsilon t}{h \nu}}$$

Integrate long enough that shot noise dominates detector noise.

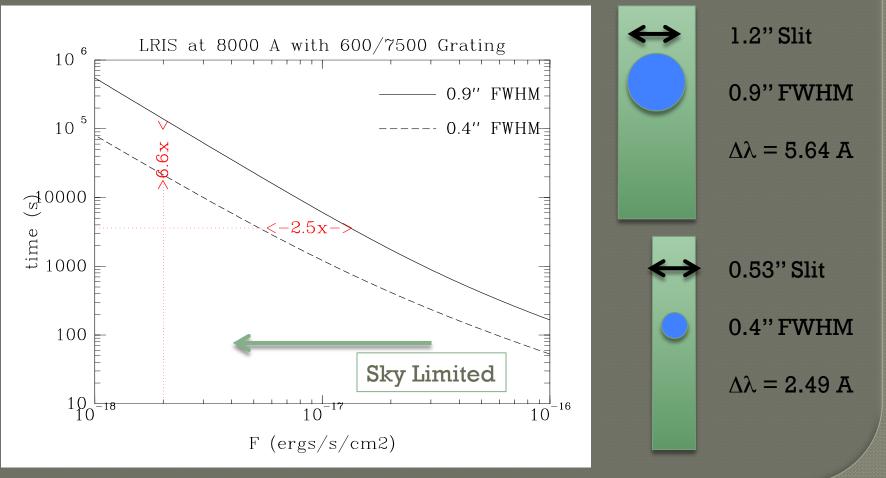
Limited by sky background for faint galaxies.


Improved image quality will

- 1. Reduce the angular size of objects
- 2. Improve spectral resolution without reducing spectral coverage

Which Spectrographs Can Take Advantage of Improved Image Quality?

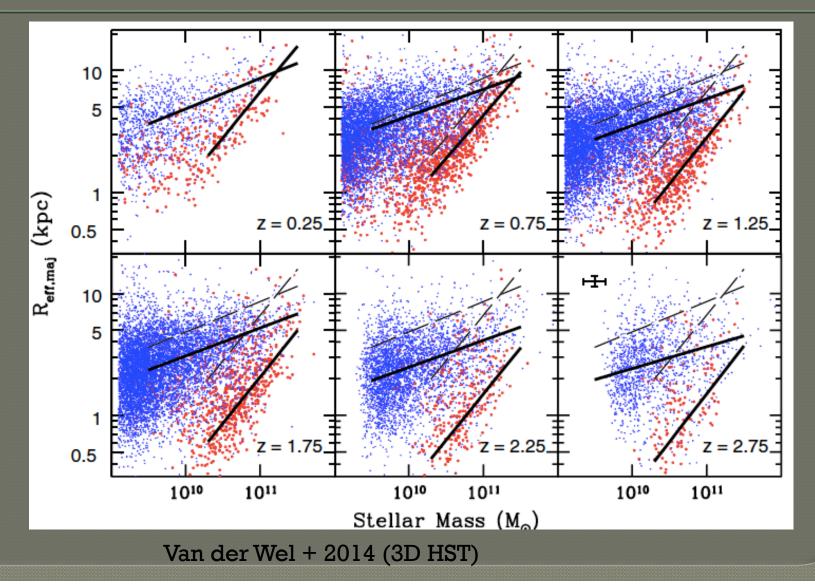
Instrument	LRIS	MOSFIRE	DEIMOS
Scale ("/pixel)	0.135	0.1798	0.1185
Field of View (')	5.5 X 8.0	3.0 X 6.1	16.7 X (5.0)
Detector	2k x 4k LBNL CCD	2k x 2k H2R	8 2k x 4k MIT/Lincoln Labs CCDs
Broadband Image Diameter (")	0.288 (1.03)	< 0.25	0.33-0.38
Reference	Oke, Cohen, et al. 1995, PASP 107, 375	McLean+2012 SPIE Procs, 8446, 17 McLean+2012 SPIE Procs, 7735, 47	Nov. 2001 Pre-ship Review
Anamorphic Magnification	1.4 (1200 l/mm)	1.357 (HK) 1.335 (YJ)	(1.62) 1200/7500


LRIS Beats DEIMOS in the Red

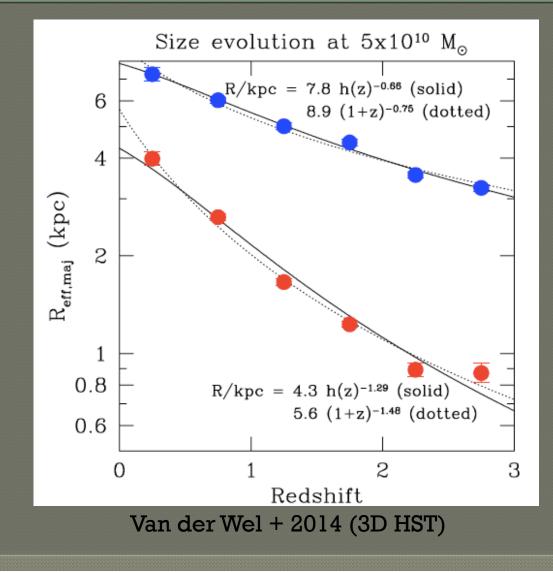
Estimated Gain in Sensitivity from Improved Image Quality

Context:

Emission Line at 8000 A with FWHM=4.0 A (150 km/s)



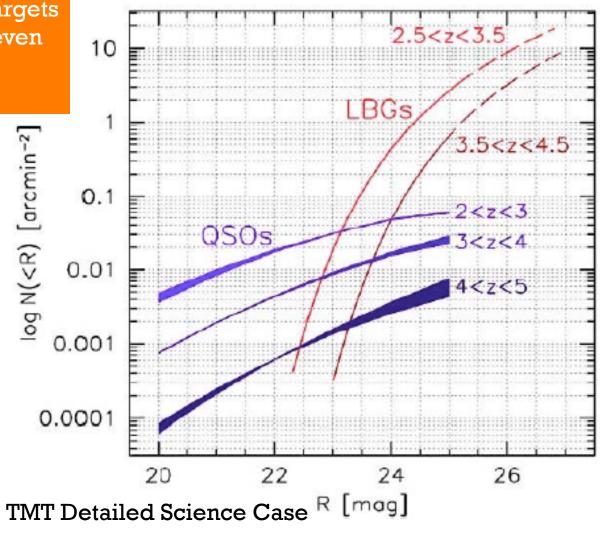
Science Objectives Drive the Required Resolution


Galaxy Populations

- Integrated Spectra (slit width at $2 * R_{1/2}$)
- Large Samples (maximum field of view)
- New
 - Lower mass galaxies at all redshifts
 - Higher resolution spectra for massive galaxies
- Galaxy Structure / Resolved Properties
 - Abundance gradients (exp. scalelength)
 - Star formation & feedback (100 pc to 1 kpc)
 - Rotation curves

Sizes of Galaxies

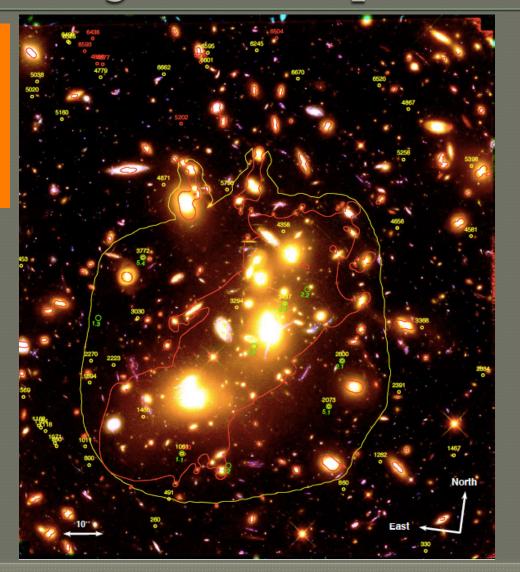
Sizes of "Typical" Galaxies



Sizes of Galaxies

Color/ Redshift	Half-Light Radius (")	Exponential Scale Length (")	100 pc Angular size (")	l kpc Angular size (")
Blue z=0.2	1.15	0.687	0.0164	0.164
Blue z=1.0	0.66	0.394	0.0124	0.124
Blue z=2.0	0.48	0.287	0.0119	0.119
Red z=0.2	0.66			
Red z=1.0	0.25			
Red z=2.0	0.13			

Studying the Gas in Galaxy Halos with Sightlines to Background Beacons


Point source targets benefit from even higher image quality.

Beyond Current WMKO Instruments: Integral Field Spectroscopy

Redshift 7 (yellow contour) and 8 (red contour) lensed galaxies.

Field shown in 2' x 2'.

Beyond Current WMKO Instruments: Integral Field Spectroscopy

5.3

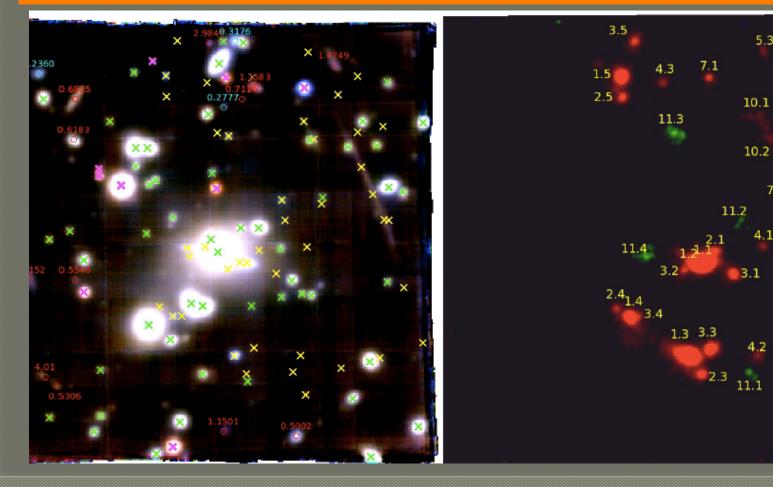
9.2

8.2 9.1

6.3

10.3

7.3


8.1

6.1

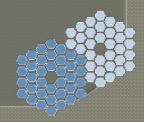
7.2

6.2

- MUSE (1'x 1') at VLT is too small; must do mosaic
- Lensed emission-line galaxies: Lya (red), [OIII] (green), and CIII] (blue)

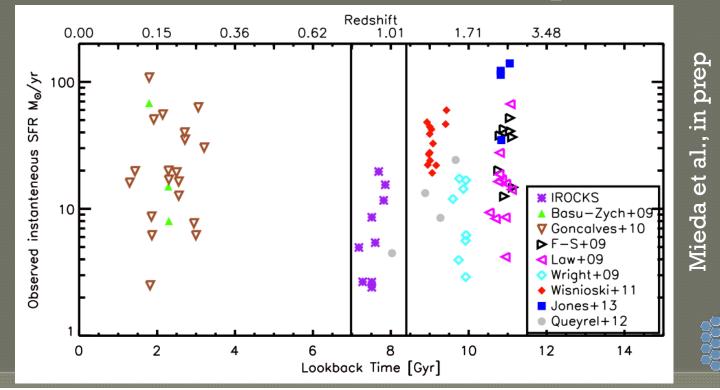
GLAO – Integral Field Spectrograph (IFS)

To take best advantage of the large FOV afforded by GLAO we need to have either wide field format IFS or multi-object IFS
At near-infrared (~1- 2.5 μ m) this is challenging since we want to sample the GLAO PSF (0.05 - 0.2") and have a large FOV access

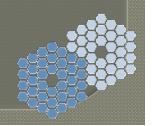

• <u>But ultimately we are pixel limited!</u>

 Trade-offs will need to be made based on total field of view (of either a single wide format or deployable IFS) <u>and</u> spectral resolution

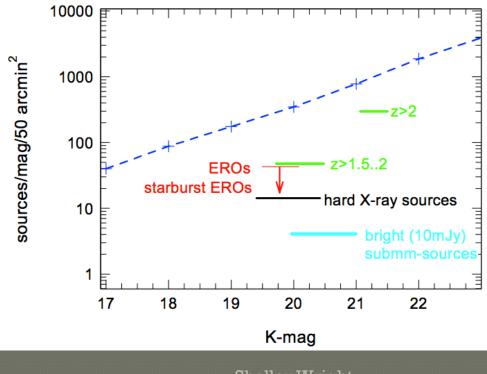
Science Cases for GLAO with Multi-Object IFSs (mIFS)


- There are a range of science cases that would benefit with a mIFS
- OPrimary science cases
 - \checkmark High-redshift Galaxies (z > 1)
 - Starbursts & clusters in nearby galaxies (e.g., M82)
 - Stellar population in nearby galaxies (e.g., proper motion in local group)
 - Milky Way (crowded field astrometry and photometry)

GLAO-IFS: High-Redshift Current IFS samples are limited by single-mode observations (e.g., SINS) TIME CONSUMING to build-up a statistical sample


• <u>The MAJORITY of IFS high-z galaxies are seeing-limited!</u>

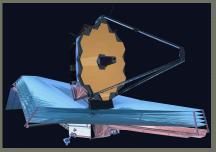
• Limited number of IFS <u>+ AO</u> samples:


Why GLAO + IFS on high-z galaxies?

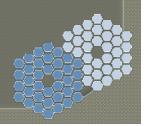
- The goal is to achieve spatially resolved spectroscopy of moderate to high-z galaxies
 - Essential for rotation curves, velocity dispersion and stellar population profiles
- Constraints (e.g., Tully-Fisher, Fundamental Plane) on z < 1 galaxy evolution would not have happened without <u>high angular resolution</u> HST
- We need AO to improve spatial resolution
 - Angular size of z > 1 galaxy is ~ 1 ", size of seeing halo
 - To resolve kpc size scale at high-z you need < 0.2" spatial resolution
- Typical R = 3000 5000 to sample between OH lines and achieve σ ~50 km/s
- Lastly, we need a LARGE statistical sample!
 - Multiplexing of IFS are needed

GLAO FOV well-matched to multiplexing high-z galaxies

- The number density of z > 1 galaxies is suited for GLAO with multiple IFSs
 - 10 100 galaxies per 50 acrmin² (7' diameter)

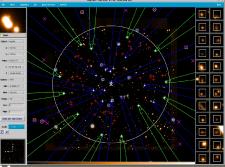

Sharples et al. 2003

Landscape of NIR-spectroscopy on JWST


 JWST NIRSpec IFS will have limited spatial and spectral resolution compared

to ground-based facilities

- NO IFS multiplexing capabilities
- Limited spectral resolution!
 - (R=100, 1000, 2700)


- Limits high-z galaxies dispersion and kinematic resolution
- Limited sampling and field of view
 - IFS is 3"x3" with 0.1" sampling
 - Limits to spatial sampling of high-z galactic structure

Landscape of IFS+AO in coming decade

• Example 8-10m class telescopes:

- VLT KMOS with 24 deployable IFUs
 - 2.8"x2.8" FOV per IFU with 0.2" sampling
- ULTIMATE-Subaru currently being investigated to operate with GLAO syster.

KMOS

- Extremely Large Telescopes (TMT, GMT, E-ELT) all have single-mode IFS at first light
 - Extending slightly bluewards, 0.85 2.5 μ m
 - Range of spatial samplings 0.004 0.1"
 - R=3000 to 5000 (w/ limited 8000 10,000)
 - But <u>VERY small</u> field of views!

Keck GLAO – Multiobject IFSs

If all trees bear fruit, where will be the niche and need for a Keck GLAO+IFS system for high-z science?

- 1. mIFS continue with current IFS specifications
 - R=3000 to 5000, with 0.05 0.2"/spaxel
 - Continue to build a large statistical sample with multiple instruments is imperative
- 2. mIFS with higher spectral resolution
 - Reduce FOV, take advantage of GLAO sampling yet use 0.2" sampling, with R=8000-10000
 - Exciting for disentangling velocity structure on the brightest of systems, but with cost of reduced sensitivity*
- 3. mIFS with bluer wavelength coverage
 - Maximizing efficiency and performance between 0.7 1.3 μ m
 - Exciting for extending studies to higher redshifts (e.g., [OII] at z=3 is in J-band)
 - Exciting for rest-frame UV diagnostics (e.g. At z=6, Ly- α is in Z-band)